Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Design, Birds, and Diets
2.3. Analyses
2.4. Productive Parameters and Organ Weights
2.5. Morphological and Histological Traits of Small Intestine
2.6. Blood Biochemistry
2.7. Fear Behavior and Leg Color
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Organ Weight
3.2. Morphological Traits of Small Intestine
3.3. Blood Biochemistry
3.4. Fear Behavior and Leg Color
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Creppy, E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Biomin. BIOMIN World Mycotoxin Survey 2018. 2018. Available online: https://www.romerlabs.com/en/knowledge-center/knowledge-library/articles/news/biomin-world-mycotoxin-survey-2018/ (accessed on 12 June 2020).
- European Commission Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins inproducts intended for animal feeding. Off. J. Eur. Union 2006, L299, 7–9.
- Chen, S.S.; Li, Y.H.; Lin, M.F. Chronic exposure to the fusarium mycotoxin deoxynivalenol: Impact on performance, immune organ, and intestinal integrity of slow-growing chickens. Toxins 2017, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Lucke, A.; Doupovec, B.; Paulsen, P.; Zebeli, Q.; Böhm, J. Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res. 2017, 33, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, K.; Awad, W.A.; Sid-Ahmed, O.E.; Böhm, J. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Zebeli, Q.; Böhm, J. Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics. J. Anim. Physiol. Anim. Nutr. 2016, 100, 53–60. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Hulan, H.W.; Zentek, J. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult. Sci. 2004, 83, 1964–1972. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Ghareeb, K.; Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef]
- Huff, W.E.; Kubena, L.F.; Harvey, R.B.; Halger, W.M.; Swanson, S.P.; Philips, T.C.; Greger, C. Individual and combined effects of aflatoxin and deoxynivalenol (DON), vomitoxin in broiler chickens. Poult. Sci. 1986, 65, 1291–1298. [Google Scholar] [CrossRef]
- Kubena, L.F.; Huff, W.E.; Harvey, R.B.; Phillips, T.D.; Rottinghaus, G.E. Individual and combined toxicity of deoxynivalenol and T-2 toxin in broiler chicks. Poult. Sci. 1989, 68, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Edrington, T.S.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D.; Rottinghaus, G.E.; Casper, H.H. Individual and Combined Effects of Fumonisin B1 Present in Fusarium moniliforme Culture Material and T-2 Toxin or Deoxynivalenol in Broiler Chicks. Poult. Sci. 1997, 76, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Soodoi, C.; Sasgary, S.; Strasser, A.; Böhm, J. Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareeb, K.; Awad, W.A.; Böhm, J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult. Sci. 2012, 91, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Eicher, S.D.; Applegate, T.J. Effects of increasing dietary concentrations of corn naturally contaminated with deoxynivalenol on broiler and Turkey poult performance and response to lipopolysaccharide. Poult. Sci. 2011, 90, 2766–2774. [Google Scholar] [CrossRef]
- Campo, J.L.; Gil, M.G.; Dávila, S.G.; Muñoz, I. Influence of perches and footpad dermatitis on tonic immobility and heterophil to lymphocyte ratio of chickens. Poult. Sci. 2005, 84, 1004–1009. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2004. [Google Scholar]
- Metayer, J.P.; Travel, A.; Mika, A.; Bailly, J.D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of toxic interaction between fusariotoxins in broiler chickens fed throughout their life at the highest level tolerated in the european union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Nofrarías, M.; Manzanilla, E.G.; Pujols, J.; Gibert, X.; Majó, N.; Segalés, J.; Gasa, J. Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 2006, 84, 2735–2742. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Zentek, J. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2006, 90, 32–37. [Google Scholar] [CrossRef]
- Yu, Y.H.; Hsiao, F.S.H.; Proskura, W.S.; Dybus, A.; Siao, Y.H.; Cheng, Y.H. An impact of Deoxynivalenol produced by Fusarium graminearum on broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1012–1019. [Google Scholar] [CrossRef]
- Broekaert, N.; Devreese, M.; van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A.; et al. In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2017, 91, 699–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Schwartz-Zimmermann, H.E.; Fruhmann, P.; Dänicke, S.; Wiesenberger, G.; Caha, S.; Weber, J.; Berthiller, F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 2015, 7, 4706–4729. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, B.; Mclaughlin, C.S. Biochemical Mechanism of Action of Trichothecene Mycotoxins. In Trichothecene Mycotoxicosis: Pathophysiologic Effects; Beasley, V.R., Ed.; CRC Press: Boca Raton, FL, USA, 1989; Volume I, pp. 27–35. [Google Scholar]
- Awad, W.A.; Ghareeb, K.; Dadak, A.; Hess, M.; Böhm, J. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLoS ONE 2014, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Swanson, S.P.; Harvey, R.B.; Rowe, L.D.; Phillips, T.D. Effects of Feeding Deoxynivalenol (Vomitoxin)-Contaminated Wheat to growing chicks. Poult.Sci. 1985, 64, 1649–1655. [Google Scholar] [CrossRef]
- Lun, A.K.; Young, L.G.; Moran, E.T., Jr.; Hunter, D.B.; Rodriguez, J.P. Effects of feeding hens a high level of vomitoxin-contaminated corn on performance and tissue residues. Poult. Sci. 1986, 65, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Hess, M.; Twaruzek, M.; Grajewski, J.; Kosicki, R.; Böhm, J.; Zentek, J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 2011, 12, 7996–8012. [Google Scholar] [CrossRef]
- Yunus, A.W.; Ghareeb, K.; Twaruzek, M.; Grajewski, J.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poult. Sci. 2012, 91, 844–851. [Google Scholar] [CrossRef]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Böhm, J.; Razzazi, E.; Hellweg, P.; Zentek, J. The impact of the Fusarium toxin deoxynivalenol (DON) on poultry. Int. J. Poult. Sci. 2008, 7, 827–842. [Google Scholar] [CrossRef] [Green Version]
- Rotter, B.A.; Prelusky, D.B.; Pestka, J.J. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health 1996, 48, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.Y.; Chen, S.Y.; Zhao, Y.Y.; Chen, S.; Huang, R.L.; Zhu, G.Q.; Deng, J.P. GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABA AR signaling and the AMPK autophagy pathway. Food Funct. 2019, 10, 7509–7522. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Deoxynivalenol impairs weight gain and affects markers of gut health after low-dose, short-term exposure of growing pigs. Toxins 2015, 7, 2071–2095. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Harvey, R.B.; Corrier, D.E.; Huff, W.E. Effects of feeding deoxynivalenol (DON, vomitoxin)-contaminated wheat to female White Leghorn chickens from day old through egg production. Poult. Sci. 1987, 66, 1612–1618. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Lovatto, P.A. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Husic, H.D.; Suelter, C.H. The levels of creatine kinase and adenylate kinase in the plasma of dystrophic chickens reflect the rates of loss of these enzymes from the circulation. Biochem. Med. 1983, 29, 318–336. [Google Scholar] [CrossRef]
- Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on barin regional neurochemistry of starter pigs and broiler chickens. Poult. Sci. 2004, 82, 2131–2139. [Google Scholar] [CrossRef] [Green Version]
Item | Control Group | DON 1 Group (5 mg/kg) | DON Group (15 mg/kg) |
---|---|---|---|
Broiler starter | |||
Dry matter (%) | 88.9 | 88.9 | 89.0 |
Crude protein (%) | 21.8 | 21.3 | 21.5 |
Gross energy (Kcal/kg) | 4094 | 4147 | 4170 |
Crude fiber (%) | 2.40 | 2.20 | 2.48 |
Ether extract (%) | 6.75 | 7.13 | 7.24 |
Ash (%) | 5.56 | 5.65 | 5.65 |
Sodium chloride (%) | 0.30 | 0.32 | 0.32 |
Mycotoxins (µg/kg) | |||
DON | 65 | 4760 | 14,390 |
ZEN | <1.75 | 84.4 | 242 |
FBs | 142 | 257 | 216 |
OTA | 0.94 | 0.90 | 1.21 |
AFB1 | <0.3 | <0.3 | <0.3 |
Broiler grower | |||
Dry matter (%) | 89.1 | 89.1 | 89.1 |
Crude protein (%) | 19.6 | 19.8 | 19.6 |
Gross energy (cal/g) | 4186 | 4208 | 4240 |
Crude fiber (%) | 2.24 | 2.37 | 2.48 |
Ether extract (%) | 7.84 | 7.94 | 8.02 |
Ash (%) | 4.98 | 4.97 | 4.96 |
Sodium chloride (%) | 0.31 | 0.35 | 0.33 |
Mycotoxins (µg/kg) | |||
DON | 73 | 4650 | 15,120 |
ZEN | <1.75 | 85.9 | 259 |
FBs | 225 | 216 | 275 |
OTA | 1.59 | 1.11 | 1.10 |
AFB1 | <0.3 | <0.3 | <0.3 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
BWG (g/d/bird) | |||||||
d 0 to 21 | 29.1 | 30.7 | 30.4 | 1.98 | 0.83 | 0.70 | 0.65 |
d 0 to 35 | 50.2 | 50.7 | 48.5 | 1.73 | 0.67 | 0.46 | 0.60 |
d 0 to 42 | 58.5 a | 57.4 a,b | 54.7 b | 1.39 | 0.22 | 0.08 | 0.94 |
Feed intake (g/day/bird) | |||||||
d 0 to 21 | 42.4 | 43.0 | 40.4 | 1.28 | 0.38 | 0.24 | 0.43 |
d 0 to 35 | 72.4 | 72.4 | 69.7 | 2.20 | 0.64 | 0.38 | 0.73 |
d 0 to 42 | 85.3 | 86.9 | 88.0 | 2.82 | 0.80 | 0.53 | 0.85 |
Feed conversion ratio (g:g) | |||||||
d 0 to 21 | 1.46 | 1.41 | 1.40 | 0.05 | 0.73 | 0.53 | 0.65 |
d 0 to 35 | 1.44 | 1.42 | 1.43 | 0.01 | 0.94 | 0.77 | 0.86 |
d 0 to 42 | 1.45 b | 1.51 ab | 1.55 a | 0.02 | 0.09 | 0.03 | 0.49 |
Mortality (%) | |||||||
d 0 to 42 | 13.3 | 19.9 | 13.3 | 8.16 | 0.80 | 0.90 | 0.52 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
Gizzard, g | 39.3 | 42.6 | 39.4 | 1.41 | 0.19 | 0.76 | 0.07 |
Liver, g | 53.3 | 56.5 | 52.6 | 2.55 | 0.53 | 0.70 | 0.31 |
Kidneys, g | 13.4 | 14.0 | 13.3 | 0.58 | 0.71 | 0.81 | 0.43 |
Colon, g | 2.89 a | 2.04 b | 2.12 b | 0.21 | 0.01 | 0.03 | 0.03 |
Thymus, g | 9.58 b | 16.5 a | 14.2 a | 1.10 | 0.0002 | 0.02 | 0.0003 |
Bursa of Fabricius, g | 6.44 | 5.87 | 5.15 | 0.53 | 0.26 | 0.10 | 0.83 |
Gizzard, % | 1.46 b | 1.65 a | 1.62 a | 0.04 | 0.006 | 0.04 | 0.01 |
Liver, % | 1.99 | 2.19 | 2.08 | 0.08 | 0.25 | 0.61 | 0.11 |
Kidneys, % | 0.51 | 0.54 | 0.53 | 0.02 | 0.58 | 0.60 | 0.36 |
Colon, % | 0.11 a | 0.08 b | 0.08 b | 0.008 | 0.03 | 0.09 | 0.04 |
Thymus, % | 0.33 b | 0.63 a | 0.57 a | 0.03 | <0.0001 | 0.001 | <0.0001 |
Bursa of Fabricius, % | 0.24 a | 0.22 b | 0.19 b | 0.02 | 0.22 | 0.08 | 0.95 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
Small intestine, g | 67.7 a | 59.9 b | 59.3 b | 2.34 | 0.02 | 0.02 | 0.10 |
Small intestine, % | 2.57 a | 2.34 b | 2.34 b | 0.08 | 0.09 | 0.09 | 0.09 |
Length, cm | 192 b | 206 a | 208 a | 4.30 | 0.01 | 0.01 | 0.10 |
Density, (g/cm) | 0.34 a | 0.29 b | 0.28 b | 0.01 | 0.001 | 0.002 | 0.02 |
Dietary Treatment 1 | ||||||
---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | p-Value | Linear | Quadratic |
Villus height (µm) | 956 ± 47.1 | 921 ± 36.3 | 928 ± 82.4 | 0.90 | 0.79 | 0.76 |
Crypt depth (µm) | 128 ± 10.0 | 102 ± 11.3 | 99 ± 11.0 | 0.12 | 0.11 | 0.31 |
Villus height-to-crypt depth ratio | 7.84 ± 0.53 | 9.46 ± 1.02 | 9.74 ± 0.90 | 0.14 | 0.11 | 0.36 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
Total protein (g/L) | 29.7 | 29.6 | 30.0 | 0.60 | 0.92 | 0.74 | 0.81 |
Albumin (g/L) | 10.1 | 10.0 | 9.84 | 0.21 | 0.56 | 0.29 | 0.90 |
AST (U/L) | 332 | 285 | 314 | 18.6 | 0.24 | 0.71 | 0.10 |
ALT (U/L) | 2.46 | 2.16 | 2.23 | 0.21 | 0.57 | 0.52 | 0.41 |
Cholesterol (mmol/L) | 3.83 a | 3.55 ab | 3.29 b | 0.13 | 0.004 | 0.001 | 0.47 |
ALP (U/L) | 5807 | 4849 | 4893 | 647 | 0.48 | 0.37 | 0.43 |
ᵞ-GT (U/L) | 23.7 | 22.5 | 20.8 | 1.50 | 0.36 | 0.16 | 0.90 |
Glucose (mmol/L) | 13.9 | 13.8 | 14.0 | 0.16 | 0.74 | 0.72 | 0.50 |
LDH (U/L) | 3894 | 3689 | 3200 | 416 | 0.32 | 0.13 | 0.95 |
Uric acid (mmol/L) | 335 | 298 | 279 | 22.5 | 0.21 | 0.10 | 0.52 |
CK (U/L) | 9532 a | 4412 b | 7527 ab | 1610 | 0.10 | 0.63 | 0.04 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
Fear behavior | |||||||
Tonic immobility duration (s) | |||||||
28 d | 132 | 103 | 118 | 36.8 | 0.85 | 0.86 | 0.59 |
35 d | 169 ab | 85.7 b | 246 a | 43.7 | 0.05 | 0.09 | 0.06 |
Number of inductions | |||||||
28 d | 1.61 | 1.50 | 1.84 | 0.31 | 0.72 | 0.52 | 0.62 |
35 d | 1.38 | 1.25 | 1.53 | 0.20 | 0.61 | 0.49 | 0.47 |
Footpad color | |||||||
L | 78.0 | 77.8 | 77.6 | 0.51 | 0.87 | 0.62 | 0.88 |
a | 3.24 | 2.87 | 3.13 | 0.34 | 0.74 | 0.94 | 0.45 |
b | 30.6 | 33.7 | 31.9 | 1.54 | 0.35 | 0.70 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riahi, I.; Marquis, V.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Pérez-Vendrell, A.M. Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens. Animals 2020, 10, 1795. https://doi.org/10.3390/ani10101795
Riahi I, Marquis V, Ramos AJ, Brufau J, Esteve-Garcia E, Pérez-Vendrell AM. Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens. Animals. 2020; 10(10):1795. https://doi.org/10.3390/ani10101795
Chicago/Turabian StyleRiahi, Insaf, Virginie Marquis, Antonio J. Ramos, Joaquim Brufau, Enric Esteve-Garcia, and Anna Maria Pérez-Vendrell. 2020. "Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens" Animals 10, no. 10: 1795. https://doi.org/10.3390/ani10101795
APA StyleRiahi, I., Marquis, V., Ramos, A. J., Brufau, J., Esteve-Garcia, E., & Pérez-Vendrell, A. M. (2020). Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens. Animals, 10(10), 1795. https://doi.org/10.3390/ani10101795