Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- Calculate the within-breed prevalence of Ewe Neck in a significant population of PRE horses.
- (2)
- Determine whether the development of Ewe Neck in this breed is associated with age, sex, coat color, or stud geographical location and size, all of which are closely related with management.
- (3)
- Estimate the heritability for Ewe Neck and the genetic correlations with certain morphological traits and body indices to incorporate the Ewe Neck trait into the PRE improvement program to lower the prevalence in the breed or even so that its incidence in the population disappears.
2. Materials and Methods
2.1. Description of Traits and Database
- Approach A—whole population with Ewe Neck score as a scale (n = 35,267). Ewe Neck score as a scale (classes 0, 1, 2, and 3).
- Approach B—whole population with Ewe Neck score as a dichotomic trait (n = 35,267). Ewe Neck score as a dichotomic trait (0 (no affected, class 0) and 1 (affected, classes 1, 2, and 3)).
- Approach C—Affected Ewe Neck subpopulation (classes 1, 2, and 3) (n = 9693).
- Sex (2 levels): male and female.
- Age (3 levels): 1 to 4 years, 4 to 7 years, and more than 7 years.
- Coat color (4 levels): grey, bay, black, and chestnut.
- Geographical area (6 levels): Spain, rest of Europe, North America, Central America, South America, and Australia.
- Birth stud size (5 levels): less than 5 mares, 5 to 9 mares, 10 to 19 mares, 20 to 50 mares, and more than 50 mares.
2.2. Descriptive Statistic and Risk Analysis
2.3. Genetic Model
- Whole population (1) (n = 35,267; 4 levels of Ewe Neck: class 0, 1, 2 and 3). Approach A.
- Dichotomy of whole population (2) (n = 35,267; 2 levels of Ewe Neck: level 1 animals without neck defect, class 0 and level 2 which includes class 1, 2, and 3 of the Ewe Neck defect). Approach B.
- Affected Ewe Neck subpopulation (n = 9565; 3 levels of Ewe Neck: class 1, 2, 3). Approach C.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vicente, A.A.; Carolino, N.; Ralão-Duarte, J.; Gama, L.T.T. Selection for morphology, gaits and functional traits in Lusitano horses: I. Genetic parameter estimates. Livest. Sci. 2014, 164, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vostrá-Vydrová, H.; Vostrý, L.; Hofmanová, B.; Krupa, E.; Zavadilová, L. Pedigree analysis of the endangered Old Kladruber horse population. Livest. Sci. 2016, 185, 17–23. [Google Scholar] [CrossRef]
- Savelkouls, J. The Friesian horse and the Frisian horse The (re) invention and the historicity of an iconic breed. De Vrije Fries 2015, 95, 9–42. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación Catálogo Oficial de Razas. Pura Raza Español. Available online: ttps://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo/autoctona-fomento/equino-caballar/espanola/iframe-ejemplo-arca.aspx (accessed on 1 May 2020).
- Solé, M.; Valera, M.; Fernández, J. Genetic structure and connectivity analysis in a large domestic livestock meta-population: The case of the Pura Raza Español horses. J. Anim. Breed Genet. 2018, 135, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.J.; Cervantes, I.; Valera, M.; Gutiérrez, J.P.; Sánchez Guerrero, M.J.; Cervantes, I.; Valera, M.; Gutiérrez, J.P. Modelling genetic evaluation for dressage in Pura Raza Español horses with focus on the rider effect. J. Anim. Breed. Genet. 2014, 131, 395–402. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.J.; Cervantes, I.; Molina, A.; Gutiérrez, J.P.; Valera, M. Designing an early selection morphological linear traits index for dressage in the Pura Raza Español horse. Animal 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Guerrero, M.J.; Negro-Rama, S.; Demyda-Peyras, S.; Solé-Berga, M.; Azor-Ortiz, P.J.; Valera-Córdoba, M. Morphological and genetic diversity of Pura Raza Español horse with regard to the coat colour. Anim. Sci. J. 2019, 90, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Baillet, H.; Thouvarecq, R.; Verin, E.; Delpouve, C.; Benguigui, N.; Komar, J.; Leroy, D. Mechanical horse, a new rehabilitation method for brain-damaged patients: Focus on postural coordination. A preliminary study. Ann. Phys. Rehabil. Med. 2017, 60, e62. [Google Scholar] [CrossRef]
- Dos Santos, M.R.; Freiberger, G.; Bottin, F.; Chiocca, M.; Zampar, A.; De Córdova Cucco, D. Evaluation of methodologies for equine biometry. Livest. Sci. 2017, 206, 24–27. [Google Scholar] [CrossRef]
- Go, L.M.; Barton, A.K.; Ohnesorge, B. Objective classification of different head and neck positions and their influence on the radiographic pharyngeal diameter in sport horses. BMC Vet. Res. 2014, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Rhodin, M.; Gómez álvarez, C.B.; Byström, A.; Johnston, C.; Van Weeren, P.R.; Roepstorff, L.; Weishaupt, M.A. The effect of different head and neck positions on the caudal back and hindlimb kinematics in the elite dressage horse at trot. Equine Vet. J. 2009, 41, 274–279. [Google Scholar] [CrossRef]
- Bamford, N.J.; Potter, S.J.; Harris, P.A.; Bailey, S.R. Breed differences in insulin sensitivity and insulinemic responses to oral glucose in horses and ponies of moderate body condition score. Domest. Anim. Endocrinol. 2014, 47, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sleutjens, J. The Effect of the Head and Neck Position on the Equine Athlete; Utrecht University Repository: Utrecht, The Netherlands, 2013. [Google Scholar]
- Van Erck, E. Dynamic respiratory videoendoscopy in ridden sport horses: Effect of head flexion, riding and airway inflammation in 129 cases. Equine Vet. J. 2011, 43, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.B.G.; Rhodin, M.; Bobbert, M.F.; Meyer, H.; Weishaupt, M.A.; Johnston, C.; Van Weeren, P.R. The effect of head and neck position on the thoracolumbar kinematics in the unridden horse. Equine Vet. J. 2006, 36, 445–451. [Google Scholar] [CrossRef]
- Welsh, C.E.; Lewis, T.W.; Blott, S.C.; Mellor, D.J.; Lam, K.H.; Stewart, B.D.; Parkin, T.D.H. Preliminary genetic analyses of important musculoskeletal conditions of Thoroughbred racehorses in Hong Kong. Vet. J. 2013, 198, 611–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Guerrero, M.J.; Ramos, J.; Valdés, M.; Rivero, J.L.L.; Valera, M. Prevalence, environmental risk factors and heritability of body condition in Pura Raza Español horses. Livest. Sci. 2019, 230, 103851. [Google Scholar] [CrossRef]
- Finno, C.J.; Spier, S.J.; Valberg, S.J. Equine diseases caused by known genetic mutations. Vet. J. 2009, 179, 336–347. [Google Scholar] [CrossRef]
- Morgan, R.; Keen, J.; McGowan, C. Equine metabolic syndrome. Vet. Rec. 2015, 177, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, F.W. Genetics of morphological traits and inherited disorders. In The Genetics of the Horse; CABI: Wallingford, UK, 2000; pp. 71–84. [Google Scholar]
- Pieramati, C.; Pepe, M.; Silvestrelli, M.; Bolla, A. Heritability estimation of osteochondrosis dissecans in Maremmano horses. Sci. Livest. Prod. 2003, 79, 249–255. [Google Scholar] [CrossRef]
- Stock, K.F.; Hamann, H.; Distl, O. Estimation of genetic parameters for the prevalence of osseous fragments in limb joints of Hanoverian Warmblood horses. J. Anim. Breed. Genet. 2005, 122, 271–280. [Google Scholar] [CrossRef]
- Lauper, M.; Gerber, V.; Ramseyer, A.; Burger, D.; Lüth, A.; Koch, C.; Dolf, G. Heritabilities of health traits in Swiss Warmblood horses. Equine Vet. J. 2017, 49, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Hilla, D.; Distl, O. Genetic parameters for osteoarthrosis, radiographic changes of the navicular bone and sidebone, and their correlation with osteochondrosis and osteochondral fragments in Hanoverian warmblood horses. Livest. Sci. 2014, 169, 19–26. [Google Scholar] [CrossRef]
- Lykkjen, S.; Olsen, H.F.; Dolvik, N.I.; Grøndahl, A.M.; Røed, K.H.; Klemetsdal, G. Heritability estimates of tarsocrural osteochondrosis and palmar/plantar first phalanx osteochondral fragments in Standardbred trotters. Equine Vet. J. 2014, 46, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.J.; Azor, P.J.; Molina, A.; Parkin, T.; Rivero, J.L.L.; Valera, M. Prevalence, risk factors and genetic parameters of cresty neck in Pura Raza Español horses. Equine Vet. J. 2015, 49, 196–200. [Google Scholar] [CrossRef]
- Comparini, L.; Podestà, A.; Russo, C.; Cecchi, F. Effect of inbreeding on the “club foot” disorder in arabian pureblood horses reared in Italy. Open Vet. J. 2019, 9, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Farries, G.; Bryan, K.; McGivney, C.L.; McGettigan, P.A.; Gough, K.F.; Browne, J.A.; Hill, E.W. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front. Genet. 2019, 10, 1215. [Google Scholar] [CrossRef]
- Morales, B.A.; Méndez, S.A.; Pérez, A.J. La región del cuello del caballo. Connotaciones anátomo-aplicativas: Una revisión. Int. J. Morphol. 2014, 32, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- StatSoft Inc. STATISTICA (Data Analysis Software System). 2007. Available online: www.statsoft.com (accessed on 1 May 2020).
- Legarra, A.; Varona, L.; López de Maturana, E. TM: Threshold Model 2011. pp. 1–33. Available online: http://genoweb.toulouse.inra.fr/~alegarra/tm_folder/ (accessed on 1 May 2020).
- Geman, S.; Geman, D. Stochastic relaxation, GIBBS distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
- Szklarz, M.; Skalec, A.; Kirstein, K.; Janeczek, M.; Kasparek, M.; Kasparek, A.; Waselau, M. Management of equine ataxia caused by cervical vertebral stenotic myelopathy: A European perspective 2010–2015. Equine Vet. Educ. 2018, 30, 370–376. [Google Scholar] [CrossRef]
- Poyato-Bonilla, J.; Sánchez-Guerrero, M.J.; Santos, R.D.; Valera, M. Population study of the Pura Raza Español Horse regarding its coat colour. Ann. Anim. Sci. 2018, 18, 723–739. [Google Scholar] [CrossRef] [Green Version]
- Bellone, R.R. Pleiotropic effects of pigmentation genes in horses. Anim. Genet. 2010, 41 (Suppl. 2), 100–110. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.J.; Solé, M.; Azor, P.J.; Sölkner, J.; Valera, M. Genetic and environmental risk factors for vitiligo and melanoma in pura raza español horses. Equine Vet. J. 2019, 51, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Lesimple, C.; Fureix, C.; Biquand, V.; Hausberger, M. Comparison of clinical examinations of back disorders and humans’ evaluation of back pain in riding school horses. BMC Vet. Res. 2013, 13, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agerholm, J.S.; Bendixen, C.; Andersen, O.; Arnbjerg, J. Complex vertebral malformation in Holstein calves. J. Vet. diagn. Investig. 2001, 13, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigante, A.; Chillemi, C.; Potter, K.A.; Bertoni-Freddari, C.; Greco, F. Elastic fibers of musculoskeletal tissues in bovine Marfan syndrome: A morphometric study. J. Orthop. Res. 1999, 17, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cabal, M.A.; Charfeddine, N. Short communication: Association of foot and leg conformation and body weight with claw disorders in Spanish Holstein cows. J. Dairy Sci. 2016, 99, 9104–9108. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, B.K.; Kaiser, L.; Maxwell, H.S. Heritable bovine fetal abnormalities. Theriogenology 2008, 70, 535–549. [Google Scholar] [CrossRef]
- Molina, A.; Valera, M.; Dos Santos, R.; Rodero, A. Genetic parameters of morphofunctional traits in Andalusian horse. Livest. Prod. Sci. 1999, 60, 295–303. [Google Scholar] [CrossRef]
- Gómez, M.D.; Goyache, F.; Molina, A.; Valera, M. Sire × stud interaction for body measurement traits in Spanish Purebred horses. J. Anim. Sci. 2009, 87, 2502–2509. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.J.; Molina, A.; Gómez, M.D.; Peña, F.; Valera, M. Relationship between morphology and performance: Signature of mass-selection in Pura Raza Español horse. Livest. Sci. 2016, 185, 148–155. [Google Scholar] [CrossRef]
- Duensing, J.; Stock, K.F.; Krieter, J. Implementation and prospects of linear profiling in the warmblood horse. J. Equine Vet. Sci. 2014, 34, 360–368. [Google Scholar] [CrossRef]
- Viklund, Å.; Hellsten, E.T.; Näsholm, A.; Strandberg, E.; Philipsson, J. Genetic parameters for traits evaluated at field tests of 3-and 4-year-old Swedish Warmblood horses. Animal 2008, 2, 1832–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.A.; Makvandi-Nejad, S.; Chu, E.; Allen, J.J.; Streeter, C.; Gu, E.; McCleery, B.; Murphy, B.A.; Bellone, R.; Sutter, N.B. Morphological variation in the horse: Defining complex traits of body size and shape. Anim. Genet. 2010, 41, 159–165. [Google Scholar] [CrossRef] [PubMed]
Morphological Traits | Description | |
---|---|---|
Morphological measurement (cm) | Height at withers (HW) | Distance between the ground and the highest point of the withers. |
Height at decline point of withers (HDPW) | Distance between the ground and the lowest point of the withers. | |
Height at chest (HC) | Distance between the ground and the hollow substernal. | |
Width of head (WH) | Distance between the most protruding edge of the zygomatic arches. | |
Length of neck (LN) | Distance between the base of the ear and the middle point of the spine of the scapula. | |
Length of shoulder (LS) | Distance between the withers and the greater tubercle of the humerus (caudal part). | |
Width of chest (WC) | Distance measured between cranio-lateral points of the humerus in the scapular-humeral articulations (left and right). | |
Scapulo-isquial length (SIL) | Distance between the greater tubercle of the humerus (caudal part) and ischial tuberosity. | |
Length of back (LBa) | Distance from the withers to the last thoracic vertebra. | |
Length of loin (LL) | Distance between the last thoracic vertebra and the tuber coxae of the ilium. | |
Dorso-sternum diameter (DSD) | Distance measured from the lowest point in the withers decline to the sternal area. | |
Perimeter of thorax (PT) | Perimeter of thorax, measured at its midpoint. | |
Linear conformation traits (class) | Angle of shoulder (AS) | Angle formed by the line from the withers to the shoulder with the horizontal. |
Muscle development (MD) | Degree of body musculature at the level of back, loin, rump and thigh, ranging from very thin (class 1) to very muscular (class 9). | |
Head-neck junction (HNJ) | Type of insertion of the head in the neck ranging from very distinct (class 1) to very indistinct (class 9). | |
Bottom neck-body junction (NBJ) | Distance between the point of insertion neck-body (the ventral part) and the line connecting the 2 shoulder joints: scapula/humeral; ranging from very packed (class 1) to very marked (class 9). | |
Body Indices | Proportionality index (PrI) | [Height at withers/Scapulo-isquial length] × 100 |
Head index (HI) | [Width of head/Length of head] × 100 | |
Thoracic index (TI) | [Bicostal Diameter/Dorso-Sternum Diameter] × 100 | |
Body index (BI) | [Height at withers/Perimeter of thorax] × 100 |
Score | Description |
---|---|
0 | Absent Ewe Neck (Figure 1a). |
1 | Incipient Ewe Neck: ventral neck region (sternocephalic and brachiocephalic muscle) are slightly more developed than dorsal neck region (the Interscapular and adjacent prescapular). The horse does not have great difficulties of movement. |
2 | Noticeable appearance of Ewe Neck: The musculature of the ventral neck region is more developed than the dorsal neck region. The lower edge of the neck is slightly convex. The horse has difficulty making some movements. |
3 | Very serious Ewe Neck: hyper-musculature of the ventral neck region. The upper edge of the neck is slightly concave, and the lower edge is convex (deer neck). The horse has difficulties of movement (Figure 1b). |
Risk Factors | Number of Horses | ||||
---|---|---|---|---|---|
Class 0 | Class 1 | Class 2 | Class 3 | ||
Sex | Male (n = 12,177) | 8745 | 1931 | 1409 | 92 |
Female (n = 23,090) | 16,957 | 3408 | 2580 | 145 | |
Age | <4 years (n = 12,773) | 9573 | 1843 | 1296 | 61 |
4–7 years (n = 17,424) | 12,476 | 2766 | 2052 | 130 | |
>7 years (n = 5070) | 3653 | 730 | 641 | 46 | |
Coat Color | Grey (n = 15,636) | 11,756 | 2172 | 1624 | 84 |
Brown (n = 13,006) | 9396 | 2047 | 1469 | 94 | |
Black (n = 4438) | 3071 | 693 | 639 | 35 | |
Chestnut (n = 2187) | 1479 | 427 | 257 | 24 | |
Geographical area | Spain (n = 26,482) | 19,459 | 4078 | 2814 | 131 |
North America (n = 3013) | 2048 | 485 | 441 | 39 | |
Central America (n = 2726) | 1928 | 423 | 360 | 15 | |
Europe (n = 1578) | 1216 | 170 | 173 | 19 | |
South America (n = 1376) | 983 | 169 | 194 | 30 | |
Australia (n = 92) | 68 | 14 | 7 | 3 | |
Birth stud size | <5 (n = 4054) | 2860 | 621 | 525 | 48 |
5–9 (n = 3821) | 2725 | 566 | 501 | 29 | |
10–19 (n = 5742) | 4153 | 843 | 701 | 45 | |
20–50 (n = 9701) | 7191 | 1382 | 1071 | 57 | |
>50 (n = 11,949) | 8773 | 1927 | 1191 | 58 | |
Total | 25,702 | 5339 | 3989 | 237 |
Risk Factors | Subpopulation Affected by Ewe Neck (%) | p-Value | |
---|---|---|---|
Sex | Male | 28.18 b | <0.005 |
Female | 26.55 a | ||
Age | <4 years | 25.05 a | <0.005 |
4–7 years | 28.40 c | ||
>7 | 27.95 b | ||
Coat Color | Grey | 25.26 a | <0.005 |
Brown | 27.76 b | ||
Black | 30.80 c | ||
Chestnut | 32.37 d | ||
Geographical area | Spain | 26.52 d | <0.005 |
North America | 32.03 c | ||
Central America | 29.27 e | ||
Europe | 22.94 a | ||
South America | 28.56 b | ||
Australia | 26.09 abc | ||
Birth stud size (number of mares) | <5 | 29.45 c | <0.005 |
5–9 | 28.68 c | ||
10–19 | 27.67 c | ||
20–50 | 25.87 a | ||
>50 | 26.58 b |
Morphological Traits and Body Indices | Heritability | Genetic Correlations ± S.D. (Ewe Neck with Morphological Traits and Body Indices) | |||
---|---|---|---|---|---|
Approach A | Ewe Neck | 0.23 ± 0.01 | Approach A | Approach B | Approach C |
Approach B | 0.24 ± 0.02 | ||||
Approach C | 0.34 ± 0.03 | ||||
HW | 0.77 ± 0.01 | −0.15 ± 0.00 | −0.17 ± 0.03 | −0.10 ± 0.07 | |
HDPW | 0.68 ± 0.01 | −0.20 ± 0.03 | −0.20 ± 0.04 | −0.07 ± 0.05 | |
HC | 0.40 ± 0.02 | −0.25 ± 0.04 | −0.32 ± 0.05 | 0.30 ± 0.08 | |
WH | 0.65 ± 0.01 | −0.02 ± 0.03 | −0.02 ± 0.03 | 0.08 ± 0.07 | |
LN | 0.33 ± 0.01 | −0.11 ± 0.04 | −0.10 ± 0.04 | 0.04 ± 0.07 | |
LS | 0.49 ± 0.02 | −0.04 ± 0.03 | −0.17 ± 0.03 | 0.49 ± 0.05 | |
WC | 0.33 ± 0.01 | 0.00 ± 0.03 | 0.12 ± 0.04 | −0.38 ± 0.08 | |
SIL | 0.55 ± 0.02 | 0.02 ± 0.03 | 0.06 ± 0.03 | −0.05 ± 0.07 | |
Lba | 0.48 ± 0.01 | −0.25 ± 0.01 | −0.36 ± 0.03 | 0.47 ± 0.05 | |
LL | 0.49 ± 0.01 | 0.18 ± 0.03 | 0.09 ± 0.03 | 0.48 ± 0.05 | |
DSD | 0.37 ± 0.01 | 0.04 ± 0.04 | 0.17 ± 0.04 | −0.46 ±0.07 | |
PT | 0.57 ± 0.01 | −0.14 ± 0.03 | −0.15 ± 0.03 | 0.10 ± 0.06 | |
AS | 0.31 ± 0.02 | −0.10 ± 0.04 | −0.10 ± 0.04 | 0.07 ± 0.06 | |
MD | 0.32 ± 0.01 | −0.12 ± 0.04 | −0.14 ± 0.04 | −0.11 ± 0.08 | |
HNJ | 0.26 ± 0.01 | −0.15 ± 0.04 | −0.30 ± 0.04 | 0.57 ± 0.05 | |
NBJ | 0.13 ± 0.01 | −0.38 ± 0.04 | −0.38 ± 0.04 | −0.38 ± 0.04 | |
Prl | 0.46 ± 0.01 | 0.04 ± 0.03 | 0.07 ± 0.04 | −0.29 ± 0.07 | |
HI | 0.38 ± 0.02 | −0.22 ± 0.03 | −0.19 ± 0.03 | −0.34 ± 0.06 | |
TI | 0.50 ± 0.02 | −0.25 ± 0.03 | −0.27 ± 0.03 | −0.07 ± 0.08 | |
BI | 0.27 ± 0.01 | −0.15 ± 0.04 | −0.19 ± 0.04 | 0.25 ± 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ripolles, M.; Sánchez-Guerrero, M.J.; Perdomo-González, D.I.; Azor, P.; Valera, M. Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses. Animals 2020, 10, 1789. https://doi.org/10.3390/ani10101789
Ripolles M, Sánchez-Guerrero MJ, Perdomo-González DI, Azor P, Valera M. Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses. Animals. 2020; 10(10):1789. https://doi.org/10.3390/ani10101789
Chicago/Turabian StyleRipolles, María, María J. Sánchez-Guerrero, Davinia I. Perdomo-González, Pedro Azor, and Mercedes Valera. 2020. "Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses" Animals 10, no. 10: 1789. https://doi.org/10.3390/ani10101789
APA StyleRipolles, M., Sánchez-Guerrero, M. J., Perdomo-González, D. I., Azor, P., & Valera, M. (2020). Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses. Animals, 10(10), 1789. https://doi.org/10.3390/ani10101789