Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allenspach, K.; Wieland, B.; Gröne, A.; Gaschen, F. Chronic enteropathies in dogs: Evaluation of risk factors for negative outcome. J. Vet. Intern. Med. 2007, 21, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Jergens, A.E.; Simpson, K.W. Inflammatory bowel disease in veterinary medicine. Front. Biosci. 2012, 4, 1404–1419. [Google Scholar] [CrossRef]
- Bathia, V.; Tandon, R.K. Stress and the gastrointestinal tract. J. Gastroenterol. Hepatol. 2005, 20, 332–339. [Google Scholar]
- Simpson, K.W.; Jergens, A.E. Pitfalls and progress in the diagnosis and management of canine inflammatory bowel disease. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 381–398. [Google Scholar] [CrossRef]
- Jergens, A.E.; Moore, F.M.; March, P.; Miles, K.G. Idiopathic inflammatory bowel disease associated with gastroduodenal ulceration-erosion: A report of nine cases in the dog and cat. J. Am. Anim. Hosp. Assoc. 1992, 28, 21–26. [Google Scholar]
- Gonkowski, S.; Rychlik, A.; Calka, J. Pituitary adenylate cyclase activating peptide-27-like immunoreactive nerve fibers in the mucosal layer of the canine gastrointestinal tract in physiology and during inflammatory bowel disease. Bull. Vet. Inst. Pulawy 2013, 57, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Rychlik, A.; Gonkowski, S.; Calka, J.; Nowicki, M.; Szweda, M. Galanin—Immunoreactive nerve fibers in the mucosal layer of the canine gastrointestinal tract during inflammatory bowel disease (IBD). Bull. Vet. Inst. Pulawy 2015, 59, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Rychlik, A.; Gonkowski, S.; Nowicki, M.; Calka, J. Inflammatory bowel disease affects the density of nitrergic nerve fibers in the mucosal layer of the canine gastrointestinal tract. Can. J. Vet. Res. 2017, 81, 129–136. [Google Scholar]
- Chandrasekharan, B.; Nezami, B.G.; Srinivasan, S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G949–G957. [Google Scholar] [CrossRef] [Green Version]
- Gonkowski, S. Vasoactive Intestinal Polypeptide in the Carotid Body-A History of Forty Years of Research. A Mini Review. Int. J. Mol. Sci. 2020, 21, 4692. [Google Scholar] [CrossRef]
- Said, S.I.; Mutt, V. Polypeptide with broad biologic activity: Isolation from small intestine. Science 1970, 169, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Dockray, G.J. Vasoactive Intestinal Polypeptide and Related Peptides. In Gut Hormones: Biochemistry and Physiology, 1st ed.; Walsh, J.H., Dockray, G.J., Eds.; Raven Press: New York, NY, USA, 1994; pp. 447–472. [Google Scholar]
- Cunningham, J.G.; Klein, B.G. Gastrointestinal physiology and metabolism. In Textbook of Veterinary Physiology, 4th ed.; Cunningham, J.G., Klein, B.G., Eds.; Saunders Elsevier: St. Louis, MO, USA, 2007; pp. 300–303. [Google Scholar]
- Burleigh, D.E.; Banks, M.R. Stimulation of intestinal secretion by vasoactive intestinal peptide and cholera toxin. Auton. Neurosci. 2007, 133, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.L.; Lorton, D.; Brouxhon, S.; Felten, S.; Felten, D.L. The significance of vasoactive intestinal polypeptide (VIP) in immunomodulation. Adv. Neuroimmunol. 1996, 6, 5–27. [Google Scholar] [CrossRef]
- Leceta, J.; Gomariz, R.P.; Martinez, C.; Abad, C.; Ganea, D.; Delgado, M. Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP. Ann. N. Y. Acad. Sci. 2000, 921, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Gonzalez-Rey, E.; Ganea, D. VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J. 2004, 18, 1453–1455. [Google Scholar] [CrossRef] [PubMed]
- Sigalet, D.L.; Wallace, L.E.; Holst, J.J.; Martin, G.R.; Kaji, T.; Tanaka, H.; Sharkey, K.A. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G211–G221. [Google Scholar] [CrossRef]
- Huang, M.C.; Miller, A.L.; Wang, W.; Kong, Y.; Paul, S.; Goetzl, E.J. Differential signaling of T cell generation of IL-4 by wild-type and short-deletion variant of type 2 G protein-coupled receptor for vasoactive intestinal peptide (VPAC2). J. Immunol. 2006, 176, 6640–6646. [Google Scholar] [CrossRef] [Green Version]
- Brenneman, D.E. Neuroprotection: A comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides 2007, 28, 1720–1726. [Google Scholar] [CrossRef]
- O’Morain, C.; Bishop, A.E.; McGregor, G.P.; Levi, A.J.; Bloom, S.R.; Polak, J.M.; Peters, T.J. Vasoactive intestinal peptide concentrations and immunocytochemical studies in rectal biopsies from patients with inflammatory bowel disease. Gut 1984, 25, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Belai, A.; Boulos, P.B.; Robson, T.; Burnstock, G. Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 1997, 40, 767–774. [Google Scholar] [CrossRef]
- Boyer, L.; Sidpra, D.; Jevon, G.; Buchan, A.M.; Jacobson, K. Differential responses of VIPergic and nitrergic neurons in paediatric patients with Crohn’s disease. Auton. Neurosci. 2007, 134, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Jergens, A.E.; Schreiner, C.A.; Frank, D.E.; Niyo, Y.; Ahrens, F.E.; Eckersall, P.D.; Benson, T.J.; Evans, R. A scoring index for disease activity in canine inflammatory bowel disease. J. Vet. Intern. Med. 2003, 17, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Makowska, K. Chemically induced inflammation and nerve damage affect the distribution of vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) nervous structures in the descending colon of the domestic pig. Neurogastroenterol. Motil. 2018, 30, e13439. [Google Scholar] [CrossRef] [PubMed]
- Ekblad, E.; Bauer, A.J. Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterol. Motil. 2004, 16 (Suppl. 1), 123–128. [Google Scholar] [CrossRef]
- Shi, X.Z.; Sarna, S.K. Homeostatic and therapeutic roles of VIP in smooth muscle function: Myo-neuroimmune interactions. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G716–G725. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, M.; Schlüter, P.; Yanaihara, N.; Forssmann, W.G. VIP immunoreactivity in enteric nerves and endocrine cells of the vertebrate gut. Peptides 1981, 2, 149–156. [Google Scholar] [CrossRef]
- Gonda, T.; Daniel, E.E.; McDonald, T.J.; Fox, J.E.; Brooks, B.D.; Oki, M. Distribution and function of enteric GAL-IR nerves in dogs: Comparison with VIP. Am. J. Physiol. 1989, 256, G884–G896. [Google Scholar] [CrossRef]
- Mao, Y.K.; Wang, Y.F.; Daniel, E.E. Distribution and characterization of vasoactive intestinal polypeptide binding in canine lower esophageal sphincter. Gastroenterology 1993, 105, 1370–1377. [Google Scholar] [CrossRef]
- Daniel, E.E.; Berezin, I.; Allescher, H.D.; Manaka, H.; Posey-Daniel, V. Morphology of the canine pyloric sphincter in relation to function. Can. J. Physiol. Pharmacol. 1989, 67, 1560–1573. [Google Scholar] [CrossRef]
- Daniel, E.E.; Costa, M.; Furness, J.B.; Keast, J.R. Peptide neurons in the canine small intestine. J. Comp. Neurol. 1985, 237, 227–238. [Google Scholar] [CrossRef]
- Furness, J.B.; Lloyd, K.C.; Sternini, C.; Walsh, J.H. Projections of substance P, vasoactive intestinal peptide and tyrosine hydroxylase immunoreactive nerve fibres in the canine intestine, with special reference to the innervation of the circular muscle. Arch. Histol. Cytol. 1990, 53, 129–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accili, E.A.; Dhatt, N.; Buchan, A.M. Neural somatostatin, vasoactive intestinal polypeptide and substance P in canine and human jejunum. Neurosci. Lett. 1995, 185, 37–40. [Google Scholar] [CrossRef]
- Li, M.Z.; Masuko, S. Neuronal circuitry between the inferior mesenteric ganglion and lower intestine of the dog. Arch. Histol. Cytol. 1997, 60, 391–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezin, I.; Snyder, S.H.; Bredt, D.S.; Daniel, E.E. Ultrastructural localization of nitric oxide synthase in canine small intestine and colon. Am. J. Physiol. 1994, 266, C981–C989. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, R.P.; Gates, T.S.; Mantyh, C.R.; Vigna, S.R.; Boehmer, C.G.; Mantyh, P.W. Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract. Peptides 1988, 9, 1241–1253. [Google Scholar] [CrossRef]
- Mao, Y.K.; Tougas, G.; Barnett, W.; Daniel, E.E. VIP receptors on canine submucosal synaptosomes. Peptides 1993, 14, 1149–1152. [Google Scholar] [CrossRef]
- Delgado, M.; Abad, C.; Martinez, C.; Juarranz, M.G.; Arranz, A.; Gomariz, R.P.; Leceta, J. Vasoactive intestinal peptide in the immune system: Potential therapeutic role in inflammatory and autoimmune diseases. J. Mol. Med. 2002, 80, 16–24. [Google Scholar] [CrossRef]
- Martinez, C.; Delgado, M.; Abad, C.; Gomariz, R.P.; Ganea, D.; Leceta, J. Regulation of VIP production and secretion by murine lymphocytes. J. Neuroimmunol. 1999, 93, 126–12832. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Inhibition of endotoxin-induced macrophage chemokine production by VIP and PACAP in vitro and in vivo. Arch. Physiol. Biochem. 2001, 109, 377–378. [Google Scholar] [CrossRef]
- Arciszewski, M.B.; Sand, E.; Ekblad, E. Vasoactive intestinal peptide rescues cultured rat myenteric neurons from lipopolysaccharide-induced cell death. Regul. Pept. 2008, 146, 218–223. [Google Scholar] [CrossRef]
- Yukawa, T.; Oshitani, N.; Yamagami, H.; Watanabe, K.; Higuchi, K.; Arakawa, T. Differential expression of vasoactive intestinal peptide receptor 1 expression in inflammatory bowel disease. Int. J. Mol. Med. 2007, 20, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.; Norrgard, O.; Forsgren, S. Epithelial expression of vasoactive intestinal peptide in ulcerative colitis: Down-regulation in markedly inflamed colon. Dig. Dis. Sci. 2012, 57, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Duffy, L.C.; Zielezny, M.A.; Riepenhoff-Talty, M.; Byers, T.E.; Marshall, J.; Weiser, M.M.; Graham, S.; Ogra, P.L. Vasoactive intestinal peptide as a laboratory supplement to clinical activity index in inflammatory bowel disease. Dig. Dis. Sci. 1989, 34, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, B.; Landowski, P.; Gonkowski, S.; Majewski, M.; Renke, J.; Korzon, M. Changes in the number of neuroprotective transmitter containing mucosal nerve fibers in children with ulcerative colitis. Med. Wieku Rozwoj. 2006, 10, 483–491. [Google Scholar] [PubMed]
- Xu, C.L.; Guo, Y.; Qiao, L.; Ma, L.; Cheng, Y.Y. Recombinant expressed vasoactive intestinal peptide analogue ameliorates TNBS-induced colitis in rats. World J. Gastroenterol. 2018, 24, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, K.; Makowska, K.; Gonkowski, S. The influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. Int. J. Mol. Sci. 2018, 20, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayawardena, D.; Anbazhagan, A.N.; Guzman, G.; Dudeja, P.K.; Onyuksel, H. Vasoactive intestinal peptide nanomedicine for the management of inflammatory bowel disease. Mol. Pharm. 2017, 14, 3698–3708. [Google Scholar] [CrossRef]
- Sun, X.; Guo, C.; Zhao, F.; Zhu, J.; Xu, Y.; Liu, Z.Q.; Yang, G.; Zhang, Y.Y.; Gu, X.; Xiao, L.; et al. Vasoactive intestinal peptide stabilizes intestinal immune homeostasis through maintaining interleukin-10 expression in regulatory B cells. Theranostics 2019, 9, 2800–2811. [Google Scholar] [CrossRef]
- Maiti, A.K.; Sharba, S.; Navabi, N.; Lindén, S.K. Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection. PLoS ONE 2018, 13, e0204567. [Google Scholar] [CrossRef]
- Wu, X.; Conlin, V.S.; Morampudi, V.; Ryz, N.R.; Nasser, Y.; Bhinder, G.; Bergstrom, K.S.; Yu, H.B.; Waterhouse, C.C.; Buchan, A.M.; et al. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS ONE 2015, 10, e0125225. [Google Scholar] [CrossRef]
- Morampudi, V.; Conlin, V.S.; Dalwadi, U.; Wu, X.; Marshall, K.C.; Nguyen, C.; Vallance, B.A.; Jacobson, K. Vasoactive intestinal peptide prevents PKCε-induced intestinal epithelial barrier disruption during EPEC infection. Am. J. Physiol. Gastrointest. Liver. Physiol. 2015, 308, G389–G402. [Google Scholar] [CrossRef] [PubMed]
- Abad, C.; Juarranz, Y.; Martinez, C.; Arranz, A.; Rosignoli, F.; García-Gómez, M.; Leceta, J.; Gomariz, R.P. cDNA array analysis of cytokines, chemokines, and receptors involved in the development of TNBS-induced colitis: Homeostatic role of VIP. Inflamm. Bowel Dis. 2005, 11, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Vu, J.P.; Million, M.; Larauche, M.; Luong, L.; Norris, J.; Waschek, J.A.; Pothoulakis, C.; Pisegna, J.R.; Germano, P.M. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J. Mol. Neurosci. 2014, 52, 37–47. [Google Scholar] [CrossRef] [PubMed]
Intestinal Segment | Group C | Group I | Group II | Group III |
---|---|---|---|---|
Duodenum | 25.12 ± 3.16 D | 23.01 ± 2.10 D | 27.47 ± 1.71 | 30.10 ± 2.80 AB |
Jejunum | 25.85 ± 2.29 | 24.49 ± 1.91 D | 26.42 ± 2.00 | 28.44 ± 2.38 B |
Colon | 26.27 ± 1.9 | 24.24 ± 2.47 C | 27.20 ± 0.61 B | 27.19 ± 5.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rychlik, A.; Gonkowski, S.; Całka, J.; Makowska, K. Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease. Animals 2020, 10, 1759. https://doi.org/10.3390/ani10101759
Rychlik A, Gonkowski S, Całka J, Makowska K. Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease. Animals. 2020; 10(10):1759. https://doi.org/10.3390/ani10101759
Chicago/Turabian StyleRychlik, Andrzej, Sławomir Gonkowski, Jarosław Całka, and Krystyna Makowska. 2020. "Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease" Animals 10, no. 10: 1759. https://doi.org/10.3390/ani10101759
APA StyleRychlik, A., Gonkowski, S., Całka, J., & Makowska, K. (2020). Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease. Animals, 10(10), 1759. https://doi.org/10.3390/ani10101759