Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects, Sample Collection, and Assessment of Health Status
2.2. Acute Phase Protein Analysis
2.3. Cytokine Enzyme Immunoassays
2.4. Serum Chemistries
2.5. Value Range Calculation
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, T.; Gu, F. Early diagnosis of sepsis using serum biomarkers. Expert Rev. Mol. Diagn. 2011, 11, 487–496. [Google Scholar] [CrossRef]
- Harris, V.K.; Sadiq, S.A. Disease biomarkers in multiple sclerosis. Mol. Diagn. Ther. 2009, 13, 225–244. [Google Scholar] [CrossRef]
- Jesneck, J.L.; Mukherjee, S.; Yurkovetsky, Z.; Clyde, M.; Marks, J.R.; Lokshin, A.E.; Lo, J.Y. Do serum biomarkers really measure breast cancer? BMC Cancer 2009, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Lembo, A.; Neri, B.; Tolley, J.; Barken, D.; Carroll, S.; Pan, H. Use of serum biomarkers in a diagnostic test for irritable bowel syndrome. Aliment. Pharm. Therap. 2009, 29, 834–842. [Google Scholar] [CrossRef]
- Wallenstein, M.B.; Jelliffe-Pawlowski, L.L.; Yang, W.; Carmichael, S.L.; Stevenson, D.K.; Ryckman, K.K.; Shaw, G.M. Inflammatory biomarkers and spontaneous preterm birth among obese women. J. Matern. Fetal Neonatal Med. 2016, 29, 3317–3322. [Google Scholar] [CrossRef] [Green Version]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: A review. Comp. Med. 2009, 59, 517–526. [Google Scholar]
- McIlwraith, C.W. Use of synovial fluid and serum biomarkers in equine bone and joint disease: A review. Equine Vet. J. 2005, 37, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Kuleš, J.; Mrljak, V.; Rafaj, R.B.; Selanec, J.; Burchmore, R.; Eckersall, P.D. Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach. BMC Vet. Res. 2014, 10, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannikov, G.; Hinds, C.; Rajala-Schultz, P.; Premanandan, C.; Rings, D.; Lakritz, J. Serum haptoglobin–matrix metalloproteinase 9 (Hp–MMP 9) complex as a biomarker of systemic inflammation in cattle. Vet. Immunol. Immunopathol. 2011, 139, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Finkelman, F.D.; Shea-Donohue, T.; Goldhill, J.; Sullivan, C.A.; Morris, S.C.; Madden, K.B.; Gause, W.C.; Urban, J.F., Jr. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: Lessons from studies with rodent models. Annu. Rev. Immunol. 1997, 15, 505–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cray, C. Acute phase proteins in animals. Prog. Mol. Biol. Transl. 2012, 105, 113–150. [Google Scholar] [CrossRef]
- Horadagoda, N.U.; Knox, K.M.G.; Gibbs, H.A.; Reid, S.W.J.; Horadagoda, A.; Edwards, S.E.R.; Eckersall, P.D. Acute phase proteins in cattle: Discrimination between acute and chronic inflammation. Vet. Rec. 1999, 144, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, M.F.; Kjelgaard-Hansen, M.; Grondahl, C.; Heegaard, P.M.H.; Jacobsen, S. Identification of acute phase proteins and assays applicable in nondomesticated mammals. J. Zoo Wildl. Med. 2009, 40, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J.J.; Cray, C.; Rodriguez, M.; Arheart, K.L.; Ling, P.D.; Herron, A. Acute phase protein expression during elephant endotheliotropic herpesvirus-1 viremia in Asian elephants (Elephas maximus). J. Zoo Wildl. Med. 2013, 44, 605–612. [Google Scholar] [CrossRef]
- Isaza, R.; Wiedner, E.; Hiser, S.; Cray, C. Reference intervals for acute phase protein and serum protein electrophoresis values in captive Asian elephants (Elephas maximus). J. Vet. Diagn. Investig. 2014, 26, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Bronson, E.; McClure, M.; Sohl, J.; Wiedner, E.; Cox, S.; Latimer, E.M.; Pearson, V.R.; Hayward, G.S.; Fuery, A.; Ling, P.D. Epidemiologic evaluation of elephant endotheliotropic herpesvirus 3B infection in an African elephant (Loxodonta africana). J. Zoo Wildl. Med. 2017, 48, 335–343. [Google Scholar] [CrossRef]
- Kuby Immunology, 6th ed.; Kindt, T.J.; Osborne, B.A.; Goldsby, R.A. (Eds.) W.H. Freeman Company: New York, NY, USA, 2006. [Google Scholar]
- Rau, S.; Kohn, B.; Richter, C.; Fenske, N.; Kuechenhoff, H.; Hartmann, K.; Hartle, S.; Kaspers, B.; Hirschberger, J. Plasma interleukin-6 response is predictive for severity and mortality in canine systemic inflammatory response syndrome and sepsis. Vet. Clin. Path 2007, 36, 253–260. [Google Scholar] [CrossRef]
- Islam, R.; Kumar, H.; Nandi, S.; Rai, R.B. Determination of anti-inflammatory cytokine in periparturient cows for prediction of postpartum reproductive diseases. Theriogenology 2013, 79, 974–979. [Google Scholar] [CrossRef]
- Sreekumar, E.; Janki, M.B.V.; Arathy, D.S.; Hariharan, R.; Premraj, C.A.; Rasool, T.J. Molecular characterization and expression of Interferon-gamma of Asian elephant (Elephas maximus). Vet. Immunol. Immunopathol. 2007, 118, 75–83. [Google Scholar] [CrossRef]
- Swami, S.K.; Vijay, A.; Nagarajan, G.; Kaur, R.; Srivastava, M. Molecular characterization of pro-inflammatory cytokines interleukin-1β and interleukin-8 in Asian elephant (Elephas maximus). Anim. Biotechnol. 2016, 27, 66–76. [Google Scholar] [CrossRef]
- Landolfi, J.A.; Mikota, S.K.; Chosy, J.; Lyashchenko, K.P.; Giri, K.; Gairhe, K.; Terio, K.A. Comparison of systemic cytokine levels in Mycobacterium spp. seropositive and seronegative Asian elephants (Elephas maximus). J. Zoo Wildl. Med. 2010, 41, 445–455. [Google Scholar] [CrossRef]
- Landolfi, J.A.; Miller, M.; Maddox, C.; Zuckermann, F.; Langan, J.N.; Terio, K.A. Differences in immune cell function between tuberculosis positive and negative Asian elephants. Tuberculosis 2014, 94, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, J.A.; Schultz, S.A.; Mikota, S.K.; Terio, K.A. Development and validation of cytokine quantitative, real time RT-PCR assays for characterization of Asian elephant immune responses. Vet. Immunol. Immunopathol. 2009, 131, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, J.A.; Terio, K.A.; Miller, M.; Junecko, B.F.; Reinhart, T. Pulmonary tuberculosis in Asian elephants (Elephas maximus): Histologic lesions with correlation to local immune responses. Vet. Pathol. 2015, 52, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivorakul, S.; Guntawang, T.; Kochagul, V.; Photichai, K.; Sittisak, T.; Janyamethakul, T.; Boonprasert, K.; Khammesri, S.; Langkaphin, W.; Punyapornwithaya, V. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS ONE 2019, 14, e0222158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, G.S. Conservation: Clarifying the risk from herpesvirus to captive Asian elephants. Vet. Rec. 2012, 170, 202–203. [Google Scholar] [CrossRef] [Green Version]
- Latimer, E. Current knowledge of EEHV in African elephants (Loxodonta africana). In Proceedings of the 16th International Elephant Conservation and Research Symposium, Limpopo, South Africa, 21–25 October 2019. [Google Scholar]
- Fayette, M. Fatal elephant endotheliotropic herpesvirus 3 infection in two captive African elephants (Loxodonta africana). In Proceedings of the 16th International Elephant Conservation and Research Symposium, Limpopo, South Africa, 21–25 October 2019. [Google Scholar]
- Zachariah, A.; Zong, J.C.; Long, S.Y.; Latimer, E.M.; Heaggans, S.Y.; Richman, L.K.; Hayward, G.S. Fatal herpesvirus hemorrhagic disease in wild and orphan Asian elephants in Southern India. J. Wildl. Dis. 2013, 49, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Sripiboon, S.; Tankaew, P.; Lungka, G.; Thitaram, C. The occurrence of elephant endotheliotropic herpesvirus in captive Asian elephants (Elephas maximus): First case of EEHV4 in Asia. J. Zoo Wildl. Med. 2013, 44, 100–104. [Google Scholar] [CrossRef]
- Bouchard, B.; Xaymountry, B.; Thongtip, N.; Lertwatcharasarakul, P.; Wajjwalku, W. First reported case of elephant endotheliotropic herpes virus infection in Laos. J. Zoo Wildl. Med. 2014, 45, 704–707. [Google Scholar] [CrossRef]
- EEHV Advisory Group. Available online: www.eehvinfo.org (accessed on 22 July 2020).
- Long, S.Y.; Latimer, E.M.; Hayward, G.S. Review of elephant endotheliotropic herpesviruses and acute hemorrhagic disease. ILAR J. 2015, 56, 283–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonprasert, K.; Punyapornwithaya, V.; Tankaew, P.; Angkawanish, T.; Sriphiboon, S.; Titharam, C.; Brown, J.L.; Somgird, C. Survival analysis of confirmed elephant endotheliotropic herpes virus cases in Thailand from 2006–2018. PLoS ONE 2019, 14, e0219288. [Google Scholar] [CrossRef]
- Oo, Z.M.; Aung, Y.H.; Aung, T.T.; San, N.; Tun, Z.M.; Hayward, G.S.; Zachariah, A. Elephant endotheliotropic herpesvirus hemorrhagic disease in Asian elephant calves in logging camps, Myanmar. Emerg. Infect. Dis. 2020, 26, 63. [Google Scholar] [CrossRef] [Green Version]
- Fuery, A.; Leen, A.M.; Peng, R.S.; Wong, M.C.; Liu, H.; Ling, P.D. Asian elephant T-cell responses to elephant endotheliotropic herpesvirus. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Lewerin, S.S.; Olsson, S.L.; Eld, K.; Roken, B.; Ghebremichael, S.; Koivula, T.; Kallenius, G.; Bolske, G. Outbreak of Mycobacterium tuberculosis infection among captive Asian elephants in a Swedish zoo. Vet. Rec. 2005, 156, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, I.; Ayele, W.Y.; Parmova, I.; Melicharek, I.; Hanzlikova, M.; Svejnochova, M.; Kormendy, B.; Nagy, G.; Cvetnic, Z.; Katalinic-Jankovic, V.; et al. Mycobacterium tuberculosis in animal and human populations in six Central European countries during 1990–1999. Vet. Med. Czech 2003, 48, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Stephens, N.; Vogelnest, L.; Lowbridge, C.; Christensen, A.; Marks, G.B.; Sintchenko, V.; McAnulty, J. Transmission of Mycobacterium tuberculosis from an Asian elephant (Elephas maximus) to a chimpanzee (Pan troglodytes) and humans in an Australian zoo. Epidemiol. Infect. 2013, 141, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Kerr, T.J.; de Waal, C.R.; Buss, P.E.; Hofmeyr, J.; Lyashchenko, K.P.; Miller, M.A. Seroprevalence of Mycobacterium tuberculosis complex in free-ranging African elephants (Loxodonta africana) in Kruger National Park, South Africa. J. Wildl. Dis. 2019, 55, 923–927. [Google Scholar] [CrossRef]
- Miller, M.A.; Buss, P.E.; Roos, E.O.; Hausler, G.; Dippenaar, A.; Mitchell, E.; Van Schalkwyk, O.L.; Robbe-Austerman, S.; Waters, W.; Sikar-Gang, A. Fatal tuberculosis in a free-ranging African elephant and one health implications of human pathogens in wildlife. Front. Vet. Sci. 2019, 6, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, S.; Mikota, S.K.; Nakajima, C.; Gairhe, K.P.; Maharjan, B.; Thapa, J.; Poudel, A.; Shimozuru, M.; Suzuki, Y.; Tsubota, T. Molecular characterization of Mycobacterium tuberculosis isolates from elephants of Nepal. Tuberculosis 2014, 94, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Mikota, S.K.; Gairhe, K.; Giri, K.; Hamilton, K.; Miller, M.; Paudel, S.; Lyashchenko, K.; Larsen, R.S.; Payeur, J.B.; Waters, W.R.; et al. Tuberculosis surveillance of elephants (Elephas maximus) in Nepal at the captive-wild interface. Eur. J. Wildl. Res. 2015, 61, 221–229. [Google Scholar] [CrossRef]
- Angkawanish, T.; Wajjwalku, W.; Sirimalaisuwan, A.; Mahasawangkul, S.; Kaewsakhorn, T.; Boonsri, K.; Rutten, V.P. Mycobacterium tuberculosis infection of domesticated Asian elephants, Thailand. Emerg. Infect. Dis. 2010, 16, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- Lassausaie, J.; Bret, A.; Bouapao, X.; Chanthavong, V.; Castonguay-Vanier, J.; Quet, F.; Mikota, S.K.; Theoret, C.; Buisson, Y.; Bouchard, B. Tuberculosis in Laos, who is at risk: The mahouts or their elephants? Epidemiol. Infect. 2015, 143, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, A.; Pandiyan, J.; Madhavilatha, G.K.; Mundayoor, S.; Chandramohan, B.; Sajesh, P.K.; Santhosh, S.; Mikota, S.K. Mycobacterium tuberculosis in wild Asian elephants, Southern India. Emerg. Infect. Dis. 2017, 23, 504–506. [Google Scholar] [CrossRef] [Green Version]
- Verma-Kumar, S.; Abraham, D.; Dendukuri, N.; Cheeran, J.V.; Sukumar, R.; Balaji, K.N. Serodiagnosis of tuberculosis in Asian elephants (Elephas maximus) in Southern India: A latent class analysis. PLoS ONE 2012, 7, e49548. [Google Scholar] [CrossRef]
- Ong, B.L.; Ngeow, Y.F.; Razak, M.F.; Yakubu, Y.; Zakaria, Z.; Mutalib, A.R.; Hassan, L.; Ng, H.F.; Verasahib, K. Tuberculosis in captive Asian elephants (Elephas maximus) in Peninsular Malaysia. Epidemiol. Infect. 2013, 141, 1481–1487. [Google Scholar] [CrossRef]
- Yakubu, Y.; Ong, B.L.; Zakaria, Z.; Hassan, L.; Mutalib, A.R.; Ngeow, Y.F.; Verasahib, K.; Razak, M. Evidence and potential risk factors of tuberculosis among captive Asian elephants and wildlife staff in Peninsular Malaysia. Prev. Vet. Med. 2016, 125, 147–153. [Google Scholar] [CrossRef]
- Edwards, K.L.; Miller, M.A.; Carlstead, K.; Brown, J.L. Relationships between housing and management factors and clinical health events in elephants in North American zoos. PLoS ONE 2019, 14, e0217774. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Jackson, B.; Riddle, H.S.; Stremme, C.; Schmitt, D.; Miller, T. Elephant (Elephas maximus) health and management in Asia: Variations in veterinary perspectives. Vet. Med. Int. 2015, 2015, 614690. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Path 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Spike-and-Recovery and Linearity-of-Dilution Assessment, (2007). Available online: http://tools.thermofisher.com/content/sfs/brochures/TR0058-Spike-and-Recovery.pdf (accessed on 22 July 2020).
- Spike and Recovery Protocol for Validating Untested Samples in R&D Systems DuoSets®, (2010). Available online: https://www.thermofisher.com/cn/zh/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa/spike-recovery-linearity-assessment.html (accessed on 22 July 2020).
- Finnegan, D. ReferenceIntervals: Reference Intervals. R Package Version 1.1.1. 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0:2014. [Google Scholar]
- Fowler, M.E.; Mikota, S.K. Biology, Medicine, and Surgery of Elephants, 1st ed.; Blackwell Publishing: Ames, IA, USA, 2006. [Google Scholar]
- Herzberg, D.; Strobel, P.; Ramirez-Reveco, A.; Werner, M.; Bustamante, H. Chronic inflammatory lameness increases cytokine concentration in the spinal cord of dairy cows. Front. Vet. Sci. 2020, 7, 7. [Google Scholar] [CrossRef]
- Belknap, J.K.; Giguere, S.; Pettigrew, A.; Cochran, A.M.; Van Eps, A.W.; Pollitt, C.C. Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: Innate vs. adaptive immune response. Equine Vet. J. 2007, 39, 42–47. [Google Scholar] [CrossRef]
- Stone, A.V.; Vanderman, K.S.; Willey, J.S.; Long, D.L.; Register, T.C.; Shively, C.A.; Stehle, J.R.; Loeser, R.F.; Ferguson, C.M. Osteoarthritic changes in vervet monkey knees correlate with meniscus degradation and increased matrix metalloproteinase and cytokine secretion. Osteoarthr. Cartil. 2015, 23, 1780–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breathnach, R.M.; Fanning, S.; Mulcahy, G.; Bassett, H.F.; Jones, B.R.; Daly, P. Evaluation of Th-1-like, Th-2-like and immunomodulatory cytokine mRNA expression in the skin of dogs with immunomodulatory-responsive lymphocytic-plasmacytic pododermatitis. Vet. Dermatol. 2006, 17, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Nishida, M. Cytokine balance in the pathogenesis of rheumatoid arthritis. Yakugaku Zasshi-J. Pharm. Soc. Jpn. 2001, 121, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, X.; Mugnier, B.; Bouvenot, G. Targeted anti-cytokine therapies for osteoarthritis. Bull. Acad. Natl. Med. 2006, 190, 1411–1420. [Google Scholar] [CrossRef]
- Venkatesha, S.H.; Dudics, S.; Acharya, B.; Moudgil, K.D. Cytokine-modulating strategies and newer cytokine targets for arthritis therapy. Int. J. Mol. Sci. 2015, 16, 887–906. [Google Scholar] [CrossRef] [Green Version]
- Wooley, P.H.; Whalen, J.D.; Chapman, D.L.; Berger, A.E.; Richard, K.A.; Aspar, D.G.; Staite, N.D. The effect of an interleukin-1 receptor antagonist protein on type-II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum. 1993, 36, 1305–1314. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Ghivizzani, S.C.; Robbins, P.D.; Evans, C.H.; McIlwraith, C.W. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther. 2002, 9, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Seemann, S.; Zohles, F.; Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 2017, 24, 17. [Google Scholar] [CrossRef]
- Kabu, M.; Sayin, Z. Concentrations of serum amyloid A, haptoglobin, tumour necrosis factor and interleukin-1 and-6 in Anatolian buffaloes naturally infected with dermatophytosis. Vet. Med. Czech 2016, 61, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Loyi, T.; Kumar, H.; Nandi, S.; Mathapati, B.S.; Patra, M.K.; Pattnaik, B. Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis. Res. Vet. Sci. 2013, 94, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.Y.; Dhama, K.; Latheef, S.K.; Singh, S.D.; Tiwari, R. Correlation between cytokine profile, antibody titre and viral load during sub-clinical chicken anaemia virus infection. Vet. Med. Czech 2014, 59, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Bruunsgaard, H.; Pedersen, M.; Pedersen, B.K. Aging and proinflammatory cytokines. Curr. Opin. Hematol. 2001, 8, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.H.; Bertini, G.; Xu, Y.Z.; Yan, Z.; Bentivoglio, M. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age. Neuroscience 2006, 141, 645–661. [Google Scholar] [CrossRef]
- Prakash, N.; Stumbles, P.; Mansfield, C.S. Concentrations of interleukin-6, -8, -10 and tumour necrosis factor-alpha in the faeces of dogs with acute diarrhoea. N. Z. Vet. J. 2019, 67, 138–142. [Google Scholar] [CrossRef]
- Palucka, A.K.; Blanck, J.-P.; Bennett, L.; Pascual, V.; Banchereau, J. Cross-regulation of TNF and IFN-α in autoimmune diseases. Proc. Natl. Acad. Sci. USA 2005, 102, 3372–3377. [Google Scholar] [CrossRef] [Green Version]
- Kurup, S.P.; Tewari, A.K. Induction of protective immune response in mice by a DNA vaccine encoding Trypanosoma evansi beta tubulin gene. Vet. Parasitol. 2012, 187, 9–16. [Google Scholar] [CrossRef]
- Humphreys, A.F.; Tan, J.; Peng, R.; Benton, S.M.; Qin, X.; Worley, K.C.; Mikulski, R.L.; Chow, D.C.; Palzkill, T.G.; Ling, P.D. Generation and characterization of antibodies against Asian elephant (Elephas maximus) IgG, IgM, and IgA. PLoS ONE 2015, 10, e0116318. [Google Scholar] [CrossRef]
- Angkawanish, T.; Morar, D.; van Kooten, P.; Bontekoning, I.; Schreuder, J.; Maas, M.; Wajjwalku, W.; Sirimalaisuwan, A.; Michel, A.; Tijhaar, E.; et al. The elephant interferon gamma assay: A contribution to diagnosis of tuberculosis in elephants. Transbound. Emerg. Dis. 2013, 60, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Villanueva, M.A.; Mikota, S.K.; Nakajima, C.; Gairhe, K.P.; Subedi, S.; Rayamajhi, N.; Sashika, M.; Shimozuru, M.; Matsuba, T.; et al. Development and evaluation of an interferon-gamma release assay in Asian elephants (Elephas maximus). J. Vet. Med. Sci. 2016, 78, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, A.D.; Crosier, A.E.; Vansandt, L.M.; Mattson, E.; Xiao, Z. Induction of cytokine production in cheetah (Acinonyx jubatus) peripheral blood mononuclear cells and validation of feline-specific cytokine assays for analysis of cheetah serum. J. Zoo Wildl. Med. 2015, 46, 306–313. [Google Scholar] [CrossRef] [PubMed]
- De Guise, S.; Levin, M.; Gebhard, E.; Jasperse, L.; Burdett Hart, L.; Smith, C.R.; Venn-Watson, S.; Townsend, F.; Wells, R.; Balmer, B.; et al. Changes in immune functions in bottlenose dolphins in the northern Gulf of Mexico associated with the Deepwater Horizon oil spill. Endanger. Species Res. 2017, 33, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; Romano, T.; Matassa, K.; De Guise, S. Validation of a commercial canine assay kit to measure pinniped cytokines. Vet. Immunol. Immunopathol. 2014, 160, 90–96. [Google Scholar] [CrossRef]
- Canisso, I.F.; Ball, B.A.; Cray, C.; Squires, E.L.; Troedsson, M.H. Use of a qualitative horse-side test to measure serum amyloid A in mares with experimentally induced ascending placentitis. J. Equine Vet. Sci. 2015, 35, 54–59. [Google Scholar] [CrossRef]
- Canisso, I.F.; Ball, B.A.; Cray, C.; Williams, N.M.; Scoggin, K.E.; Davolli, G.M.; Squires, E.L.; Troedsson, M.H. Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration. Am. J. Reprod. Immunol. 2014, 72, 376–385. [Google Scholar] [CrossRef]
- Cray, C.; Rodriguez, M.; Fernandez, Y. Acute phase protein levels in rabbits with suspected Encephalitozoon cuniculi infection. J. Exot. Pet Med. 2013, 22, 280–286. [Google Scholar] [CrossRef]
- Sheldon, J.D.; Johnson, S.P.; Hernandez, J.A.; Cray, C.; Stacy, N.I. Acute-phase responses in healthy, malnourished, and Otostrongylus-infected juvenile northern elephant seals (Mirounga angustirostris). J. Zoo Wildl. Med. 2017, 48, 767–775. [Google Scholar] [CrossRef]
- Levin, M.; Jasperse, L.; Gebhard, E.; Rousselet, E.; Walsh, C. Lack of cross-reactivity of human and porcine reagents to quantify manatee (Trichechus manatus) cytokines. Vet. Immunol. Immunopathol. 2018, 203, 57–59. [Google Scholar] [CrossRef]
Cytokine | Supplier | Reagents | Standard Range | Antibody Concentration | |
---|---|---|---|---|---|
Capture | Detection | ||||
Tumor necrosis factor-alpha
(TNF-α) | Thermo Scientific/Invitrogen | ESS0017 | 3.9–1000 pg/mL * | 1:100 | 1:100 |
Interferon-gamma (IFN-ɣ) | R&D Systems | Duoset DY1586 | 15.6–4000 pg/mL * | 0.4 μg/mL | 0.4 μg/mL |
Interleukin 1β (IL-1β) | R&D Systems | Duoset DY3340 | 125–8000 pg/mL | 0.8 μg/mL | 0.15 μg/mL |
Interleukin 2 (IL-2) | R&D Systems | Duoset DY1613 | 15.6–4000 pg/mL * | 2.0 μg/mL | 0.2 μg/mL |
Interleukin 4 (IL-4) | R&D Systems | Duoset DY1809 | 31.2–2000 pg/mL | 0.8 μg/mL | 0.8 μg/mL |
Interleukin 6 (IL-6) | R&D Systems | AF1886/BAF1886/ 1886-EL | 0.1–25 ng/mL * | 0.4 μg/mL | 0.4 μg/mL |
Interleukin 10 (IL-10) | R&D Systems | Duoset DY1605 | 0.078–20 ng/mL * | 0.4 μg/mL | 0.1 μg/mL |
Analyte | Species | Mean | SD | Median | Minimum | Maximum | N a | Value Range | Lower CI b | Upper CI |
---|---|---|---|---|---|---|---|---|---|---|
SAA (mg/L) | L.a. | 4.16 | 26.25 | 0.10 | 0.10 | 251.82 | 123 | 0.10–6.91 | - | 6.38–8.38 |
* E.m. | 16.04 | 47.05 | 1.84 | 0.10 | 231.92 | 98 | 0.10–37.62 | - | 23.98–53.25 | |
HP (mg/mL) | L.a. | 1.36 | 0.74 | 1.40 | 0.19 | 5.45 | 124 | 0.21–2.35 | 0.18–0.23 | 2.25–2.40 |
* E.m. | 1.96 | 1.57 | 1.83 | 0.19 | 10.50 | 100 | 0.24–4.00 | 0.18–0.29 | 2.95–4.93 | |
TNF-α (pg/mL) | L.a. | 311.89 | 1783.69 | 15.60 | 15.60 | 17,381.84 | 123 | 15.60–748.10 | - | 309.31–1031.38 |
* E.m. | 336.35 | 1249.48 | 25.29 | 15.60 | 10,484.78 | 101 | 15.60–1355.83 | - | 1319.30–1929.39 | |
IFN-ɣ (pg/mL) | L.a. | 745.73 | 2094.26 | 62.50 | 62.50 | 19,176.99 | 122 | 62.50–3565.07 | - | 2424.93–4021.17 |
* E.m. | 3564.55 | 16,761.97 | 62.50 | 62.50 | 124,117.26 | 102 | 62.50–13,317.40 | - | 6888.22–22,342.10 | |
IL-2 (pg/mL) | L.a. | 293.91 | 866.31 | 125.00 | 125.00 | 8651.83 | 123 | 125.00–1043.61 | - | 762.66–1444.99 |
* E.m. | 309.88 | 1303.44 | 125.00 | 125.00 | 12,770.00 | 96 | 125.00–1438.85 | - | 1096.83–2499.38 | |
IL-6 (ng/mL) | L.a. | 1.85 | 6.15 | 0.39 | 0.39 | 51.59 | 116 | 0.39–4.63 | - | 4.55–7.04 |
E.m. | 2.02 | 7.37 | 0.39 | 0.39 | 56.15 | 93 | 0.39–6.20 | - | 2.38–8.92 | |
IL-10 (ng/mL) | L.a. | 0.92 | 1.85 | 0.31 | 0.31 | 16.04 | 120 | 0.31–2.73 | - | 1.39–3.53 |
E.m. | 4.25 | 30.39 | 0.31 | 0.31 | 303.27 | 99 | 0.31–18.00 | - | 17.04–32.16 |
Species | Clinical Event | Age (Years) | Sex | SAA (mg/L) | HP (mg/mL) | TNF-α (pg/mL) | IFN-ɣ (pg/mL) | IL-2 (pg/mL) | IL-6 (ng/mL) | IL-10 (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|
E.m | Pododermatitis | 49 | F | 10.00 | 2.36 | <15.60 | 117.08 | <125.00 | <0.39 | 1.74 |
E.m | Pododermatitis | 46 | F | 193.80 | 8.00 | 10,484.78 | <15.60 | <125.00 | <0.39 | <0.31 |
E.m | Systemic infection | 39 | F | 136.00 | 0.80 | 324.84 | 2419.97 | ND | <0.39 | 75.27 |
E.m | Enteritis | 3 | M | 149.20 | 4.55 | <15.60 | ND | <125.00 | ND | ND |
E.m | Lameness | 19 | F | 137.00 | 3.30 | <15.60 | 719.28 | <125.00 | 2.00 | <0.31 |
E.m | Lameness | 41 | F | 0.10 | 0.32 | 689.34 | 124,117.26 | 12,770.00 | >125.00 a | 303.27 |
E.m | Ventral edema | 42 | F | 51.50 | 1.02 | 55.57 | 3025.28 | 1215.14 | >125.00 a | 11.53 |
E.m | Recumbent/unable to rise | 36 | F | 233.70 | 11.00 | 73.04 | 1129.42 | <125.00 | <0.39 | <0.31 |
L.a | Tusk injury | 42 | F | 141.40 | 4.65 | 47,475.75 | <62.50 | <125.00 | <0.39 | <0.31 |
L.a | Tusk infection | 42 | F | 147.40 | 3.55 | 37,935.20 | 399.53 | <125.00 | <0.10 | 0.38 |
L.a | Tusk infection | 34 | M | 48.60 | 2.09 | 57.53 | 1284.34 | <125.00 | 4.55 | 3.00 |
L.a | Septicemia | 7 | M | 184.90 | 6.15 | 121.29 | ND | 20.85 | ND | ND |
Species | Associated Conditions Found at Necropsy | Days Prior to Death | Age (Years) | Sex | SAA (mg/L) | HP (mg/mL) | TNF-α (pg/mL) | IFN-ɣ (pg/mL) | IL-2 (pg/mL) | IL-6 (ng/mL) | IL-10 (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|
E.m | Deteriorating health, anemia, thrombocytopenia, B-cell lymphoblastic leukemia/lymphoma, ventral edema | 0 | 58 | F | 42.30 | 0.07 | 128.84 | <62.50 | <125.00 | <3.90 | <0.31 |
E.m | Sepsis, dental disease, ulcerative dermatitis | 11 | 37 | F | 59.50 | 0.01 | 35.83 | 1100.66 | <125.00 | <0.10 | <0.31 |
E.m | Deteriorating health, neoplasia: uterine adenocarcinoma, anaplastic sarcoma, lymphoma, uterine adenoma, degenerative osteoarthritis, ventral edema | 1 | 54 | F | 207.34 | 6.95 | 98.400 | <62.50 | <125.00 | <0.39 | <0.31 |
L.a | Degenerative cardiovascular disease, ventral edema/ascites, loss of condition, thoracic abscess | 1 | 43 | F | 0.10 | 0.30 | <15.60 | <62.50 | <125.00 | <0.10 | <0.31 |
L.a | Deteriorating health, degenerative joint disease, recumbent, unable to rise | 0 | 38 | F | 0.10 | 1.95 | 83.82 | <62.50 | 272.42 | 0.10 | 0.70 |
L.a | Deteriorating health, degenerative joint disease, recumbent, unable to rise | 0 | 55 | F | 0.10 | 2.13 | 111.02 | <62.50 | <125.00 | <0.10 | <0.31 |
L.a | Deteriorating health, degenerative joint disease, recumbent, unable to rise | 0 | 45 | F | 0.10 | 0.43 | <15.60 | <62.50 | 389.08 | <0.10 | 0.62 |
L.a | Bronchopneumonia, degenerative joint disease | 19 | 32 | M | 251.82 | 5.45 | <15.60 | 429.08 | <125.00 | <0.39 | <0.31 |
L.a | Deteriorating health, pneumonia, pododermatitis, gastrointestinal ulcers, ulcerative dermatitis, ventral edema | 7 | 34 | F | 153.94 | 0.26 | <15.60 | <62.50 | <125.00 | <0.39 | <0.31 |
L.a | Deteriorating health, septic peritonitis | 16 | 47 | F | 5.45 | 1.49 | 100.89 | <62.50 | <125.00 | <0.39 | <0.31 |
Analyte | Published Range a | Species | Mean | SD | Median | Min. | Max. | N b | Value Range | Lower CI | Upper CI |
---|---|---|---|---|---|---|---|---|---|---|---|
Alanine aminotransferase (IU/L) | 1.5–3.0 | *L.a. | 3.62 | 3.02 | 4.00 | 0.00 | 22.00 | 114 | 0.00–8.03 | 0.00–0.00 | 7.66–8.67 |
E.m. | 2.51 | 2.04 | 2.00 | 0.00 | 8.00 | 92 | 0.00–5.89 | 0.00–0.00 | 4.96–6.49 | ||
Albumin (g/dL) | 1.5–3.5 | *L.a. | 2.90 | 0.50 | 2.90 | 1.60 | 5.50 | 120 | 2.29–3.47 | 2.21–2.39 | 3.41–3.58 |
E.m. | 2.73 | 0.33 | 2.80 | 1.50 | 3.50 | 99 | 2.23–3.27 | 2.13–2.30 | 3.21–3.35 | ||
Alkaline phosphatase (IU/L) | 60–450 | L.a. | 83.94 | 39.72 | 75.00 | 30.00 | 231.00 | 116 | 22.10–119.83 | 13.65–29.83 | 111.87–127.98 |
E.m. | 84.32 | 43.15 | 76.50 | 33.00 | 322.00 | 100 | 29.48–120.84 | 22.20–37.34 | 112.69–129.60 | ||
Aspartate aminotransferase (IU/L) | 15–35 | L.a. | 15.87 | 12.09 | 14.00 | 4.00 | 124.00 | 123 | 0.79–26.04 | 0.00–2.98 | 23.71–28.21 |
E.m. | 14.33 | 7.01 | 13.00 | 0.00 | 39.00 | 98 | 2.13–24.34 | 0.74–3.40 | 22.69–26.01 | ||
Bilirubin (mg/dL) | 0.2–1.0 | L.a. | 0.18 | 0.04 | 0.18 | 0.10 | 0.36 | 119 | 0.10–0.24 | 0.09–0.11 | 0.24–0.25 |
*E.m. | 0.19 | 0.05 | 0.19 | 0.06 | 0.34 | 99 | 0.10–0.28 | 0.09–0.12 | 0.27–0.29 | ||
Calcium (mg/dL) | 9–12 | *L.a. | 10.81 | 0.91 | 10.70 | 8.20 | 15.00 | 117 | 9.48–11.92 | 9.32–9.64 | 11.75–12.10 |
E.m. | 10.42 | 0.99 | 10.30 | 8.50 | 16.00 | 101 | 9.06–11.59 | 8.87–9.25 | 11.42–11.78 | ||
Carbon dioxide (mEq/L) | 20–28 | L.a. | 20.25 | 3.12 | 20.10 | 13.60 | 31.20 | 121 | 14.50–25.57 | 13.84–15.11 | 24.87–26.30 |
E.m. | 20.57 | 3.17 | 20.35 | 15.40 | 41.00 | 102 | 15.47–24.90 | 14.83–16.11 | 24.23–25.66 | ||
Chloride (mEq/L) | 100–115 | L.a. | 90.14 | 8.09 | 89.00 | 74.00 | 131.00 | 117 | 77.71–99.77 | 75.96–79.57 | 98.33–101.56 |
*E.m. | 94.10 | 11.98 | 91.00 | 74.00 | 169.00 | 102 | 72.38–107.34 | 69.38–75.28 | 104.38–110.22 | ||
Cholesterol (mg/dL) | 26–68 | *L.a. | 62.45 | 13.25 | 61.00 | 23.00 | 99.00 | 117 | 39.89–83.35 | 37.09–42.36 | 80.50–86.34 |
E.m. | 40.63 | 12.71 | 40.00 | 25.00 | 144.00 | 103 | 24.49–54.73 | 22.45–26.51 | 52.70–56.80 | ||
Creatine kinase (IU/L) | 50–250 | *L.a. | 185.57 | 224.61 | 146.00 | 48.00 | 2422.00 | 123 | 0.00–305.43 | 0.00–12.86 | 273.03–340.35 |
E.m. | 112.65 | 121.43 | 75.50 | 4.00 | 771.00 | 98 | 0.00–203.27 | 0.00–0.00 | 171.52–237.80 | ||
Creatinine (mg/dL) | 1.0–2.0 | L.a. | 1.36 | 0.29 | 1.30 | 0.70 | 2.50 | 117 | 0.91–1.68 | 0.85–0.97 | 1.62–1.73 |
E.m. | 1.39 | 0.37 | 1.30 | 0.90 | 3.70 | 100 | 0.86–1.79 | 0.81–0.92 | 1.73–1.88 | ||
Gamma glutamyl transferase (U/L) | 4–35 | *L.a. | 18.08 | 3.52 | 18.00 | 9.00 | 28.00 | 118 | 11.84–23.36 | 11.16–12.61 | 22.56–24.21 |
E.m. | 15.13 | 5.54 | 13.00 | 8.00 | 39.00 | 97 | 5.42–21.08 | 4.07–6.31 | 19.54–22.54 | ||
Glucose (mg/dL) | 60–116 | L.a. | 79.98 | 13.16 | 80.00 | 49.00 | 137.00 | 119 | 58.07–99.87 | 55.19–60.84 | 97.32–102.36 |
E.m. | 78.49 | 18.39 | 76.00 | 37.00 | 137.00 | 96 | 47.88–104.88 | 44.04–51.55 | 100.02–109.72 | ||
Iron (μg/dL) | 60–150 | *L.a. | 79.42 | 25.63 | 77.00 | 15.00 | 190.00 | 120 | 35.12–117.55 | 30.02–40.54 | 111.70–123.40 |
E.m. | 59.02 | 19.76 | 56.00 | 13.00 | 123.00 | 100 | 22.53–92.47 | 17.96–26.77 | 87.60–98.00 | ||
Lactate dehydrogenase (IU/L) | 250–500 | *L.a. | 263.13 | 90.08 | 259.00 | 76.00 | 673.00 | 119 | 112.90–393.29 | 95.43–129.97 | 376.24–410.99 |
E.m. | 180.03 | 110.62 | 158.00 | 10.00 | 711.00 | 99 | 0.10–303.21 | 0.00–23.58 | 277.41–329.26 | ||
Magnesium (mg/dL) | 1.4–2.6 | *L.a. | 2.18 | 0.31 | 2.10 | 1.40 | 3.30 | 120 | 1.61–2.69 | 1.54–1.66 | 2.63–2.77 |
E.m. | 1.96 | 0.26 | 1.90 | 1.50 | 3.10 | 101 | 1.45–2.35 | 1.37–1.48 | 2.24–2.41 | ||
Phosphorus (mg/dL) | 4.0–6.0 | *L.a. | 4.67 | 0.77 | 4.60 | 2.60 | 8.00 | 121 | 3.34–5.92 | 3.18–3.50 | 5.77–6.08 |
E.m. | 4.46 | 0.85 | 4.40 | 2.10 | 7.10 | 96 | 3.05–5.55 | 2.86–3.26 | 5.36–5.74 | ||
Potassium (mEq/L) | 3.0–6.0 | *L.a. | 4.92 | 0.48 | 4.90 | 3.80 | 6.40 | 118 | 4.09–5.67 | 4.00–4.19 | 5.57–5.78 |
E.m. | 4.81 | 0.80 | 4.60 | 3.70 | 9.50 | 99 | 3.63–5.63 | 3.48–3.77 | 5.47–5.80 | ||
Sodium (mEq/L) | 120–140 | L.a. | 131.58 | 11.16 | 129.00 | 111.00 | 183.00 | 116 | 115.15–142.22 | 112.54–117.61 | 139.90–144.78 |
*E.m. | 136.30 | 16.46 | 131.00 | 107.00 | 235.00 | 100 | 106.98–153.73 | 102.89–111.00 | 149.95–157.78 | ||
Total protein (g/dL) | 6–12 | L.a. | 8.19 | 0.83 | 8.20 | 6.30 | 12.90 | 118 | 6.98–9.35 | 6.82–7.15 | 9.19–9.50 |
*E.m. | 8.44 | 0.79 | 8.50 | 6.00 | 10.10 | 100 | 7.10–9.90 | 6.89–7.30 | 9.72–10.10 | ||
Triglycerides (mg/dL) | 15–60 | L.a. | 34.20 | 21.85 | 28.00 | 5.00 | 140.00 | 119 | 0.00–60.05 | 0.00–0.30 | 54.61–65.35 |
*E.m. | 37.83 | 19.73 | 36.00 | 0.00 | 99.00 | 98 | 2.68–66.31 | 0.00–6.96 | 61.86–70.94 | ||
Urea nitrogen (mg/dL) | 5–20 | L.a. | 6.43 | 2.67 | 7.00 | 1.00 | 14.00 | 120 | 1.42–11.16 | 0.87–1.92 | 10.62–11.72 |
*E.m. | 11.26 | 4.44 | 11.00 | 4.00 | 45.00 | 102 | 5.28–16.20 | 4.51–6.10 | 15.41–16.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, K.L.; Miller, M.A.; Siegal-Willott, J.; Brown, J.L. Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response. Animals 2020, 10, 1756. https://doi.org/10.3390/ani10101756
Edwards KL, Miller MA, Siegal-Willott J, Brown JL. Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response. Animals. 2020; 10(10):1756. https://doi.org/10.3390/ani10101756
Chicago/Turabian StyleEdwards, Katie L., Michele A. Miller, Jessica Siegal-Willott, and Janine L. Brown. 2020. "Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response" Animals 10, no. 10: 1756. https://doi.org/10.3390/ani10101756
APA StyleEdwards, K. L., Miller, M. A., Siegal-Willott, J., & Brown, J. L. (2020). Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response. Animals, 10(10), 1756. https://doi.org/10.3390/ani10101756