Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Eligibility Criteria
1.2. Search Strategy
1.3. Pain Faces
1.4. Pain Assessment Requirements
1.5. Confounders to Pain Identification
1.6. Non-Grimace Scale Pain Assessment
Category | Assessment | Non-Invasive | Easy Training | High Cost | Special Equipment | Time Required >5 min | Spontaneous | Publications |
---|---|---|---|---|---|---|---|---|
Behaviour | Ethogram | Y | N | N | N | Y | Y | [4,5,7,15,17,18,21,52,63,66,78,86,87,91,92,93] |
Nesting | Y | Y | N | N | Y | N | [3,15,18,51,52] | |
Burrowing | Y | N | N | N | Y | N | [3,15,18,54,55] | |
Vocalisation | Y | Y | Y | Y/N * | Y | Y | [4,5,8,17,21,45,66,68,81,88,93,94] | |
Grooming | Y | Y | N | Y | Y | N | [3,4,5,8,15,17,18,21,52,66] | |
Real-time Grimace Score | Y | Y | N | N | N | Y | [37,54,55,70,85,92,95,96] | |
Physiological | Heart Rate or Respiratory Rate | N | Y | N | Y | N | Y | [3,4,5,15,17,21,66,93] |
Biochemical marker | N | N | Y | Y | Y | N | [3,4,15,17,21,93] | |
Physical | Weight loss or failure to gain weight | Y | N | N | Y | N | N | [3,5,8,15,17,21,64,66] |
Reduction in production ** | Y | N | N | Y/N *** | Y | N | [21,66,84] | |
Lameness | Y | Y/N **** | Y | N | N | Y | [3,5,15,17,21,37,66,82,85,93] | |
Postural change | Y | N | Y | N | N | Y | [3,4,5,9,15,17,58,83,93] |
1.7. Grimace Scales in Animals
2. Advantages and Uses
3. Limitations
4. Application and Summary
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Russell, W.M.S. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Turner, P.V.; Pang, D.S.; Lofgren, J.L. A review of pain assessment methods in laboratory rodents. Comp. Med. 2019, 69, 451–467. [Google Scholar] [CrossRef]
- Carstens, E.; Moberg, G.P. Recognizing pain and distress in laboratory animals. ILAR J. 2000, 41, 62–71. [Google Scholar] [CrossRef]
- National Research Council Committee; Alleviation of Pain in Laboratory Animals. The national academies collection: Reports funded by national institutes of health. In Recognition and Alleviation of Pain in Laboratory Animals; National Academies Press (US): Washington, DC, USA, 2010; National Academy of Sciences: Washington, DC, USA, 2009. [Google Scholar]
- Larson, C.M.; Wilcox, G.L.; Fairbanks, C.A. The study of pain in rats and mice. Comp. Med. 2019, 69, 555–570. [Google Scholar] [CrossRef]
- McLennan, K.M.; Miller, A.L.; Dalla Costa, E.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. [Google Scholar] [CrossRef]
- McLennan, K.J.A. Why pain is still a welfare issue for farm animals, and how facial expression could be the answer. Agriculture 2018, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Guatteo, R.; Levionnois, O.; Fournier, D.; Guémené, D.; Latouche, K.; Leterrier, C.; Mormède, P.; Prunier, A.; Servière, J.; Terlouw, C.; et al. Minimising pain in farm animals: The 3s approach—‘suppress, substitute, soothe’. Anim. Int. J. Anim. Biosci. 2012, 6, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Parliament, E.; Council, E. Directive 2010/63/eu on the protection of animals used for scientific purposes. EU Off. J. 2010, V276. [Google Scholar]
- Olsson, I.A.S.; Silva, S.P.D.; Townend, D.; Sandøe, P. Protecting animals and enabling research in the european union: An overview of development and implementation of directive 2010/63/eu. ILAR J. 2017, 57, 347–357. [Google Scholar] [CrossRef] [Green Version]
- National, Health and Medical Research Council. Australian Code of Practice for the Care and Use of Animals for Scientific Purposes/National Health and Medical Research Council; National Health and Medical Research Council: Canberra, Australia, 2004.
- NC3R. The 3rs. Available online: https://www.nc3rs.org.uk/the-3rs (accessed on 15 July 2020).
- Jennings, M.; Berdoy, M.; Hawkins, P.; Kerton, A.; Law, B.; Reed, B.; Sinnett-Smith, P.; Smith, D.; Farmer, A.M.; Jennings, M. Guiding Principles on Good Practice for Ethical Review Processes; RSPCA: Wales, UK; LASA: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Kohn, D.F.; Martin, T.E.; Foley, P.L.; Morris, T.H.; Swindle, M.M.; Vogler, G.A.; Wixson, S.K. Public statement: Guidelines for the assessment and management of pain in rodents and rabbits. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2007, 46, 97–108. [Google Scholar]
- National Research Council Committee for the Update of the Guide for the, Care and Use of Laboratory Animals. The national academies collection: Reports funded by national institutes of health. In Guide for the Care and Use of Laboratory Animals; National Academies Press (US): Washington, DC, USA, 2011; National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar]
- Hawkins, P.; Morton, D.B.; Burman, O.; Dennison, N.; Honess, P.; Jennings, M.; Lane, S.; Middleton, V.; Roughan, J.V.; Wells, S.; et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: Eleventh report of the bvaawf/frame/rspca/ufaw joint working group on refinement. Lab. Anim. 2011, 45, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Flecknell, P. Rodent analgesia: Assessment and therapeutics. Vet. J. 2017, 232, 70–77. [Google Scholar] [CrossRef]
- Peterson, N.C.; Nunamaker, E.A.; Turner, P.V. To treat or not to treat: The effects of pain on experimental parameters. Comp. Med. 2017, 67, 469–482. [Google Scholar]
- Magalhães Sant’Ana, M.; Sandøe, P.; Olsson, A. Painful dilemmas: The ethics of animal-based pain research. Anim. Welf. 2009, 18, 49–63. [Google Scholar]
- Prunier, A.; Mounier, L.; Le Neindre, P.; Leterrier, C.; Mormède, P.; Paulmier, V.; Prunet, P.; Terlouw, C.; Guatteo, R. Identifying and monitoring pain in farm animals: A review. Anim. Int. J. Anim. Biosci. 2013, 7, 998–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würbel, H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 2001, 24, 207–211. [Google Scholar] [CrossRef]
- Poole, T. Happy animals make good science. Lab. Anim. 1997, 31, 116–124. [Google Scholar] [CrossRef]
- Graham, D.M.; Hampshire, V. Methods for measuring pain in laboratory animals. Lab. Anim. 2016, 45, 99–101. [Google Scholar] [CrossRef]
- Prkachin, K.M. Assessing Pain by Facial Expression: Facial Expression as Nexus; Pulsus Group: Oakville, ON, Canada, 2009; Volume 14, pp. 53–58. [Google Scholar]
- Williams, A.C. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455, discussion 455–488. [Google Scholar] [CrossRef] [Green Version]
- Deyo, K.S.; Prkachin, K.M.; Mercer, S.R. Development of sensitivity to facial expression of pain. Pain 2004, 107, 16–21. [Google Scholar] [CrossRef]
- Leach, M.C.; Coulter, C.A.; Richardson, C.A.; Flecknell, P.A. Are we looking in the wrong place? Implications for behavioural-based pain assessment in rabbits (oryctolagus cuniculi) and beyond? PLoS ONE 2011, 6, e13347. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. The Expression of the Emotions in Man and Animals; John Murray: London, UK, 1872; p. 374. [Google Scholar]
- Waller, B.M.; Micheletta, J. Facial expression in nonhuman animals. Emot. Rev. 2013, 5, 54–59. [Google Scholar] [CrossRef]
- Diogo, R.; Wood, B.; Diogo, R.; Wood, B. Origin and evolution of primate and human muscles, anatomical variations and anomalies, and evolutionary developmental biology. In Evolutionary Developmental Anthropology; Boughner, J., Rolian, C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 167–174. [Google Scholar]
- Defensor, E.B.; Corley, M.J.; Blanchard, R.J.; Blanchard, D.C. Facial expressions of mice in aggressive and fearful contexts. Physiol. Behav. 2012, 107, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, E.; Minero, M.; Lebelt, D.; Stucke, D.; Canali, E.; Leach, M.C. Development of the horse grimace scale (hgs) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 2014, 9, e92281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, C.T.; Mogil, J.S. Ontogeny and phylogeny of facial expression of pain. Pain 2015, 156, 798–799. [Google Scholar] [CrossRef] [Green Version]
- Dalla Costa, E.; Pascuzzo, R.; Leach, M.C.; Dai, F.; Lebelt, D.; Vantini, S.; Minero, M. Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier. PLoS ONE 2018, 13, e0200339. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.; Scott, M.; Nolan, A.; Wiseman-Orr, L. Pain assessment in animals. Practice 2013, 35, 51. [Google Scholar] [CrossRef] [Green Version]
- Dalla Costa, E.; Stucke, D.; Dai, F.; Minero, M.; Leach, M.C.; Lebelt, D. Using the horse grimace scale (hgs) to assess pain associated with acute laminitis in horses (equus caballus). Animals 2016, 6, 47. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Leung, V.S.Y.; Pang, D.S.J. Influence of rater training on inter- and intrarater reliability when using the rat grimace scale. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 178–183. [Google Scholar] [CrossRef]
- Dalla Costa, E.; Bracci, D.; Dai, F.; Lebelt, D.; Minero, M. Do different emotional states affect the horse grimace scale score? A pilot study. J. Equine Vet. Sci. 2017, 54, 114–117. [Google Scholar] [CrossRef]
- Matsumiya, L.C.; Sorge, R.E.; Sotocinal, S.G.; Tabaka, J.M.; Wieskopf, J.S.; Zaloum, A.; King, O.D.; Mogil, J.S. Using the mouse grimace scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2012, 51, 42–49. [Google Scholar] [PubMed]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [PubMed] [Green Version]
- Saine, L.; Hélie, P.; Vachon, P. Effects of fentanyl on pain and motor behaviors following a collagenase-induced intracerebral hemorrhage in rats. J. Pain Res. 2016, 9, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liao, L.; Gao, M.; Ma, W.; Zhou, Y.; Jian, F.; Wang, Y.; Lai, W. Periodontal cgrp contributes to orofacial pain following experimental tooth movement in rats. Neuropeptides 2015, 52, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Eguchi, S.; Iwata, H.; Yamanaka, D.; Tateiwa, H.; Locatelli, F.M.; Yokoyama, M. Effects and underlying mechanisms of endotoxemia on post-incisional pain in rats. Life Sci. 2016, 148, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.C.J.; Thomas, A.A.; Flecknell, P.A.; Leach, M.C. Evaluation of emla cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS ONE 2012, 7, e44437. [Google Scholar] [CrossRef] [Green Version]
- Leach, M.; Allweiler, S.; Richardson, C.; Roughan, J.; Narbe, R.; Flecknell, P. Behavioural effects of ovariohysterectomy and oral administration of meloxicam in laboratory housed rabbits. Res. Vet. Sci. 2009, 87, 336–347. [Google Scholar] [CrossRef]
- Amit, Z.; Galina, Z.H. Stress induced analgesia plays an adaptive role in the organization of behavioral responding. Brain Res. Bull. 1988, 21, 955–958. [Google Scholar] [CrossRef]
- Jacobson, R. Stress-induced analgesia. Edited by M. D. Tricklebank and G. Curzon. Chichester: John wiley. 1984. Pp. 194. Br. J. Psychiatry 1985, 146, 676–677. [Google Scholar] [CrossRef]
- Watkins, L.R.; Mayer, D.J. Organization of endogenous opiate and nonopiate pain control systems. Science 1982, 216, 1185–1192. [Google Scholar] [CrossRef]
- Stasiak, K.L.; Maul, D.; French, E.; Hellyer, P.W.; VandeWoude, S. Species-specific assessment of pain in laboratory animals. Contemp. Top. Lab. Anim. Sci. 2003, 42, 13–20. [Google Scholar] [PubMed]
- Jirkof, P.; Fleischmann, T.; Cesarovic, N.; Rettich, A.; Vogel, J.; Arras, M. Assessment of postsurgical distress and pain in laboratory mice by nest complexity scoring. Lab. Anim. 2013, 47, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, V.L.; Thurston, S.E.; Lofgren, J.L. Using cageside measures to evaluate analgesic efficacy in mice (mus musculus) after surgery. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2018, 57, 186–201. [Google Scholar]
- Rock, M.L.; Karas, A.Z.; Rodriguez, K.B.; Gallo, M.S.; Pritchett-Corning, K.; Karas, R.H.; Aronovitz, M.; Gaskill, B.N. The time-to-integrate-to-nest test as an indicator of wellbeing in laboratory mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2014, 53, 24–28. [Google Scholar] [PubMed]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Leung, V.S.Y.; Benoit-Biancamano, M.O.; Pang, D.S.J. Performance of behavioral assays: The rat grimace scale, burrowing activity and a composite behavior score to identify visceral pain in an acute and chronic colitis model. Pain Rep. 2019, 4, e718. [Google Scholar] [CrossRef]
- Miller, A.L.; Golledge, H.D.; Leach, M.C. The influence of isoflurane anaesthesia on the rat grimace scale. PLoS ONE 2016, 11, e0166652. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.L.; Leach, M.C. Using the mouse grimace scale to assess pain associated with routine ear notching and the effect of analgesia in laboratory mice. Lab. Anim. 2015, 49, 117–120. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Leach, M.C.; Preston, F.L.; Lymn, K.A.; Howarth, G.S. Effects of acute chemotherapy-induced mucositis on spontaneous behaviour and the grimace scale in laboratory rats. Lab. Anim. 2016, 50, 108–118. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Howarth, G.S. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: How are we progressing? Appl. Anim. Behav. Sci. 2014, 151, 1–12. [Google Scholar] [CrossRef]
- Oliver, V.; De Rantere, D.; Ritchie, R.; Chisholm, J.; Hecker, K.G.; Pang, D.S.J. Psychometric assessment of the rat grimace scale and development of an analgesic intervention score. PLoS ONE 2014, 9, e97882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C.J.A.B. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, K.M.D. Assessing pain in animals. Anim. Welf. 2002, 11, 31–53. [Google Scholar]
- Dunbar, M.L.; David, E.M.; Aline, M.R.; Lofgren, J.L. Validation of a behavioral ethogram for assessing postoperative pain in guinea pigs (cavia porcellus). J. Am. Assoc. Lab. Anim. Sci. JAALAS 2016, 55, 29–34. [Google Scholar]
- Gleerup, K. Identifying Pain Behaviors in Dairy Cattle. WCDS Adv. Dairy Technol. 2017, 55, 231–239. [Google Scholar]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Goldberg, M.E. Pain recognition and scales for livestock patients. J. Dairy Vet. Anim. Res. 2018, 7, 236–239. [Google Scholar] [CrossRef]
- Miller, A.L.; Leach, M.C. The effect of handling method on the mouse grimace scale in two strains of laboratory mice. Lab. Anim. 2016, 50, 305–307. [Google Scholar] [CrossRef]
- Müller, B.R.; Soriano, V.S.; Bellio, J.C.B.; Molento, C.F.M. Facial expression of pain in nellore and crossbred beef cattle. J. Vet. Behav. 2019, 34, 60–65. [Google Scholar] [CrossRef]
- Roelvink, M.E.; Goossens, L.; Kalsbeek, H.C.; Wensing, T. Analgesic and spasmolytic effects of dipyrone, hyoscine-n-butylbromide and a combination of the two in ponies. Vet. Rec. 1991, 129, 378–380. [Google Scholar] [CrossRef]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The sheep grimace scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahlbaum, C.C.; Houpt, K.A.J.P. The role of the flehmen response in the behavioral repertoire of the stallion. Physiol. Behav. 1989, 45, 1207–1214. [Google Scholar] [CrossRef]
- Pritchett, L.; Ulibarri, C.; Roberts, M.; Schneider, R.; Sellon, D. Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic. Appl. Anim. Behav. Sci. Appl. Anim. Behav. Sci. 2003, 80, 31–43. [Google Scholar] [CrossRef]
- Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004, 112, 12–15. [Google Scholar] [CrossRef]
- Stafford, K. Recognition and assessment of pain in ruminants. Pain Manag. Vet. Pract. 2013, 8, 349–357. [Google Scholar]
- Miller, A.L.; Leach, M.C. The mouse grimace scale: A clinically useful tool? PLoS ONE 2015, 10, e0136000. [Google Scholar] [CrossRef]
- Leach, M.C.; Klaus, K.; Miller, A.L.; Scotto di Perrotolo, M.; Sotocinal, S.G.; Flecknell, P.A. The assessment of post-vasectomy pain in mice using behaviour and the mouse grimace scale. PLoS ONE 2012, 7, e35656. [Google Scholar] [CrossRef]
- Roughan, J.V.; Bertrand, H.G.M.J.; Isles, H.M. Meloxicam prevents cox-2-mediated post-surgical inflammation but not pain following laparotomy in mice. Eur. J. Pain 2016, 20, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Oliver, V.L.; Athavale, S.; Simon, K.E.; Kendall, L.V.; Nemzek, J.A.; Lofgren, J.L. Evaluation of pain assessment techniques and analgesia efficacy in a female guinea pig (cavia porcellus) model of surgical pain. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2017, 56, 425–435. [Google Scholar]
- Earley, B.; Buckham-Sporer, K.; Gupta, S.; Pang, W.Y.; Ting, S. Biologic response of animals to husbandry stress with implications for biomedical models. Open Access Anim. Physiol. 2010, 2, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Nicol, C. The biology of animal stress: Basic principles and implications for animal welfare: G.P. Moberg, J.A. Mench. (eds.), cab international, wallingford, uk, 2000, 377 pp., uk£ 55.00, us$ 100.00, isbn 0-85199-359-1 (hard cover). Appl. Anim. Behav. Sci. 2001, 72, 375–378. [Google Scholar] [CrossRef]
- Descovich, K.A.; Wathan, J.; Leach, M.C.; Buchanan-Smith, H.M.; Flecknell, P.; Farningham, D.; Vick, S.J. Facial expression: An under-utilised tool for the assessment of welfare in mammals. Altex 2017, 34, 409–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLennan, K.M.; Rebelo, C.J.B.; Corke, M.J.; Holmes, M.A.; Leach, M.C.; Constantino-Casas, F. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 2016, 176, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Gupta, M.; Lamarre, Y.; Jahagirdar, B.; Gupta, K. Quantification of pain in sickle mice using facial expressions and body measurements. Blood Cells Mol. Dis. 2016, 57, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Fourichon, C.; Seegers, H.; Bareille, N.; Beaudeau, F. Effects of disease on milk production in the dairy cow: A review. Prev. Vet. Med. 1999, 41, 1–35. [Google Scholar] [CrossRef]
- Gleerup, K.B.; Andersen, P.H.; Munksgaard, L.; Forkman, B. Pain evaluation in dairy cattle. Appl. Anim. Behav. Sci. 2015, 171, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Minero, M.; Dalla Costa, E.; Dai, F.; Murray, L.; Canali, E.; Wemelsfelder, F. Use of qualitative behaviour assessment as an indicator of welfare in donkeys. Appl. Anim. Behav. Sci. 2015, 174, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, J.P.A.M.; Van Dierendonck, M.C. Objective pain assessment in horses (2014–2018). Vet. J. 2018, 242, 1–7. [Google Scholar] [CrossRef]
- Gigliuto, C.; De Gregori, M.; Malafoglia, V.; Raffaeli, W.; Compagnone, C.; Visai, L.; Petrini, P.; Avanzini, M.A.; Muscoli, C.; Viganò, J.; et al. Pain assessment in animal models: Do we need further studies? J. Pain Res. 2014, 7, 227–236. [Google Scholar]
- Molony, V.; Kent, J. Assessment of acute pain in farm animals using behavioral and physiological measurements. J. Anim. Sci. 1997, 75, 266–272. [Google Scholar] [CrossRef]
- Ellen, Y.; Flecknell, P.; Leach, M. Evaluation of using behavioural changes to assess post-operative pain in the guinea pig (cavia porcellus). PLoS ONE 2016, 11, e0161941. [Google Scholar] [CrossRef] [PubMed]
- Viscardi, A.V.; Turner, P.V. Use of meloxicam or ketoprofen for piglet pain control following surgical castration. Front. Vet. Sci. 2018, 5, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Loon, J.P.; Van Dierendonck, M.C. Monitoring acute equine visceral pain with the equine utrecht university scale for composite pain assessment (equus-compass) and the equine utrecht university scale for facial assessment of pain (equus-fap): A scale-construction study. Vet. J. 2015, 206, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Ison, S.H.; Clutton, R.E.; Di Giminiani, P.; Rutherford, K.M.D. A review of pain assessment in pigs. Front. Vet. Sci. 2016, 3, 108. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, K.; Lampe, J.F.; Hintze, S.; Würbel, H.; Melotti, L. Facial indicators of positive emotions in rats. PLoS ONE 2016, 11, e0166446. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L.E.; Henley, K.Y.; Turner, O.A.; Pat, B.; Niedzielko, T.L.; Floyd, C.L. Application of the rat grimace scale as a marker of supraspinal pain sensation after cervical spinal cord injury. J. Neurotrauma. 2017, 34, 2982–2993. [Google Scholar] [CrossRef]
- Hampshire, V.; Robertson, S. Using the facial grimace scale to evaluate rabbit wellness in post-procedural monitoring. Lab. Anim. 2015, 44, 259–260. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Measuring facial movement. Environ. Psychol. Nonverbal Behav. 1976, 1, 56–75. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Nonverbal Commun. Interact. Gesture 1969, 1, 57–106. [Google Scholar] [CrossRef]
- Ekman, P.A.R.E. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (Facs), 2nd ed.; Oxford University Press: New York, NY, USA, 2005; p. 639. [Google Scholar]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; LaCroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Evangelista, M.C.; Watanabe, R.; Leung, V.S.Y.; Monteiro, B.P.; O’Toole, E.; Pang, D.S.J.; Steagall, P.V. Facial expressions of pain in cats: The development and validation of a feline grimace scale. Sci. Rep. 2019, 9, 19128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleerup, K.B.; Forkman, B.; Lindegaard, C.; Andersen, P.H. An equine pain face. Vet. Anaesth. Analg. 2015, 42, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rantere, D.; Schuster, C.J.; Reimer, J.N.; Pang, D.S. The relationship between the rat grimace scale and mechanical hypersensitivity testing in three experimental pain models. Eur. J. Pain 2016, 20, 417–426. [Google Scholar] [CrossRef]
- Marcantonio Coneglian, M.; Duarte Borges, T.; Weber, S.H.; Godoi Bertagnon, H.; Michelotto, P.V. Use of the horse grimace scale to identify and quantify pain due to dental disorders in horses. Appl. Anim. Behav. Sci. 2020, 225, 104970. [Google Scholar] [CrossRef]
- van Loon, J.; Dierendonck, M. Monitoring equine head-related pain with the equine utrecht university scale for facial assessment of pain (equus-fap). Vet. J. 2017, 220, 88–90. [Google Scholar] [CrossRef]
- Reijgwart, M.L.; Schoemaker, N.J.; Pascuzzo, R.; Leach, M.C.; Stodel, M.; de Nies, L.; Hendriksen, C.F.M.; van der Meer, M.; Vinke, C.M.; van Zeeland, Y.R.A. The composition and initial evaluation of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 2017, 12, e0187986. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Leach, M.; Minot, E.O.; Stewart, M.; Stafford, K.J. Coding and quantification of a facial expression for pain in lambs. Behav. Process. 2016, 132, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Akintola, T.; Raver, C.; Studlack, P.; Uddin, O.; Masri, R.; Keller, A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol. Pain 2017, 2, 13–17. [Google Scholar] [CrossRef]
- Cho, C.; Michailidis, V.; Lecker, I.; Collymore, C.; Hanwell, D.; Loka, M.; Danesh, M.; Pham, C.; Urban, P.; Bonin, R.P.; et al. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci. Rep. 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Faller, K.M.E.; McAndrew, D.J.; Schneider, J.E.; Lygate, C.A. Refinement of analgesia following thoracotomy and experimental myocardial infarction using the mouse grimace scale. Exp. Physiol. 2015, 100, 164–172. [Google Scholar] [CrossRef]
- Miller, A.L.; Kitson, G.L.; Skalkoyannis, B.; Flecknell, P.A.; Leach, M.C. Using the mouse grimace scale and behaviour to assess pain in cba mice following vasectomy. Appl. Anim. Behav. Sci. 2016, 181, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, H.L.; See, L.P.; Foster, W.; Pitake, S.; Gibbs, J.; Schmidt, B.; Mitchell, C.H.; Abdus-Saboor, I. Evoked and spontaneous pain assessment during tooth pulp injury. Sci. Rep. 2020, 10, 2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.N.; Mogil, J.S. The Measurement of Pain in the Laboratory Rodent; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Vullo, C.; Barbieri, S.; Catone, G.; Graïc, J.-M.; Magaletti, M.; Di Rosa, A.; Motta, A.; Tremolada, C.; Canali, E.; Dalla Costa, E. Is the piglet grimace scale (pgs) a useful welfare indicator to assess pain after cryptorchidectomy in growing pigs? Animals 2020, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Di Giminiani, P.; Brierley, V.L.M.H.; Scollo, A.; Gottardo, F.; Malcolm, E.M.; Edwards, S.A.; Leach, M.C. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the piglet grimace scale. Front. Vet. Sci. 2016, 3, 100. [Google Scholar] [CrossRef] [Green Version]
- Viscardi, A.V.; Hunniford, M.; Lawlis, P.; Leach, M.; Turner, P.V. Development of a piglet grimace scale to evaluate piglet pain using facial expressions following castration and tail docking: A pilot study. Front. Vet. Sci. 2017, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Viscardi, A.V.; Turner, P.V.J.B.V.R. Efficacy of buprenorphine for management of surgical castration pain in piglets. BMC Vet. Res. 2018, 14, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of trpa1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience 2015, 310, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Kawano, T.; Tamura, T.; Iwata, H.; Takahashi, Y.; Eguchi, S.; Yamazaki, F.; Kumagai, N.; Yokoyama, M. Postoperative pain impairs subsequent performance on a spatial memory task via effects on n-methyl-d-aspartate receptor in aged rats. Life Sci. 2013, 93, 986–993. [Google Scholar] [CrossRef]
- Iqbal, S.M.; Leonard, C.; Regmi, S.C.; De Rantere, D.; Tailor, P.; Ren, G.; Ishida, H.; Hsu, C.; Abubacker, S.; Pang, D.S.; et al. Lubricin/proteoglycan 4 binds to and regulates the activity of toll-like receptors in vitro. Sci. Rep. 2016, 6, 18910. [Google Scholar] [CrossRef] [Green Version]
- Jeger, V.; Arrigo, M.; Hildenbrand, F.F.; Müller, D.; Jirkof, P.; Hauffe, T.; Seifert, B.; Arras, M.; Spahn, D.R.; Bettex, D.; et al. Improving animal welfare using continuous nalbuphine infusion in a long-term rat model of sepsis. Intensive. Care Med. Exp. 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Kawano, T.; Takahashi, T.; Iwata, H.; Morikawa, A.; Imori, S.; Waki, S.; Tamura, T.; Yamazaki, F.; Eguchi, S.; Kumagai, N.; et al. Effects of ketoprofen for prevention of postoperative cognitive dysfunction in aged rats. J. Anesth. 2014, 28, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Khoo, S.Y.; Lay, B.P.P.; Joya, J.; McNally, G.P. Local anaesthetic refinement of pentobarbital euthanasia reduces abdominal writhing without affecting immunohistochemical endpoints in rats. Lab. Anim. 2018, 52, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Long, H.; Ma, W.; Liao, L.; Yang, X.; Zhou, Y.; Shan, D.; Huang, R.; Jian, F.; Wang, Y.; et al. The role of periodontal asic3 in orofacial pain induced by experimental tooth movement in rats. Eur. J. Orthod. 2016, 38, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Cui, F.; Cao, X.; Wang, D.; Li, X.; Li, T. Local infiltration of the surgical wounds with levobupivacaine, dexibuprofen, and norepinephrine to reduce postoperative pain: A randomized, vehicle-controlled, and preclinical study. Biomed. Pharm. 2017, 92, 459–467. [Google Scholar] [CrossRef]
- Philips, B.H.; Weisshaar, C.L.; Winkelstein, B.A. Use of the rat grimace scale to evaluate neuropathic pain in a model of cervical radiculopathy. Comp. Med. 2017, 67, 34–42. [Google Scholar] [PubMed]
- Préfontaine, L.; Hélie, P.; Vachon, P. Postoperative pain in sprague dawley rats after liver biopsy by laparotomy versus laparoscopy. Lab. Anim. 2015, 44, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Sperry, M.M.; Yu, Y.-H.; Welch, R.L.; Granquist, E.J.; Winkelstein, B.A. Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model. Sci. Rep. 2018, 8, 13894. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Sperry, M.; Winkelstein, B.; Granquist, E. Using the Rat Grimace Scale to Detect Orofacial Pain in Mechanically-Induced Temporomandibular Joint Pain in Rats. Master’s Thesis, University of Pennsylvania Scholarly Commons, Philadelphia, PA, USA, 2018. [Google Scholar]
- Waite, M.E.; Tomkovich, A.; Quinn, T.L.; Schumann, A.P.; Dewberry, L.S.; Totsch, S.K.; Sorge, R.E. Efficacy of common analgesics for postsurgical pain in rats. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2015, 54, 420–425. [Google Scholar]
- Liao, L.; Long, H.; Zhang, L.; Chen, H.; Zhou, Y.; Ye, N.; Lai, W. Evaluation of pain in rats through facial expression following experimental tooth movement. Eur. J. Oral. Sci. 2014, 122, 121–124. [Google Scholar] [CrossRef]
- Fujita, M.; Fukuda, T.; Sato, Y.; Takasusuki, T.; Tanaka, M. Allopregnanolone suppresses mechanical allodynia and internalization of neurokinin-1 receptors at the spinal dorsal horn in a rat postoperative pain model. Korean J. Pain 2018, 31, 10–15. [Google Scholar] [CrossRef]
- Farrar, J.T.; Young, J.P., Jr.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- Andresen, N.; Wöllhaf, M.; Hohlbaum, K.; Lewejohann, L.; Hellwich, O.; Thöne-Reineke, C.; Belik, V. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS ONE 2020, 15, e0228059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, L.; Kopaczka, M.; Schulz, M.; Talbot, S.R.; Zieglowski, L.; Meyer, M.; Bruch, S.; Merhof, D.; Tolba, R.H. Improvement of the mouse grimace scale set-up for implementing a semi-automated mouse grimace scale scoring (part 1). Lab. Anim. 2020, 54, 83–91. [Google Scholar] [CrossRef] [PubMed]
Species | Validated * | Specific To Pain | Dose-Dependent Relationship | Real-Time | Easy To Train | Acute Pain | Chronic Pain | Visceral Pain | Publications |
---|---|---|---|---|---|---|---|---|---|
Cattle | Y | Y | Y | Y | Y | Y | Y | N/R | [7,8,64,68,85] |
Equine | Y | Y | Y | Y | Y | Y | N/R | Y | [33,35,37,39,87,92,102,104,105] |
Feline | Y | Y | N/R | Y | Y | Y | N/R | N/R | [101] |
Ferret | N/R | Y | N/R | Y | Y | Y | N/R | N/R | [106] |
Guinea Pig | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | [63,78,90] |
Lamb | Y | Y | N/R | Y | Y | Y | N/R | N/R | [107] |
Mouse | Y | Y | Y | Y | Y | Y | Y | Y | [3,35,40,57,67,76,77,83,100,108,109,110,111,112,113] |
Pig | Y | Y | N/R | Y | Y | Y | N/R | N/R | [114] |
Piglet | Y | Y | Y | Y | Y | Y | N/R | N/R | [91,115,116,117] |
Rabbit | Y | Y | Y | Y | Y | Y | N/R | N/R | [24,28,45,96] |
Rat | Y | Y | Y | Y | Y | Y | Y | Y | [41,42,43,44,55,60,94,95,103,113,118,119,120,121,122,123,124,125,126,127,128,129,130] |
Sheep | Y | Y | Y | Y | Y | Y | Y | N/R | [70,82] |
Facial Action Unit or Indicator | Species |
---|---|
Orbital Tightening and/or Change in Orbital Area | Cattle [68,85] Equine [33,102] Feline [101] Ferret [106] Lamb [107] Pig [114] Piglet [116] Mouse [100] Rabbit [45] Rat [41] Sheep [70,82] |
Cheek Tightening or Flattening | Cattle [68,85] Equine [33] Lamb [107] Pig [114] Piglet [116] Sheep [70,82] Rabbit [45] Rat [41] |
Cheek Bulge | Ferret [106] Mouse [100] |
Nose Bulge | Ferret [106] Mouse [100] Pig [114] Piglet [116] Rabbit [45] |
Nose Flattening | Equine [33] Lamb [107] Rat [41] |
Lowered Head Carriage | Equine [33,102] Cattle [68,85] Feline [101] Sheep [70] |
Lip curling | Equine [92] Sheep [70] |
Abnormal Nostril or Philtrum shape | Cattle [68,85] Equine [33,102] Lamb [107] Rabbit [45] Sheep [70] |
Eye Rolling | Cattle [68] |
Ear Position | Cattle [68] Equine [33,102] Feline [101] Ferret [106] Lamb [107] Mouse [100] Pig [114] Piglet [116] Rabbits [45] Sheep [70,82] |
Whisker Position | Feline [101] Ferret [106] Mouse [100] Rabbit [45] Rat [41] |
Abnormal Lip or mouth shape | Equine [33,102] Feline [101] Lamb [107] Sheep [70] |
Open Mouth +/− Tongue Extruded | Cattle [68] |
Pain or Study Type | Species |
---|---|
Visceral | Cattle [85] Equine [92] Mouse [100] Rat [44,55,121,123] |
Chronic | Mouse [108] Rat [55,120,128,129] |
Acute | Equine [33,35,37,102,105] Cattle Gleerup [68,85] Ferret [106] Lamb [107] Mouse [35,40,76,77,100,109,110,111] Pig [114] Piglet [91,115,116,117] Rabbit [28,45] Rat [41,43,44,55,60,95,103,118,120,122,123,124,125,126,127,128,129,130,131,132] Sheep [70,82] |
Neuropathic | Mouse [108] Rats [95,126] |
Soft Tissues Surgery | Equine [33,35] Ferret [106] Lamb [107] Mouse [40,76,77,111] Pig [114] Piglet [115,116,117] Rabbit [28] Rat [41,44,60,125,127,130,132] |
Orthopaedic Surgery | Mouse [109,110] Sheep [70] |
Surgical, Mechanical, Branding, or Hypersensitivity Injury | Equine [102] Cattle [68] Mouse [100,112] Rabbit [45] Rat [41,103] |
Dental | Equine [104,105] Mouse [112] Rat [43,124,128,129,131] |
Stifle injury | Mouse [100] Rat [120] |
Intraplantar CFA | Rat [41,103,118] |
Intracerebral Haemorrhage | Rat [42] |
Head and Ocular Pain | Mouse [109] Equine [105] |
Footrot | Sheep [82] |
Mastitis | Cattle [85] Sheep [82] |
Lameness | Cattle [85] Sheep [44,82,118,130,132] |
Sickle Anaemia | Mouse [83] |
Cold hypersensitivity | Mouse [83] |
Myocardial Infarction | Mouse [110] |
Laminitis | Equine [37] |
Cystitis | Mouse [100] |
Sepsis | Rat [121] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, S.; Beths, T. Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals 2020, 10, 1726. https://doi.org/10.3390/ani10101726
Cohen S, Beths T. Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals. 2020; 10(10):1726. https://doi.org/10.3390/ani10101726
Chicago/Turabian StyleCohen, Shari, and Thierry Beths. 2020. "Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research" Animals 10, no. 10: 1726. https://doi.org/10.3390/ani10101726
APA StyleCohen, S., & Beths, T. (2020). Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals, 10(10), 1726. https://doi.org/10.3390/ani10101726