Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Feeds
2.2. Cattle, Treatments, and Feeding Management
2.3. Sampling and Laboratory Analysis
2.4. Statistically Determination
3. Results and Discussion
3.1. Feed Utilization
3.2. Rumen Parameters and Blood Metabolites
3.3. Concentrations of Ruminal Volatile Fatty Acids
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lunt, D.K.; Riley, R.R.; Smith, S.B. Growth and carcass characteristics of Angus and American Wagyu steers. Meat Sci. 1993, 34, 327–334. [Google Scholar] [CrossRef]
- Wanapat, M.; Rowlinson, P. Nutrition and feeding of swamp buffalo: Feed resources and rumen approach. Ital. J. Anim. Sci. 2007, 6 (Suppl. 2), 67–73. [Google Scholar] [CrossRef]
- Leng, R.A. Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr. Res. 1990, 3, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Seankamsorn, A.; Cherdthong, A.; Wanapat, M.; Supapong, C.; Khonkhaeng, B.; Uriyapongson, S.; Gunun, N.; Gunun, P.; Chanjula, P. Effect of dried rumen digesta pellet levels on feed use, rumen ecology, and blood metabolite in swamp buffalo. Trop. Anim. Health Prod. 2017, 48, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Okpanachi, U.; Aribido, S.O.; Daikwo, I.S. Growth and haematological response of growing rabbits to diets containing graded levels of sun dried bovine rumen content. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 4444–4454. [Google Scholar] [CrossRef]
- Adeniji, A.A.; Balogun, O.O. Utilization of flavour treated blood-rumen content mixture in the diets of laying hens. Niger. J. Anim. Prod. 2002, 29, 34–39. [Google Scholar]
- Tan, N.D.; Wanapat, M.; Uriyapongson, S.; Cherdthong, A.; Pilajun, R. Enhancing mulberry leaf meal with urea by pelleting to improve rumen fermentation in cattle. Asian Australas. J. Anim. Sci. 2012, 4, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.M.; Wilkison, R.G.; Sinclair, L.A. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 2003, 81, 1332–1347. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Method of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robinson, P.H.; Givens, D.I.; Getachew, G. Evaluation of NRC, UC Davis and ADAS approaches to estimate the metabolizable energy values of feeds at maintenance energy intake from equations utilizing chemical assays and in vitro determinations. Anim. Feed Sci. Technol. 2004, 114, 75–90. [Google Scholar] [CrossRef]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Range Sciences, New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Jensen, L.S.; Aumaitre, A.; Lee, B.D. Influence of pelleting on the nutritional needs of poultry. Asian Australas. J. Anim. Sci. 2000, 13, 35–46. [Google Scholar]
- Wallace, R.J.; Munro, C.A. Influence of the rumen anaerobic fungus Neocallimustix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Lett. Appl. Microbiol. 1986, 3, 23–26. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Lee, S.S.; Ha, J.K.; Cheng, K.J. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 2000, 66, 3807–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orpin, C.G. The occurrence of chitin in the cell-walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J. Gen. Microbiol. 1977, 99, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kanjanapruthipong, J.; Leng, R.A. The Effects of Dietary Urea on Microbial Populations in the Rumen of Sheep. Asian Australas. J. Anim. Sci. 1998, 11, 661–672. [Google Scholar] [CrossRef]
- Onodera, R.; Ueda, H.; Nagasawa, T.; Okuuchi, K.; Chaen, S.; Mieno, M.; Kudo, H. In vitro metabolism of tryptophan by ruminal protozoa and bacteria. The production of indole and skatole and their effects on protozoal survival and VFA production. Anim. Sci. Technol. 1992, 63, 23–31. [Google Scholar]
- Leng, R.A. Dynamics of protozoa in the rumen. In The Roles of Protozoa and Fungi in Ruminant Digestion; Nolan, J.V., Leng, R.A., Demeyer, D.I., Eds.; Penambul Books: Armidale, Australia, 1989; pp. 51–58. [Google Scholar]
- Belanche, A.; de la Fuente, G.; Pinloche, E.; Newbold, C.J.; Balcells, J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J. Anim. Sci. 2012, 90, 3924–3936. [Google Scholar] [CrossRef] [Green Version]
- Romulo, B.H.; Bird, S.H.; Leng, R.A. The effects of defaunation on digestibility and rumen fungi counts in sheep fed high-fibre diets. Proc. Aust. Soc. Anim. Prod. 1986, 16, 327–330. [Google Scholar]
- Akin, D.E.; Lyon, C.E.; Windham, W.R.; Rigsby, L.L. Physical degradation of lignified stem tissues by ruminal fungi. Appl. Environ. Microbiol. 1989, 55, 611–616. [Google Scholar] [PubMed]
- Foiklang, S.; Wanapat, M.; Norrapoke, T. Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. Asian Australas. J. Anim. Sci. 2016, 29, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Pimpa, O.; Liang, J.B.; Balcells, J. Renal and salivary excretions of plasma purine derivatives in swamp buffaloes and zebu cattle. Asian Australas. J. Anim. Sci. 2007, 20, 1201–1207. [Google Scholar] [CrossRef]
- Patra, A.K.; Aschenbach, J.R. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res. 2018, 13, 39–50. [Google Scholar] [CrossRef]
Item | Concentrate | DRDP | Rice Straw |
---|---|---|---|
Ingredients, kg dry matter (DM) | |||
Cassava chips | 60.00 | - | |
Dried rumen digesta * | - | 80.00 | |
Sunflower oil | - | 4.00 | |
Cassava starch | - | 0.50 | |
Rice bran | 13.00 | - | |
Coconut meal | 12.00 | - | |
Palm meal | 11.50 | - | |
Urea | 2.50 | 10.00 | |
Molasses | 1.00 | 2.50 | |
Sulfur | 1.00 | 1.00 | |
Mineral and vitamin mixture a | 1.00 | 1.00 | |
Salt | 1.00 | 1.00 | |
Chemical composition | |||
Dry matter, % | 84.50 | 94.20 | 92.10 |
%DM | |||
Organic matter | 91.80 | 94.70 | 78.70 |
Crude protein | 14.00 | 40.77 | 2.80 |
Neutral detergent fiber | 30.10 | 53.10 | 68.10 |
Acid detergent fiber | 14.70 | 31.10 | 40.70 |
Metabolizable energy (ME) b, MJ/kg DM | 10.51 | 8.65 | 7.23 |
Item | DRDP Supplementation (g/d) | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
Feed intake (expressed on a dry matter) | ||||||
Rice straw | ||||||
kg/d | 1.79 a | 2.29 a,b | 2.38 a,b | 2.47 b | 0.21 | 0.03 |
g/kg BW0.75 | 44.18 a | 55.50 b | 56.58 b | 61.05 c | 3.79 | 0.04 |
Concentrate | ||||||
kg/d | 0.82 | 0.79 | 0.79 | 0.81 | 0.91 | 0.81 |
g/kg BW0.75 | 17.79 | 17.62 | 17.64 | 17.74 | 3.22 | 0.83 |
DRDP | ||||||
kg/d | 0.00 | 0.05 | 0.10 | 0.15 | - | - |
g/kg BW0.75 | 0.00 | 2.53 | 4.95 | 6.74 | - | - |
Total intake | ||||||
kg/d | 2.61 a | 3.13 b | 3.27 b | 3.43 c | 1.08 | 0.01 |
g/kg BW0.75 | 61.97 a | 75.65 a,b | 79.17 b | 85.53 c | 0.22 | 0.01 |
Nutrient intake | ||||||
Nitrogen (N) intake, g/d | 26.4 a | 31.2 a,b | 34.9 b | 39.0 c | 1.56 | 0.03 |
Total N excretion, g/d | 18.1 | 19.4 | 19.1 | 19.0 | 0.28 | 0.12 |
Fecal N excretion, g/d | 7.6 | 8.2 | 8.1 | 8.0 | 0.61 | 0.11 |
Urinary excretion, g/d | 10.6 | 11.2 | 11.1 | 11.0 | 0.66 | 0.45 |
Apparent N absorption, g/d | 18.8 a | 23.0 b | 26.8 b | 31.0 c | 1.41 | 0.04 |
Apparent N retention, g/d | 8.3 a | 11.8 a | 15.8 b | 20.0 c | 1.02 | 0.03 |
Apparent digestibility | ||||||
Dry matter, % | 63.5 | 64.3 | 62.0 | 63.9 | 2.52 | 0.93 |
------------------%DM------------- | ||||||
Organic matter | 66.1 | 64.6 | 66.5 | 66.7 | 0.74 | 0.30 |
Crude protein | 60.4 a | 64.5 a,b | 65.5 b | 67.6 b | 1.01 | 0.01 |
Neutral detergent fiber | 53.0 | 53.8 | 54.6 | 56.4 | 1.20 | 0.30 |
Acid detergent fiber | 45.5 | 47.0 | 45.8 | 44.8 | 1.15 | 0.61 |
Item | DRDP Supplementation (g/d) | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
Ruminal pH | ||||||
0 h post feeding | 6.76 | 6.79 | 6.76 | 6.73 | 0.05 | 0.88 |
4 h post feeding | 6.74 | 6.72 | 6.72 | 6.70 | 0.02 | 0.57 |
Mean | 6.75 | 6.76 | 6.74 | 6.72 | 0.02 | 0.70 |
Ruminal temperature, °C | ||||||
0 h post feeding | 38.93 | 38.94 | 39.25 | 38.99 | 0.19 | 0.63 |
4 h post feeding | 39.50 | 39.28 | 39.87 | 39.83 | 0.20 | 0.23 |
Mean | 39.22 | 39.11 | 39.56 | 39.41 | 0.15 | 0.25 |
Ammonia-N concentration, mg/dL | ||||||
0 h post feeding | 9.5 | 11.3 | 13.1 | 13.2 | 0.89 | 0.09 |
4 h post feeding | 11.8 a | 12.9 a | 14.7 b | 14.8 b | 0.24 | 0.05 |
Mean | 10.6 a | 12.1 a.b | 13.9 a,b | 14.0 b | 0.25 | 0.02 |
Blood urea-N, mg/dL | ||||||
0 h post feeding | 9.3 | 10.0 | 10.3 | 11.8 | 0.89 | 0.08 |
4 h post feeding | 10.3 | 11.5 | 11.8 | 12.5 | 0.98 | 0.13 |
Mean | 9.8 a | 10.8 a | 11.0 a | 12.1 b | 0.27 | 0.02 |
Ruminal microbes, cell/mL | ||||||
Protozoa, ×105 | ||||||
0 h post feeding | 1.50 | 1.63 | 1.38 | 1.25 | 0.43 | 0.70 |
4 h post feeding | 2.13 a | 1.75 a,b | 1.63 a,b | 1.50 b | 0.10 | 0.03 |
Mean | 1.82 | 1.69 | 1.51 | 1.38 | 0.57 | 0.20 |
Fungal zoospore, ×104 | ||||||
0 h post feeding | 1.00 | 1.00 | 1.25 | 1.13 | 0.19 | 0.75 |
4 h post feeding | 1.53 a | 1.63 a | 1.98 a,b | 2.50 b | 0.07 | 0.02 |
Mean | 1.25 a | 1.31 a | 1.61 a,b | 1.81 b | 0.04 | 0.05 |
Item | DRDP Supplementation (g/d) | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
Total VFA, mmol/L | ||||||
0 h post feeding | 111 | 112 | 109 | 114 | 3.96 | 0.79 |
4 h post feeding | 113 | 115 | 111 | 115 | 2.01 | 0.46 |
Mean | 112 | 114 | 110 | 115 | 2.06 | 0.42 |
Acetic acid, mol/100 mol | ||||||
0 h post feeding | 61.81 | 60.54 | 62.04 | 61.82 | 2.17 | 0.96 |
4 h post feeding | 63.70 | 62.25 | 66.98 | 63.57 | 2.57 | 0.63 |
Mean | 62.75 | 61.40 | 64.51 | 62.69 | 1.85 | 0.71 |
Propionic acid, mol/100 mol | ||||||
0 h post feeding | 21.48 | 23.51 | 22.40 | 21.28 | 2.17 | 0.88 |
4 h post feeding | 24.36 | 23.58 | 25.37 | 25.13 | 2.25 | 0.94 |
Mean | 22.92 | 23.54 | 23.89 | 23.21 | 2.01 | 0.99 |
Butyric acid, mol/100 mol | ||||||
0 h post feeding | 12.48 | 14.96 | 12.06 | 11.90 | 2.01 | 0.69 |
4 h post feeding | 14.11 | 17.92 | 15.66 | 13.81 | 2.89 | 0.74 |
Mean | 13.29 | 16.44 | 13.86 | 12.86 | 2.30 | 0.70 |
Acetic acid:propionic acid ratio | 2.90 | 2.69 | 2.38 | 2.85 | 0.33 | 0.70 |
Acetic plus butyric acid:propionic acid ratio | 3.54 | 3.37 | 2.92 | 3.42 | 0.37 | 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seankamsorn, A.; Cherdthong, A. Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets. Animals 2020, 10, 56. https://doi.org/10.3390/ani10010056
Seankamsorn A, Cherdthong A. Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets. Animals. 2020; 10(1):56. https://doi.org/10.3390/ani10010056
Chicago/Turabian StyleSeankamsorn, Anuthida, and Anusorn Cherdthong. 2020. "Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets" Animals 10, no. 1: 56. https://doi.org/10.3390/ani10010056
APA StyleSeankamsorn, A., & Cherdthong, A. (2020). Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets. Animals, 10(1), 56. https://doi.org/10.3390/ani10010056