Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetics and Genomic Studies on Phenotypic Traits in Sheep
2.1. Genes Associated with Growth and Body Weight
2.2. Genes Associated with Carcass and Fat Traits
2.3. Genes Associated with Sheep Fertility Traits
2.4. Genes Associated with Sheep Milk Traits
2.5. Genes Affecting Wool, Coat Color and Horn Phenotypic Traits
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montossi, F.; Font-i-Furnols, M.; Del Campo, M.; San Julián, R.; Brito, G.; Sañudo, C. Sustainable sheep production and consumer preference trends: Compatibilities, contradictions, and unresolved dilemmas. Meat Sci. 2013, 95, 772–789. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.; Wayne, M. Quantitative Trait Locus (QTL) Analysis; Nature Education: Cambridge, UK, 2008; Volume 1, p. 208. [Google Scholar]
- Zhang, H.; Wang, Z.; Wang, S.; Li, H. Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotechnol. 2012, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-S.; Li, M.-H. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agric. Sci. Eng. 2017, 4, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, K.; Ohnishi, Y.; Iida, A.; Sekine, A.; Yamada, R.; Tsunoda, T.; Sato, H.; Sato, H.; Hori, M.; Nakamura, Y. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002, 32, 650. [Google Scholar] [CrossRef]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef]
- Johnston, S.E.; Mcewan, J.C.; Pickering, N.K.; Kijas, J.W.; Beraldi, D.; Pilkington, J.G.; Pemberton, J.M.; Slate, J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 2011, 20, 2555–2566. [Google Scholar] [CrossRef]
- Daw, E.W.; Heath, S.C.; Lu, Y. Single-Nucleotide Polymorphism Versus Microsatellite Markers in a Combined Linkage and Segregation Analysis of a Quantitative Trait; BMC Genetics; BioMed Central: London, UK, 2005; p. S32. [Google Scholar]
- Hong, L.; Dumond, M.; Tsugawa, S.; Sapala, A.; Routier-Kierzkowska, A.-L.; Zhou, Y.; Chen, C.; Kiss, A.; Zhu, M.; Hamant, O. Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev. Cell 2016, 38, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; He, S.; Zhu, Y.; Cao, X.; Luo, R.; Cai, Y.; Xu, H.; Sun, X. A novel 29 bp insertion/deletion (indel) variant of the LHX3 gene and its influence on growth traits in four sheep breeds of various fecundity. Arch. Anim. Breed. 2017, 60, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Mullen, R.D.; Rhodes, S.J. Cell-specific actions of a human LHX3 gene enhancer during pituitary and spinal cord development. Mol. Endocrinol. 2013, 27, 2013–2027. [Google Scholar] [CrossRef] [Green Version]
- Mahrous, K.; Hassanane, M.; Shafey, H.; Mordy, M.A.; Rushdi, H. Association between single nucleotide polymorphism in ovine Calpain gene and growth performance in three Egyptian sheep breeds. J. Genet. Eng. Biotechnol. 2016, 14, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, R.; Yadav, H.S.; Yadav, D.K. Identification of novel single nucleotide polymorphisms in candidate genes for mutton quality in Indian sheep. Anim. Mol. Breed. 2014, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Jayashankar, M.; Ramakrishnappa, N.; Nagaraja, C.; Fairoze, N.; Satyanarayana, K. Genetic polymorphism of ovine calpain gene in Bandur sheep. Int. J. Sci. Environ. Technol. 2015, 4, 804–812. [Google Scholar]
- Huff-Lonergan, E.; Mitsuhashi, T.; Beekman, D.D.; Parrish, F.C., Jr.; Olson, D.G.; Robson, R.M. Proteolysis of specific muscle structural proteins by µ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J. Anim. Sci. 1996, 74, 993–1008. [Google Scholar] [CrossRef] [Green Version]
- Goll, D.E.; Thompson, V.F.; Taylor, R.G.; Zalewska, T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 1992, 14, 549–556. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cao, J.; Wu, M.; Ma, X.; Liu, Z.; Liu, R.; Zhao, F.; Wei, C.; Du, L. Genome-wide specific selection in three domestic sheep breeds. PLoS ONE 2015, 10, e0128688. [Google Scholar] [CrossRef] [Green Version]
- Kominakis, A.; Hager-Theodorides, A.L.; Zoidis, E.; Saridaki, A.; Antonakos, G.; Tsiamis, G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol. 2017, 49, 41. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Xuan, J.; Wang, H.; Yuan, Z.; Wu, M.; Liu, R.; Zhu, C.; Wei, C.; Zhao, F. Identification of MEF2B and TRHDE gene polymorphisms related to growth traits in a new Ujumqin sheep population. PLoS ONE 2016, 11, e0159504. [Google Scholar] [CrossRef] [Green Version]
- Cinar, M.U.; Mousel, M.R.; Herrmann-Hoesing, L.M.; Taylor, J.B.; White, S.N. Ovar-DRB1 haplotypes * 2001 and * 0301 are associated with sheep growth and ewe lifetime prolificacy. Gene 2016, 595, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Broad, T.; Glass, B.; Greer, G.; Robertson, T.; Bain, W.; Lord, E.; McEwan, J.; Peterson, S. Search for a locus near to myostatin that increases muscling in Texel sheep in New Zealand. In Proceedings of the New Zealand Society of Animal Production, Hamilton, New Zealand, 26–29 June 2000; New Zealand Society of Animal Production: Hamilton, New Zealand, 2000; pp. 110–112. [Google Scholar]
- Sahu, A.R.; Jeichitra, V.; Rajendran, R.; Raja, A. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds. Small Rumin. Res. 2017, 149, 81–84. [Google Scholar] [CrossRef]
- Moradian, C.; Mohamadi, N.; Sheshdeh, S.; Hajihosseinlo, A.; Ashrafi, F. Effects of genetic polymorphismat the growth hormone gene on growth traits in Makooei sheep. Eur. J. Exp. Biol. 2013, 3, 101–105. [Google Scholar]
- McMahon, C.; Radcliff, R.; Lookingland, K.; Tucker, H. Neuroregulation of growth hormone secretion in domestic animals. Domest. Anim. Endocrinol. 2001, 20, 65–87. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zhao, F.; Ren, H.; Xu, L.; Lu, J.; Zhang, S.; Zhang, X.; Wei, C.; Lu, G. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE 2013, 8, e66569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strunnikov, A.V.; Hogan, E.; Koshland, D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 1995, 9, 587–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, C.R.; Jonas, E.; Hobbs, M.; Thomson, P.C.; Tammen, I.; Raadsma, H.W. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Genet. Sel. Evol. 2010, 42, 36. [Google Scholar]
- Talkowski, M.E.; Rosenfeld, J.A.; Blumenthal, I.; Pillalamarri, V.; Chiang, C.; Heilbut, A.; Ernst, C.; Hanscom, C.; Rossin, E.; Lindgren, A.M. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012, 149, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Liu, B.; Guo, F.; Xu, G.; Ding, Y.; Liu, Y.; Sun, X.; Xu, G. The essential role of Mbd5 in the regulation of somatic growth and glucose homeostasis in mice. PLoS ONE 2012, 7, e47358. [Google Scholar] [CrossRef] [Green Version]
- Cukier, H.N.; Lee, J.M.; Ma, D.; Young, J.I.; Mayo, V.; Butler, B.L.; Ramsook, S.S.; Rantus, J.A.; Abrams, A.J.; Whitehead, P.L. The expanding role of MBD genes in autism: Identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism Res. 2012, 5, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Ntambi, J.M.; Miyazaki, M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 2004, 43, 91–104. [Google Scholar] [CrossRef]
- Webb, E.; O’neill, H. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef]
- Renerre, M. Oxidative processes and myoglobin. Antioxid. Muscle Foods 2000, 2000, 113–133. [Google Scholar]
- Aali, M.; Moradi-Shahrbabak, H.; Moradi-Shahrbabak, M.; Sadeghi, M.; Yousefi, A.R. Association of the calpastatin genotypes, haplotypes, and SNPs with meat quality and fatty acid composition in two Iranian fat-and thin-tailed sheep breeds. Small Rumin. Res. 2017, 149, 40–51. [Google Scholar] [CrossRef]
- Barzehkar, R.; Salehi, A.; Mahjoubi, F. Polymorphisms of the ovine leptin gene and its association with growth and carcass traits in three Iranian sheep breeds. Iran. J. Biotechnol. 2009, 7, 241–246. [Google Scholar]
- Frühbeck, G.; Jebb, S.; Prentice, A. Leptin: Physiology and pathophysiology. Clin. Physiol. 1998, 18, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Hickford, J.; Forrest, R.; Zhou, H.; Fang, Q.; Han, J.; Frampton, C.; Horrell, A. Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Genet. 2010, 41, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Masternak, K.; Zufferey, M.; Barras, E.; Reith, W. New functions of the major histocompatibility complex class II-specific transcription factor RFXANK revealed by a high-resolution mutagenesis study. Mol. Cell. Biol. 2005, 25, 8607–8618. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Shahrebabak, M.M.; Sadeghi, M. Association between single nucleotide polymorphism in the ovine DGAT1 gene and carcass traits in two Iranian sheep breeds. Anim. Biotechnol. 2013, 24, 159–167. [Google Scholar] [CrossRef]
- Mayorek, N.; Grinstein, I.; Bar-Tana, J. Triacylglycerol synthesis in cultured rat hepatocytes: The rate-limiting role of diacylglycerol acyltransferase. Eur. J. Biochem. 1989, 182, 395–400. [Google Scholar] [CrossRef]
- Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef]
- Yang, G.; Forrest, R.; Zhou, H.; Hodge, S.; Hickford, J. Genetic variation in the ovine uncoupling protein 1 gene: Association with carcass traits in N ew Z ealand (NZ) R omney sheep, but no association with growth traits in either NZ R omney or NZ S uffolk sheep. J. Anim. Breed. Genet. 2014, 131, 437–444. [Google Scholar] [CrossRef]
- Chen, H.Y.; Shen, H.; Jia, B.; Zhang, Y.S.; Wang, X.H.; Zeng, X.C. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique. PLoS ONE 2015, 10, e0120170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.; Luo, Q.; Zhao, H.; Qin, X. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Sci. Rep. 2016, 6, 39398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.; Luo, Q. Genome-wide transcriptome analysis between small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing. Reproduction 2013, 145, 587–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouilhet, L.; Lecerf, F.; Bodin, L.; Fabre, S.; Mulsant, P. Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Anim. Genet. 2009, 40, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.M.; McNatty, K.P.; Cambridge, L.M.; Laitinen, M.P.; Juengel, J.L.; Jokiranta, T.S.; McLaren, R.J.; Luiro, K.; Dodds, K.G.; Montgomery, G.W. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 2000, 25, 279. [Google Scholar] [CrossRef]
- Souza, C.; MacDougall, C.; Campbell, B.; McNeilly, A.; Baird, D. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 2001, 169, R1–R6. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Davis, G.; Montgomery, G.; Allison, A.; Kelly, R.; Bray, A. Segregation of a major gene influencing fecundity in progeny of Booroola sheep. N. Z. J. Agric. Res. 1982, 25, 525–529. [Google Scholar] [CrossRef]
- Yan, C.; Wang, P.; DeMayo, J.; DeMayo, F.J.; Elvin, J.A.; Carino, C.; Prasad, S.V.; Skinner, S.S.; Dunbar, B.S.; Dube, J.L. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 2001, 15, 854–866. [Google Scholar] [CrossRef]
- McNatty, K.P.; Galloway, S.M.; Wilson, T.; Smith, P.; Hudson, N.L.; O’Connell, A.; Bibby, A.H.; Heath, D.A.; Davis, G.H.; Hanrahan, J.P. Physiological Effects of Major Genes Affecting Ovulation Rate in Sheep; Genetics Selection Evolution; BioMed Central: London, UK, 2005; pp. S25–S38. [Google Scholar]
- Bowles, D.; Carson, A.; Isaac, P. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS ONE 2014, 9, e87823. [Google Scholar] [CrossRef]
- Eppig, J.J.; Pendola, F.L.; Wigglesworth, K.; Pendola, J.K. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: Amino acid transport. Biol. Reprod. 2005, 73, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Heaton, M.P.; Clawson, M.L.; Chitko-Mckown, C.G.; Leymaster, K.A.; Smith, T.P.; Harhay, G.P.; White, S.N.; Herrmann-Hoesing, L.M.; Mousel, M.R.; Lewis, G.S. Reduced lentivirus susceptibility in sheep with TMEM154 mutations. PLoS Genet. 2012, 8, e1002467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, S.N.; Mousel, M.R.; Herrmann-Hoesing, L.M.; Reynolds, J.O.; Leymaster, K.A.; Neibergs, H.L.; Lewis, G.S.; Knowles, D.P. Genome-wide association identifies multiple genomic regions associated with susceptibility to and control of ovine lentivirus. PLoS ONE 2012, 7, e47829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodin, L.; Di Pasquale, E.; Fabre, S.; Bontoux, M.; Monget, P.; Persani, L.; Mulsant, P. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 2007, 148, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Liu, Z.; Jiao, C.; He, Y.; Fang, L.; Ye, S.; Chen, G.; Wang, J. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). J. Anim. Sci. 2007, 85, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, O.; Kul, S.; Unal, E.O. Polymorphism of sheep POU1F1 gene exon 6 and 3′UTR region and their association with milk production traits. Iran. J. Vet. Res. 2014, 15, 331. [Google Scholar]
- Lan, X.; Li, M.; Chen, H.; Zhang, L.; Jing, Y.; Wei, T.; Ren, G.; Wang, X.; Fang, X.; Zhang, C. Analysis of caprine pituitary specific transcription factor-1 gene polymorphism in indigenous Chinese goats. Mol. Biol. Rep. 2009, 36, 705–709. [Google Scholar] [CrossRef]
- Moioli, B.; Scatà, M.C.; Steri, R.; Napolitano, F.; Catillo, G. Signatures of selection identify loci associated with milk yield in sheep. BMC Genet. 2013, 14, 76. [Google Scholar] [CrossRef] [Green Version]
- García-Gámez, E.; Gutiérrez-Gil, B.; Sahana, G.; Sánchez, J.-P.; Bayón, Y.; Arranz, J.-J. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene. PLoS ONE 2012, 7, e47782. [Google Scholar] [CrossRef]
- do Rosário Marques, M.; Santos, I.C.; Carolino, N.; Belo, C.C.; Renaville, R.; Cravador, A. Effects of genetic polymorphisms at the growth hormone gene on milk yield in Serra da Estrela sheep. J. Dairy Res. 2006, 73, 394–405. [Google Scholar] [CrossRef]
- Dettori, M.L.; Pazzola, M.; Pira, E.; Paschino, P.; Vacca, G.M. The sheep growth hormone gene polymorphism and its effects on milk traits. J. Dairy Res. 2015, 82, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Vacca, G.; Dettori, M.; Balia, F.; Luridiana, S.; Mura, M.; Carcangiu, V.; Pazzola, M. Sequence polymorphisms at the growth hormone GH1/GH2-N and GH2-Z gene copies and their relationship with dairy traits in domestic sheep (Ovis aries). Mol. Biol. Rep. 2013, 40, 5285–5294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Yang, H.; Wang, S.; Rong, E.; Pei, W.; Li, H.; Wang, N. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS ONE 2014, 9, e107101. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.-W.; Chu, Y.-K.; Zhang, W.-J.; Qin, F.-Y.; Xu, S.-S.; Yang, H.; Rong, E.-G.; Du, Z.-Q.; Wang, S.-Z.; Li, H. Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep. PLoS ONE 2017, 12, e0174868. [Google Scholar] [CrossRef] [Green Version]
- Sulayman, A.; Mamat, A.; Taursun, M.; Huang, X.-X.; Tian, K.; Tian, Y.; Xu, X.; Fu, X. Identification of Polymorphisms and Association of Five KAP Genes with Sheep Wool Traits. Asian Australas. J. Anim. Sci. 2017. [Google Scholar] [CrossRef]
- Norris, B.J.; Whan, V.A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res. 2008, 18, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, L.; Beretti, F.; Riggio, V.; Dall’Olio, S.; Calascibetta, D.; Russo, V.; Portolano, B. Sequence characterization of the melanocortin 1 receptor (MC1R) gene in sheep with different coat colours and identification of the putative e allele at the ovine Extension locus. Small Rumin. Res. 2010, 91, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Hepp, D.; Gonçalves, G.; Moreira, G.; Freitas, T.; Martins, C.; Weimer, T.; Passos, D. Identification of the e allele at the Extension locus (MC1R) in Brazilian Creole sheep and its role in wool color variation. Genet. Mol. Res. 2012, 11, 2997–3006. [Google Scholar] [CrossRef]
- Hoekstra, H.E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 2006, 97, 222. [Google Scholar] [CrossRef] [Green Version]
- Cieslak, M.; Reissmann, M.; Hofreiter, M.; Ludwig, A. Colours of domestication. Biol. Rev. 2011, 86, 885–899. [Google Scholar] [CrossRef]
- Fontanesi, L.; Rustempašić, A.; Brka, M.; Russo, V. Analysis of polymorphisms in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes and association with coat colours in two Pramenka sheep types. Small Rumin. Res. 2012, 105, 89–96. [Google Scholar] [CrossRef]
- Kijas, J.; Serrano, M.; McCulloch, R.; Li, Y.; Salces Ortiz, J.; Calvo, J.; Pérez-Guzmán, M.; Consortium, I.S.G. Genomewide association for a dominant pigmentation gene in sheep. J. Anim. Breed. Genet. 2013, 130, 468–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.-L.; Fu, D.-L.; Lang, X.; Wang, Y.-T.; Cheng, S.-R.; Fang, S.-L.; Luo, Y.-Z. Mutations in MC1R gene determine black coat color phenotype in Chinese sheep. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royo, L.J.; Alvarez, I.; Arranz, J.; Fernández, I.; Rodríguez, A.; Pérez-Pardal, L.; Goyache, F. Differences in the expression of the ASIP gene are involved in the recessive black coat colour pattern in sheep: Evidence from the rare Xalda sheep breed. Anim. Genet. 2008, 39, 290–293. [Google Scholar] [CrossRef]
- Li, M.; Tiirikka, T.; Kantanen, J. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries). Heredity 2014, 112, 122. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.E.; Gratten, J.; Berenos, C.; Pilkington, J.G.; Clutton-Brock, T.H.; Pemberton, J.M.; Slate, J. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 2013, 502, 93. [Google Scholar] [CrossRef]
- Maiwashe, A.; Blackburn, H. Genetic diversity in and conservation strategy considerations for Navajo Churro sheep. J. Anim. Sci. 2004, 82, 2900–2905. [Google Scholar] [CrossRef]
- Dýrmundsson, Ó.R. Four-hornedness; a rare peculiarity still found in Icelandic sheep. Icel. Sheep Breed. N. Am. Newsl. 2005, 9, 6–8. [Google Scholar]
- Sponenberg, D.; Taylor, C. Navajo-Churro sheep and wool in the United States. Anim. Genet. Resour. Resour. Génétiques Anim. Recur. Genéticos Anim. 2009, 45, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Wiedemar, N.; Drögemüller, C. A 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim. Genet. 2015, 46, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Dominik, S.; Henshall, J.; Hayes, B. A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim. Genet. 2012, 43, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Neto, L.R.P.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Zhou, Z.; Pu, Y.; Chen, X.; Ma, Y.; Jiang, L. Mapping the four-horned locus and testing the polled locus in three Chinese sheep breeds. Anim. Genet. 2016, 47, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Greyvenstein, O.C.; Reich, C.; van Marle-Koster, E.; Riley, D.; Hayes, B. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2. Anim. Genet. 2016, 47, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Kijas, J.W.; Hadfield, T.; Naval Sanchez, M.; Cockett, N. Genome-wide association reveals the locus responsible for four-horned ruminant. Anim. Genet. 2016, 47, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Yang, G.-L.; Peng, W.-F.; Zhao, Y.-X.; Zhang, M.; Chen, Z.-H.; Wu, F.-A.; Kantanen, J.; Shen, M.; Li, M.-H. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries). Sci. Rep. 2016, 6, 21111. [Google Scholar] [CrossRef] [Green Version]
Genes | Chr | Position (bp) | Traits | Sheep Breed | Author(s) |
---|---|---|---|---|---|
MEF2B | 5 | 3859638–3859738 | BW,CG | Ujumqin sheep | [20] |
TRHDE | 3 | 108235641–108685027 | BW,CG | Ujumqin sheep | [20] |
DRB1*2001 | 20 | 25594470–25608591 | WMW | Rambouillet&Columbia | [21] |
GH | 16 | 31832933–32000445 | GT | Makui sheep | [24,25] |
CAPN | 12 | 25191495–25241603 | BFW | Barki &Rahmani sheep | [13] |
MSTN | 2 | 118144443–118149433 | GT | MRMT | [22,23] |
APOBR | 24 | 26065424–26069206 | BMI | GMM, CMF and AWD | [18] |
FTO | 14 | 21524991–21953995 | BMI | GMM, CMF and AWD | [18] |
TP53 | 11 | 26935155–26939002 | BS | Frizarta sheep | [19] |
GRM1 | 8 | 70235268–70670365 | PWG | SS, GMS and DS | [26] |
MBD5 | 2 | 159880355–159937836 | PWG | SS, GMS and DS | [26] |
UBR2 | 20 | 16358563–16459598 | PWG | SS, GMS and DS | [26] |
RPL7 | 9 | 49443212–49445803 | PWG | SS, GMS and DS | [26] |
SMC2 | 2 | 18870300–18918858 | PWG | SS, GMS and DS | [26] |
LHX3 | 3 | 3138427–3148553 | GT | HS, STHS, LFTS & TS | [11] |
LHX4 | 12 | 59481470–59527642 | GT | HS, STHS, LFTS & TS | [11] |
POL | 22 | 21493437–21500144 | PWG | SS, GMS and DS | [26] |
MSL1 | 11 | 39997471–40006992 | PW | GMM, CMF and AWD | [18] |
SHISA9 | 24 | 11921141–11946628 | GM | SS, GMS and DS | [26] |
Genes | Chr | Position (bp) | Traits | Sheep Breed | Author(s) |
---|---|---|---|---|---|
DGAT1 | 9 | 13566142–13575279 | BFTW | Lori-Bakhtiari & Zel | [40] |
UCP1 | 17 | 16847682–16853677 | SCFD | NZ, Romney & Suffolk | [43] |
17 | 16847682–16853677 | TLLM | NZ, Romney & Suffolk | [43] | |
17 | 16847682–16853677 | TLHM | NZ, Romney & Suffolk | [43] | |
LEP | 4 | 92508289–92522182 | CW | Shal sheep | [36] |
4 | 92508289–92522182 | FP | Shal sheep | [36] | |
4 | 92508289–92522182 | TBFW | Shal sheep | [36] | |
4 | 92508289–92522182 | FP | Zel sheep | [36] | |
4 | 92508289–92522182 | SW | Zel sheep | [36] | |
4 | 92508289–92522182 | CW | Zel sheep | [36] | |
4 | 92508289–92522182 | LMW | Zel sheep | [36] | |
4 | 92508289–92522182 | WW | Zandi sheep | [36] | |
CAST | 5 | 93354399–93484087 | MQ | Chall Iranian sheep | [35] |
CAST | 5 | 93354399–93484087 | FAP | Zel Iranian sheep | [35] |
RFXANK | 5 | 3825886–3830327 | GM | SS, GMS and DS | [26] |
RIPK2 | 9 | 86491784–86524759 | GM | SS, GMS and DS | [26] |
MSTN | 2 | 118144443–118149433 | MY | New Zealand, Romney | [38] |
Genes | Chr | Position (bp) | Traits | Sheep Breed | Author(s) |
---|---|---|---|---|---|
PRLR | 16 | 38969273–39028126 | RP | Herdwick & RFD | [54] |
TMEM154 | 17 | 4832841–4882002 | ILV | Herdwick & RFD | [54,56] |
CCNB2 | 7 | 48194193–48217973 | OD | GMM, CMF & AWD | [18] |
SLC8A3 | 7 | 78697982–78837399 | OD | GMM, CMF & AWD | [18] |
GDF9 | 5 | 41841034–41843517 | ORS | Cambridge & Belclare | [50] |
BMP15 | X | 50970938–50977454 | ORS | Cambridge & Belclare | [48,50] |
BMPRIB | 6 | 29361947–29448079 | ORS | Lacaune Sheep | [49,58] |
BMPRIB | 7 | 29361947–29448079 | LS | Han sheep | [59] |
BMP15 | X | 50970938–50977454 | LS | Han sheep | [59] |
Gene | Chr | Position (bp) | Traits | Sheep Breed | Author(s) |
---|---|---|---|---|---|
POU1F1 | 1 | 154027868–154043592 | MY | Turkish sheep | [60] |
RFP145 | na | na | MY | Italian Altamurana | [62] |
LALBA | 3 | 137390403–137392415 | MP | Spanish Churra | [63] |
GH1 | 11 | 47540169–47541799 | milk | Serrada Estrela | [66] |
PALMD | na | na | MY | Italian Altamurana | [62] |
Gene | Chr | Position (bp) | Traits | Sheep Breed | Author |
---|---|---|---|---|---|
KAP6.1 | na | na | wool | Merino (Xinjiang type) | [69] |
KAP8.1 | 1 | 123013704–123013892 | wool | Merino (Xinjiang type) | [69] |
KAP8.2 | na | na | wool | Merino (Xinjiang type) | [69] |
KRTAP9-2 | na | na | wool | Merino (Xinjiang type) | [69] |
KAP16.4 | na | na | wool | Merino (Xinjiang type) | [69] |
FST | 16 | 25630860–25636124 | WQ | CMS (Junken Type) | [68] |
MC1R | 14 | 14231363–14232541 | color | MRA | [76] |
ASIP | na | color | Dubian &Privorianp | [75] | |
RXFP2 | 10 | 29454677–29502617 | horn | Herdwick & RFD | [54] |
HOXD | 2 | 132.0–133.1 Mb | HE | NDS | [87,88,90] |
MTX2 | 2 | 131.9–32.6 Mb | HN | NDS | [87,88,90] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebreselassie, G.; Berihulay, H.; Jiang, L.; Ma, Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries). Animals 2020, 10, 33. https://doi.org/10.3390/ani10010033
Gebreselassie G, Berihulay H, Jiang L, Ma Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries). Animals. 2020; 10(1):33. https://doi.org/10.3390/ani10010033
Chicago/Turabian StyleGebreselassie, Gebremedhin, Haile Berihulay, Lin Jiang, and Yuehui Ma. 2020. "Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries)" Animals 10, no. 1: 33. https://doi.org/10.3390/ani10010033