Positive Roles of Resveratrol in Early Development of Testicular Germ Cells against Maternal Restraint Stress in Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
- Group 1: control (C) pups belonging to the normal pregnant mice;
- Group 2: maternal restraint stress (MRS) pups associated with pregnant mice who received restraint stress from G 12 to G 18;
- Group 3: (MRS + 2 mg) pups belonging to pregnant mice who received resveratrol at a dose of 2 mg/kg body weight (oral) from G 12 to G 18;
- Group 4: (MRS + 20 mg) pups associated with pregnant mice who received resveratrol at a dose of 20 mg/kg body weight (oral) from G 12 to G 18.
2.2. Experimental Procedures
2.3. Testicular Tissue Sampling
2.4. Drugs
2.5. TUNEL Staining
2.6. Statistical Analysis
3. Results
3.1. Quantitative Histologic Evaluations of Postnatal Testis
3.2. Blood Glucose Levels
3.3. Anogenital Distance
3.4. Testis Weights
3.5. Average Number of TUNEL-Positive Germ Cells/Tubule
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bock, J.; Rether, K.; Gröger, N.; Xie, L.; Braun, K. Perinatal programming of emotional brain circuits: An integrative view from systems to molecules. Front. Neurosci. 2014, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Provencal, N.; Binder, E.B. The effects of early life stress on the epigenome: From the womb to adulthood and even before. Exp. Neurol. 2015, 268, 10–20. [Google Scholar] [CrossRef]
- Amugongo, S.K.; Hlusko, L.J. Impact of maternal prenatal stress on growth of the offspring. Aging Dis. 2014, 5, 1. [Google Scholar] [PubMed]
- Stein, M.B.; Stein, D.J. Social anxiety disorder. Lancet 2008, 371, 1115–1125. [Google Scholar] [CrossRef]
- Ramsawh, H.J.; Chavira, D.A.; Stein, M.B. Burden of anxiety disorders in pediatric medical settings: Prevalence, phenomenology, and a research agenda. Arch. Pediatr. Adolesc. Med. 2010, 164, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, M.E.; Adrover, E.; Baier, C.J.; Bourguignon, N.S.; Monteleone, M.C.; Brocco, M.A.; González-Calvar, S.I.; Antonelli, M.C. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress 2013, 16, 429–440. [Google Scholar] [CrossRef]
- Chen Cárdenas, S.; Mayer, N.; Romanini, M.; Rolando, A.; Liaudat, A.; Brun, N.; Vivas, A.; Gauna, H.; Rodrıguez, N. Reproductive response in offspring male rats exposed to prenatal stress and to early postnatal stimulation. Int. J. Morphol. 2013, 31, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Mairesse, J.; Lesage, J.; Breton, C.; Bréant, B.; Hahn, T.; Darnaudéry, M.; Dickson, S.L.; Seckl, J.; Blondeau, B.; Vieau, D. Maternal stress alters endocrine function of the feto-placental unit in rats. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, E1526–E1533. [Google Scholar] [CrossRef]
- Lian, H.-Y.; Gao, Y.; Jiao, G.-Z.; Sun, M.-J.; Wu, X.-F.; Wang, T.-Y.; Li, H.; Tan, J.-H. Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes. Reproduction 2013, 146, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, J.-A.; Koskenniemi, J.J.; Virtanen, H.E.; Toppari, J. Testis Development. Endocr. Rev. 2018, 40, 857–905. [Google Scholar] [CrossRef]
- Vergouwen, R.; Huiskamp, R.; Bas, R.; Roepers-Gajadien, H.; Davids, J.; De Rooij, D. Postnatal development of testicular cell populations in mice. Reproduction 1993, 99, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livera, G.; Delbes, G.; Pairault, C.; Rouiller-Fabre, V.; Habert, R. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res. 2006, 324, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Bonner-Weir, S.; Trent, D.; Honey, R.; Weir, G. Responses of neonatal rat islets to streptozotocin: Limited B-cell regeneration and hyperglycemia. Diabetes 1981, 30, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Chalkley, S.M.; Hettiarachchi, M.; Chisholm, D.J.; Kraegen, E.W. Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E1231–E1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.M.; Lam, S.K.; Lau, S.M.S.M.; Chong, C.S.Y.; Chui, H.W.; Fong, D.Y.T. Prevalence, course, and risk factors for antenatal anxiety and depression. Obstet. Gynecol. 2007, 110, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese medicine for cardiovascular disease: Evidence and potential mechanisms. J. Am. Coll. Cardiol. 2017, 69, 2952–2966. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.-P.; Jiang, F.; Chen, Y.-G.; Yang, J.; Zhang, K.; Zhang, M.-X.; Zhang, C.; Zhao, Y.-X.; Zhang, Y. Traditional Chinese medication for cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 115. [Google Scholar] [CrossRef]
- Cottart, C.H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; LaVoie, H.A.; DiPette, D.J.; Singh, U.S. Diabetic complications in pregnancy: Is resveratrol a solution? Exp. Biol. Med. 2013, 238, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as a biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997, 11, 287–313. [Google Scholar] [CrossRef]
- Sinha, K.; Chaudhary, G.; Gupta, Y.K. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci. 2002, 71, 655–665. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, S.; Son, D.; Lee, P.; Lee, J.; Lee, S.; Kim, D.S.; Park, Y.; Kim, S.Y. Protective effect of (4-methoxybenzylidene)-(3-methoxynophenyl) amine against neuronal cell death induced by oxygen and glucose deprivation in rat organotypic hippocampal slice culture. Biol. Pharm. Bull. 2007, 30, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, M.H.; Nihal, M.; Fu, V.X.; Jarrard, D.F.; Ahmad, N. Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol. Cancer Ther. 2006, 5, 1335–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokni, M.; Elkahoui, S.; Limam, F.; Amri, M.; Aouani, E. Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem. Res. 2007, 32, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.D.; Burdock, G.A.; Edwards, J.A.; Beck, M.; Bausch, J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem. Toxicol. 2009, 47, 2170–2182. [Google Scholar] [CrossRef]
- Yao, L.; Wan, J.; Li, H.; Ding, J.; Wang, Y.; Wang, X.; Li, M. Resveratrol relieves gestational diabetes mellitus in mice through activating AMPK. Reprod. Biol. Endocrinol. 2015, 13, 118. [Google Scholar] [CrossRef] [Green Version]
- Van den Hove, D.L.; Blanco, C.E.; Scheepens, A.; Desbonnet, L.; Myint, A.-M.; Leonard, B.E.; Prickaerts, J.; Steinbusch, H.W. Prenatal maternal paroxetine treatment and neonatal mortality in the rat: A preliminary study. Neonatology 2008, 93, 52–55. [Google Scholar] [CrossRef]
- Olivier, J.D.; Åkerud, H.; Kaihola, H.; Pawluski, J.L.; Skalkidou, A.; Högberg, U.; Sundström Poromaa, I. The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring. Front. Cell. Neurosci. 2013, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhao, J.; Zhang, H.; Ke, T.; Xu, P.; Cai, W.; Katirai, F.; Ye, D.; Huang, Y.; Huang, B. Spontaneous miscarriages are explained by the stress/glucocorticoid/lipoxin A4 axis. J. Immunol. 2013, 190, 6051–6058. [Google Scholar] [CrossRef]
- Londhe, V.A.; Sundar, I.K.; Lopez, B.; Maisonet, T.M.; Yu, Y.; Aghai, Z.H.; Rahman, I. Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. Pediatr. Res. 2011, 69, 371. [Google Scholar] [CrossRef] [Green Version]
- Stiller, A.L.; Drugan, R.C.; Hazi, A.; Kent, S.P. Stress resilience and vulnerability: The association with rearing conditions, endocrine function, immunology, and anxious behavior. Psychoneuroendocrinology 2011, 36, 1383–1395. [Google Scholar] [CrossRef] [PubMed]
- Milde, A.M.; Enger, Ø.; Murison, R. The effects of postnatal maternal separation on stress responsivity and experimentally induced colitis in adult rats. Physiol. Behav. 2004, 81, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Wei, Q.; Ennab, W.; Lv, Z.; Nazar, K.; Siyal, F.A.; Rodeni, S.; Kavita, N.M.; Shi, F. Resveratrol Ameliorates Testicular Histopathology of Mice Exposed to Restraint Stress. Animals 2019, 9, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennab, W.; Mustafa, S.; Wei, Q.; Lv, Z.; Kavita, N.M.; Ullah, S.; Shi, F. Resveratrol Protects against Restraint Stress Effects on Stomach and Spleen in Adult Male Mice. Animals 2019, 9, 736. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Qi, L.; Lv, Z.; Jin, S.; Wei, X.; Shi, F. Dietary Stevioside Supplementation Alleviates Lipopolysaccharide-Induced Intestinal Mucosal Damage through Anti-Inflammatory and Antioxidant Effects in Broiler Chickens. Antioxidants 2019, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Saki, G.; Rahim, F.; Alizadeh, K. Effect of forced swimming stress on count, motility and fertilization capacity of the sperm in adult rats. J. Hum. Reprod. Sci. 2009, 2, 72. [Google Scholar]
- Adamkova, K.; Yi, Y.-J.; Petr, J.; Zalmanova, T.; Hoskova, K.; Jelinkova, P.; Moravec, J.; Kralickova, M.; Sutovsky, M.; Sutovsky, P. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J. Anim. Husb. Biotechnol. 2018, 9, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191. [Google Scholar] [CrossRef]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434. [Google Scholar] [CrossRef]
- Chandola, T.; Brunner, E.; Marmot, M. Chronic stress at work and the metabolic syndrome: Prospective study. BMJ 2006, 332, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 2006, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Buss, C.; Swanson, J.M.; Cooper, D.M.; Wing, D.A.; Waffarn, F.; Wadhwa, P.D. Fetal programming of body composition, obesity, and metabolic function: The role of intrauterine stress and stress biology. J. Nutr. Metab. 2012, 632548. [Google Scholar] [CrossRef]
- O’Donnell, K.J.; Jensen, A.B.; Freeman, L.; Khalife, N.; O’Connor, T.G.; Glover, V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 2012, 37, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.M.; Graham, A.M.; Entringer, S.; Gilmore, J.H.; Styner, M.; Fair, D.A.; Wadhwa, P.D.; Buss, C. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. NeuroImage 2019, 185, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Monk, C.; Lugo-Candelas, C.; Trumpff, C. Prenatal developmental origins of future psychopathology: Mechanisms and pathways. Annu. Rev. Clin. Psychol. 2019, 15, 317–344. [Google Scholar] [CrossRef] [PubMed]
- García-Vargas, D.; Juárez-Rojas, L.; Rojas Maya, S.; Retana-Márquez, S. Prenatal stress decreases sperm quality, mature follicles and fertility in rats. Syst. Biol. Reprod. Med. 2019, 65, 223–235. [Google Scholar] [CrossRef]
- Yao, Y.; Robinson, A.M.; Zucchi, F.C.; Robbins, J.C.; Babenko, O.; Kovalchuk, O.; Kovalchuk, I.; Olson, D.M.; Metz, G.A. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med. 2014, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, J.; Herbison, A.E. Hypothalamic control of the male neonatal testosterone surge. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371–1688. [Google Scholar] [CrossRef] [Green Version]
- Gross, M.; Romi, H.; Gilimovich, Y.; Drori, E.; Pinhasov, A. Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice. Stress 2018, 21, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Guha, P.; Chattopadhyay, S.; Bandyopadhyay, S.K. Biphasic activity of resveratrol on indomethacin-induced gastric ulcers. Biochem. Biophys. Res. Commun. 2009, 381, 90–95. [Google Scholar] [CrossRef]
- Challis, J.; Matthews, S.; Van Meir, C.; Ramirez, M. Current topic: The placental corticotrophin-releasing hormone-adrenocorticotrophin axis. Placenta 1995, 16, 481–502. [Google Scholar] [CrossRef]
- Majzoub, J.A.; Karalis, K.P. Placental corticotropin-releasing hormone: Function and regulation. Am. J. Obstet. Gynecol. 1999, 180, S242–S246. [Google Scholar] [CrossRef]
- Hobel, C.J.; Dunkel-Schetter, C.; Roesch, S.C.; Castro, L.C.; Arora, C.P. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am. J. Obstet. Gynecol. 1999, 180, S257–S263. [Google Scholar] [CrossRef]
- Veerawatananan, B.; Surakul, P.; Chutabhakdikul, N. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty. Neurobiol. Stress 2016, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambiasso, M.J.; Cisternas, C.D.; Ruiz-Palmero, I.; Scerbo, M.J.; Arevalo, M.A.; Azcoitia, I.; Garcia-Segura, L.M. Interaction of sex chromosome complement, gonadal hormones and neuronal steroid synthesis on the sexual differentiation of mammalian neurons. J. Neurogenet. 2017, 31, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Hales, C.N.; Fall, C.; Osmond, C.; Phipps, K.; Clark, P. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): Relation to reduced fetal growth. Diabetologia 1993, 36, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Phipps, K.; Barker, D.; Hales, C.; Fall, C.; Osmond, C.; Clark, P. Fetal growth and impaired glucose tolerance in men and women. Diabetologia 1993, 36, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, R.L.; Cliver, S.P. Small for gestational age and intrauterine growth restriction: Definitions and standards. Clin. Obstet. Gynecol. 1997, 40, 704–714. [Google Scholar] [CrossRef]
- Claris, O.; Beltrand, J.; Levy-Marchal, C. Consequences of intrauterine growth and early neonatal catch-up growth. Semin. Perinatol. 2010, 34, 207–210. [Google Scholar] [CrossRef]
- Wu, L.; Lu, Y.; Jiao, Y.; Liu, B.; Li, S.; Li, Y.; Xing, F.; Chen, D.; Liu, X.; Zhao, J. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab. 2016, 23, 735–743. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, S.; Ennab, W.; Nazar, K.; Wei, Q.; Lv, Z.; Shi, Z.; Shi, F. Positive Roles of Resveratrol in Early Development of Testicular Germ Cells against Maternal Restraint Stress in Mice. Animals 2020, 10, 122. https://doi.org/10.3390/ani10010122
Mustafa S, Ennab W, Nazar K, Wei Q, Lv Z, Shi Z, Shi F. Positive Roles of Resveratrol in Early Development of Testicular Germ Cells against Maternal Restraint Stress in Mice. Animals. 2020; 10(1):122. https://doi.org/10.3390/ani10010122
Chicago/Turabian StyleMustafa, Sheeraz, Wael Ennab, Korejo Nazar, Quanwei Wei, Zengpeng Lv, Zhicheng Shi, and Fangxiong Shi. 2020. "Positive Roles of Resveratrol in Early Development of Testicular Germ Cells against Maternal Restraint Stress in Mice" Animals 10, no. 1: 122. https://doi.org/10.3390/ani10010122
APA StyleMustafa, S., Ennab, W., Nazar, K., Wei, Q., Lv, Z., Shi, Z., & Shi, F. (2020). Positive Roles of Resveratrol in Early Development of Testicular Germ Cells against Maternal Restraint Stress in Mice. Animals, 10(1), 122. https://doi.org/10.3390/ani10010122