Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Beleza, A.J.F.; Maciel, W.C.; Lopes, E.D.S.; Albuquerque, Á.H.D.; Carreira, A.S.; Nogueira, C.H.G.; de Melo Bandeira, J.; Vasconcelos, R.H.; Teixeira, R.S.D.C. Evidence of the role of free-living birds as disseminators of Salmonella spp. Arq. Inst. Biol 2002, 87. [Google Scholar]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Joseph, U.; Su, Y.C.; Vijaykrishna, D.; Smith, G.J. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir. Viruses 2017, 11, 74–84. [Google Scholar] [CrossRef]
- Sutton, T.C. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 2018, 10, 461. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.U.; Ishaq, H.M.; Raza, M.A.; Shabbir, M.Z. Zoonotic potential of Newcastle disease virus: Old and novel perspectives related to public health. Rev. Med. Virol. 2021, 1–12. [Google Scholar]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle disease, other avian paramyxoviruses, and avian metapneumovirus infections. Dis. Poult. 2020, 109–166. [Google Scholar]
- Liu, H.; Zhang, P.; Wu, P.; Chen, S.; Mu, G.; Duan, X.; Hao, H.; Du, E.; Wang, X.; Yang, Z. Phylogenetic characterization and virulence of two Newcastle disease viruses isolated from wild birds in China. Infect. Genet. Evol. 2013, 20, 215–224. [Google Scholar] [CrossRef]
- Chen, S.; Hao, H.; Liu, Q.; Wang, R.; Zhang, P.; Wang, X.; Du, E.; Yang, Z. Phylogenetic and pathogenic analyses of two virulent Newcastle disease viruses isolated from Crested Ibis (Nipponia nippon) in China. Virus Genes 2013, 46, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Vidanović, D.; Šekler, M.; Ašanin, R.; Milić, N.; Nišavić, J.; Petrović, T.; Savić, V. Characterization of velogenic Newcastle disease viruses isolated from dead wild birds in Serbia during 2007. J. Wildl. Dis. 2011, 47, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, F.; Berinstein, A.; Carrillo, E. Effect of host selective pressure on Newcastle disease virus virulence. Microb. Pathog. 2008, 44, 135–140. [Google Scholar] [CrossRef]
- Kramer, L.D.; Styer, L.M.; Ebel, G.D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 2008, 53, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Jourdain, E.; Toussaint, Y.; Leblond, A.; Bicout, D.J.; Sabatier, P.; Gauthier-Clerc, M. Bird species potentially involved in introduction, amplification, and spread of West Nile virus in a Mediterranean wetland, the Camargue (Southern France). Vector-Borne Zoonotic Dis. 2007, 7, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Roesch, F.; Fajardo, A.; Moratorio, G.; Vignuzzi, M. Usutu virus: An arbovirus on the rise. Viruses 2019, 11, 640. [Google Scholar] [CrossRef] [Green Version]
- Komar, N.; Langevin, S.; Hinten, S.; Nemeth, N.; Edwards, E.; Hettler, D.; Davis, B.; Bowen, R.; Bunning, M. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerg. Infect. Dis. 2003, 9, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Kolodziejek, J.; Url, A.; Lussy, H.; Rebel-Bauder, B.; Nowotny, N. Emergence of Usutu virus, an African mosquito-borne Flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 2002, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Xiao, X.M.; Domenech, J.; Lubroth, J.; Martin, V.; Slingenbergh, J. Anatidae migration in the Western Palearctic and spread of highly pathogenic avian influenza H5N1 virus. Emerg. Infect. Dis. 2006, 12, 1650–1656. [Google Scholar] [CrossRef]
- Engel, D.; Jost, H.; Wink, M.; Borstler, J.; Bosch, S.; Garigliany, M.M.; Jost, A.; Czajka, C.; Luhken, R.; Ziegler, U.; et al. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. MBio 2016, 7, e01938-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurt, D.R.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West Nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2002, 1, 5–12. [Google Scholar]
- Jourdain, E.; Gauthier-Clerc, M.; Bicout, D.J.; Sabatier, P. Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerg. Infect. Dis. 2007, 13, 365–372. [Google Scholar] [CrossRef]
- Malkinson, M.; Banet, C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 2002, 267, 309–322. [Google Scholar] [PubMed]
- Chvala, S.; Kolodziejek, J.; Nowotny, N.; Weissenböck, H. Pathology and viral distribution in fatal Usutu virus infections of birds from the 2001 and 2002 outbreaks in Austria. J. Comp. Pathol. 2004, 131, 176–185. [Google Scholar] [CrossRef] [PubMed]
- National Surveillance Plan for Avian Influenza–2021. Available online: https://www.izsvenezie.it/documenti/temi/influenza-aviaria//piani-sorveglianza/piano-nazionale-influenza-aviaria-2021.pdf (accessed on 25 July 2021).
- National Arbovirosis Plan-2020–2025. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2947_allegato.pdf (accessed on 25 July 2021).
- Tang, Y.; Hapip, C.A.; Liu, B.; Fang, C.T. Highly sensitive TaqMan RT-PCR assay for detection and quantification of both lineages of West Nile virus RNA. J. Clin. Virol. 2006, 36, 177–182. [Google Scholar] [CrossRef]
- Del Amo, J.; Sotelo, E.; Fernández-Pinero, J.; Gallardo, C.; Llorente, F.; Agüero, M.; Jiménez-Clavero, M.A. A novel quantitative multiplex real-time RT-PCR for the simultaneous detection and differentiation of West Nile virus lineages 1 and 2, and of Usutu virus. J. Virol. Methods 2013, 189, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Clavero, M.A.; Agüero, M.; Rojo, G.; Gómez-Tejedor, C. A new fluorogenic real-time RT-PCR assay for detection of lineage 1 and lineage 2 West Nile viruses. J. Vet. Diagn Investig. 2006, 18, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Cavrini, F.; Della Pepa, M.E.; Gaibani, P.; Pierro, A.M.; Rossini, G.; Landini, M.P.; Sambri, V. A rapid and specific real-time RT-PCR assay to identify Usutu virus in human plasma, serum, and cerebrospinal fluid. J. Clin. Virol. 2011, 50, 221–223. [Google Scholar] [CrossRef]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [Green Version]
- Monne, I.; Ormelli, S.; Salviato, A.; De Battisti, C.; Bettini, F.; Salomoni, A.; Drago, A.; Zecchin, B.; Capua, I.; Cattoli, G. Development and validation of a one-step real-time PCR assay for simultaneous detection of subtype H5, H7, and H9 avian influenza viruses. J. Clin. Microbiol. 2008, 46, 1769–1773. [Google Scholar] [CrossRef] [Green Version]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Kho, C.L.; Mohd-Azmi, M.L.; Arshad, S.S.; Yusoff, K. Performance of an RT-nested PCR ELISA for detection of Newcastle disease virus. J. Virol. Methods 2000, 86, 71–83. [Google Scholar] [CrossRef]
- Snoeck, C.J.; Marinelli, M.; Charpentier, E.; Sausy, A.; Conzemius, T.; Losch, S.; Muller, C.P. Characterization of newcastle disease viruses in wild and domestic birds in Luxembourg from 2006 to 2008. Appl. Environ. Microbiol. 2013, 79, 639–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Xue, R.; Yang, W.; Li, Y.; Xue, J.; Zhang, G. Characterization of ten paramyxovirus type 1 viruses isolated from pigeons in China during 1996–2019. Vet. Microbiol. 2020, 244, 108661. [Google Scholar] [CrossRef]
- Kim, L.M.; King, D.J.; Guzman, H.; Tesh, R.B.; Travassos da Rosa, A.P.A.; Bueno Jr., R.; Dennett, J.A.; Afonso, C.L. Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild North American pigeons and doves. J. Clin. Microbiol. 2008, 46, 3303–3310. [Google Scholar] [CrossRef] [Green Version]
- Epidemiological Bulletins of WND. Available online: https://westnile.izs.it/j6_wnd/home (accessed on 25 July 2021).
- Pérez-Ramírez, E.; Llorente, F.; Jiménez-Clavero, M.Á. Experimental infections of wild birds with West Nile virus. Viruses 2014, 6, 752–781. [Google Scholar] [CrossRef] [Green Version]
- Taieb, L.; Ludwig, A.; Ogden, N.H.; Lindsay, R.L.; Iranpour, M.; Gagnon, C.A.; Bicout, D.J. Bird Species Involved in West Nile Virus Epidemiological Cycle in Southern Québec. Int. J. Environ. Res. Public Health 2020, 17, 4517. [Google Scholar] [CrossRef]
- Michel, F.; Sieg, M.; Fischer, D.; Keller, M.; Eiden, M.; Reuschel, M.; Schmidt, V.; Schwehn, R.; Rinder, M.; Urbaniak, S.; et al. Evidence for West Nile virus and Usutu virus infections in wild and resident birds in Germany, 2017 and 2018. Viruses 2019, 11, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- L’vov, D.K.; Dzharkenov, A.F.; L’vov, D.N.; Aristova, V.A.; Kovtunov, A.I.; Gromashevskiĭ, V.L.; Vyshemirskiĭ, O.I.; Galkina, I.V.; Al’khovskiĭ, S.V.; Samokhvalov, E.I.; et al. Isolation of the West Nile fever virus from the great cormorant Phalacrocorax carbo, the crow Corvus corone, and Hyalomma marginatum ticks associated with them in natural and synanthroic biocenosis in the Volga delta (Astrakhan region, 2001). Vopr. Virusol. 2002, 47, 7–12. [Google Scholar]
- Ternovoĭ, V.A.; Protopopova, E.V.; Surmach, S.G.; Gazetdinov, M.V.; Zolotykh, S.I.; Shestopalov, A.M.; Pavlenko, E.V.; Leonova, G.N.; Loktev, V.B. The genotyping of the West Nile virus in birds in the far eastern region of Russia in 2002–2004. Mol. Gen. Mikrobiol. Virusol. 2006, 4, 30–35. [Google Scholar]
- Monaco, F.; Savini, G.; Calistri, P.; Polci, A.; Pinoni, C.; Bruno, R.; Lelli, R. 2009 West Nile disease epidemic in Italy: First evidence of overwintering in Western Europe? Res. Vet. Sci. 2011, 91, 321–326. [Google Scholar] [CrossRef]
- Petrović, T.; Blázquez, A.B.; Lupulović, D.; Lazić, G.; Escribano-Romero, E.; Fabijan, D.; Kapetanov, M.; Lazić, S.; Saiz, J.C. Monitoring West Nile virus (WNV) infection in wild birds in Serbia during 2012: First isolation and characterisation of WNV strains from Serbia. Eurosurveillance 2013, 18, 20622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veo, C.; Della Ventura, C.; Moreno, A.; Rovida, F.; Percivalle, E.; Canziani, S.; Torri, D.; Calzolari, M.; Baldanti, F.; Galli, M.; et al. Evolutionary dynamics of the lineage 2 West Nile virus that caused the largest European epidemic: Italy 2011–2018. Viruses 2019, 11, 814. [Google Scholar] [CrossRef] [Green Version]
- Hinshaw, V.S.; Air, G.M.; Gibbs, A.J.; Graves, L.; Prescott, B.; Karunakaran, D. Antigenic and genetic characterization of a novel hemagglutinin subtype of influenza A viruses from gulls. J. Virol. 1982, 42, 865–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.; Poulson, R.; Carter, D.; Lebarbenchon, C.; Pantin-Jackwood, M.; Spackman, E.; Shepherd, E.; Killian, M.; Stallknecht, D. Susceptibility of avian species to North American H13 low pathogenic avian influenza viruses. Avian Dis. 2012, 56, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Kikutani, Y.; Nguyen, L.T.; Hiono, T.; Matsuno, K.; Okamatsu, M.; Krauss, S.; Webby, R.; Lee, Y.J.; Kida, H.; et al. H13 influenza viruses in wild birds have undergone genetic and antigenic diversification in nature. Virus Genes 2018, 54, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Benkaroun, J.; Shoham, D.; Kroyer, A.N.; Whitney, H.; Lang, A.S. Analysis of influenza A viruses from gulls: An evaluation of inter-regional movements and interactions with other avian and mammalian influenza A viruses. Cog Biol. 2016, 2, 1234957. [Google Scholar] [CrossRef]
- Wille, M.; Robertson, G.J.; Whitney, H.; Bishop, M.A.; Runstadler, J.A.; Lang, A.S. Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere. PLoS ONE 2011, 6, e20664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebarbenchon, C.; Chang, C.M.; Gauthier-Clerc, M.; Thomas, F.; Renaud, F.; van der Werf, S. H9N2 avian influenza virus in a Mediterranean gull. J. Mol. Gen. Med. Int. J. Biol. Res. 2009, 3, 121. [Google Scholar] [CrossRef] [Green Version]
- Annual Report on Surveillance for Avian Influenza in Poultry and Wild Birds in Member States of the European Union in 2020. Available online: https://www.efsa.europa.eu/sites/default/files/2021-07/9985.pdf (accessed on 30 August 2021).
- Teske, L.; Ryll, M.; Rautenschlein, S. Epidemiological investigations on the role of clinically healthy racing pigeons as a reservoir for avian paramyxovirus-1 and avian influenza virus. Avian Pathol. 2013, 42, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Schuler, K.L.; Green, D.E.; Justice-Allen, A.E.; Jaffe, R.; Cunningham, M.; Thomas, N.J.; Spalding, M.G.; Ip, H.S. Expansion of an exotic species and concomitant disease outbreaks: Pigeon paramyxovirus in free-ranging Eurasian collared doves. EcoHealth 2012, 9, 163–170. [Google Scholar] [CrossRef]
- Alexander, D.J. Newcastle disease in the European Union 2000 to 2009. Avian Pathol. 2011, 40, 547–558. [Google Scholar] [CrossRef] [Green Version]
- OIE-WHAIS Disease Situation. Available online: https://wahis.oie.int/#/dashboards/country-or-disease-dashboard (accessed on 31 August 2021).
- Hicks, J.T.; Dimitrov, K.M.; Afonso, C.L.; Ramey, A.M.; Bahl, J. Global phylodynamic analysis of avian paramyxovirus-1 provides evidence of inter-host transmission and intercontinental spatial diffusion. BMC Evol. Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, G.S.; Navarro, L.R.; Morales, R.; Olvera, M.A.; Marquez, M.A.; Merino, R.; Miller, P.J.; Afonso, C.L. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Appl Environ. Microbiol. 2013, 79, 4985–4992. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.J.; Dimitrov, K.M.; Becker, C.R.; Goraichuk, I.V.; Arns, C.W.; Bolotin, V.I.; Ferreira, H.L.; Gerilovych, A.P.; Goujgoulova, G.V.; Martini, M.C.; et al. Presence of vaccine-derived Newcastle disease viruses in wild birds. PLoS ONE 2016, 11, e0162484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, F.; Berinstein, A.; Pereda, A.; Taboga, O.; Carrillo, E. Molecular characterization and phylogenetic analysis of Newcastle disease virus isolates from healthy wild birds. Avian Dis. 2005, 49, 546–550. [Google Scholar] [CrossRef]
- Dodovski, A.; Popova, Z.; Savić, V. Characterization of a Novel Avian Avulavirus 1 of Class I isolated from a Mute Swan (Cygnus Olor) in Macedonia in 2012. Maced. Vet. Rev. 2019, 42, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Han, Z.; Shao, Y.; Kong, X.; Liu, S. Pathogenicity of an avian paramyxovirus serotype 1 isolate from swan to chickens. Zhongguo Yufang Shouyi Xuebao/Chin. J. Prev. Vet. Med. 2015, 37, 140–142. [Google Scholar]
- Manarolla, G.; Bakonyi, T.; Gallazzi, D.; Crosta, L.; Weissenböck, H.; Dorrestein, G.M.; Nowotny, N. Usutu virus in wild birds in northern Italy. Vet. Microbiol. 2010, 141, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Pecorari, M.; Longo, G.; Gennari, W.; Grottola, A.; Sabbatini, A.M.; Tagliazucchi, S.; Savini, G.; Monaco, F.; Simone, M.L.; Lelli, R.; et al. First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Eurosurveillance 2009, 14, 19446. [Google Scholar] [CrossRef]
- Nemeth, N.M.; Beckett, S.; Edwards, E.; Klenk, K.; Komar, N. Avian mortality surveillance for West Nile virus in Colorado. Am. J. Trop. Med. Hyg. 2007, 76, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Llopis, I.V.; Rossi, L.; Di Gennaro, A.; Mosca, A.; Teodori, L.; Tomassone, L.; Grego, E.; Monaco, F.; Lorusso, A.; Savini, G. Further circulation of West Nile and Usutu viruses in wild birds in Italy. Infect. Genet. Evol. 2015, 32, 292–297. [Google Scholar] [CrossRef]
Name | Primer-Probe Name | Sequence | Target Gene |
---|---|---|---|
WEST NILE IDENTIFICATION [25] | WN-10533-10522 | AAGTTGAGTAGACGGTGCTG | NS3 gene |
WN-10625-10606 | AGACGGTTCTGAGGGCTTAC | ||
WN-10560-10579-PROBE | fam-CTCAACCCCAGGAGGACTGG-bhq1 | ||
WEST NILE TYPING [26,27] | WN-LCV-F1 | GTGATCCATGTAAGCCCTCAGAA | NS3 gene |
WN-LCV-R1 | GTCTGACATTGGGCTTTGAAGTTA | ||
WN-LCV-S1 PROBE | fam-AGGACCCCACATGTT-mgb | ||
WN-LCV-S2 PROBE | vic-AGGACCCCACGTGCT-mgb | ||
USUTU [28] | USUTU F | ACGGCCCAAGCGAACAGAC | NS5 gene |
USUTU R | GGCTTGGGCCGCACCTAA | ||
USUTU PROBE | CY5-CGAACTGTTCGTGGAAGG-BHQ3 | ||
INFLUENZA A [29] | INFLU-124 MOD | TGC AAA GAC ACT TTC CAG TCT CTG | M gene |
INFL-M124 | TGC AAA AAC ATC TTC AAG TCT CTG | ||
INFLU M25 | AGA TGA GTC TTC TAA CCG AGG TCG | ||
M+64 PROBE | fam TCAGGCCCCCTCAAAGCCGA tamra | ||
INFLUENZA H5 [30] | H5LH1-F | ACATATGACTACCCACARTATTCAG | HA2 gene for emoagglutinin H 5 |
H5RH1-R | AGACCAGCTAYCATGATTGC | ||
H5PRO-probe | fam-TCWACAGTGGCGAGTTCCCTAGCA-tamra | ||
INFLUENZA H7 [30] | H7-LH6H7-FOR | GGCCAGTATTAGAAACAACACCTATGA | HA2 gene for emoagglutinin H 7 |
H7-RH4H7-REV | GCCCCGAAGCTAAACCAAAGTAT | ||
H7PRO11-PROBE | fam-CCGCTGCTTAGTTTGACTGGGTCAATCT-bhq1 | ||
NDV [31] | NDV-1M+4100 | AGTGATGTGCTCGGACCTTC | APMV-1 gene |
NDV-M−4220 | CCTGAGGAGAGGCATTTGCTA | ||
NDV-M+4169-PROBE | fam-TTCTCTAGCAGTGGGACAGCCTGC-tamra | ||
NDV [32] | FOP 1 | TACACCTCATCCCAGACAGGGTC | F gene |
NDV-FOP2 | AGGCAGGGGAAGTGATTTGTGGC |
Order | Species | Number | Prevalence | Type |
---|---|---|---|---|
Accipitriformes | Accipiter nisus | 4 | 8% (4/50) | Lineage 2 |
Buteo buteo | 1 | 4.1% (1/24) | Lineage 2 | |
Pernis apivorus | 1 | 9% (1/11) | Lineage 2 | |
Apodiformes | Tachymarptis melba | 1 | 33% (1/3) | not typed |
Charadriiformes | Larus michahellis | 1 | 3.1% (1/32) | not typed |
Columbiformes | Columba palumbus | 1 | 12.5.% 1/8) | Lineage 2 |
Falconiformes | Falco tinnunculus | 4 | 3.4% (4/118) | Lineage 2 |
Falco subbuteo | 1 | 16.7% (1/6) | Lineage 2 | |
Passeriformes | Corvus cornix | 4 | 11.7% (4/34) | Lineage 2 |
Pica pica | 1 | 7.1% (1/14) | not typed | |
Turdus merula | 1 | 4.1% (1/24) | Lineage 2 | |
Suliformes | Phalacrocorax carbo | 1 | 4.3% (1/23) | not typed |
Strigiformes | Athene noctua | 3 | 4.9% (3/61) | Lineage 2 |
Otus scops | 1 | 9.1% (1/11) | Lineage 2 | |
Strix aluco | 2 | 10.5% (2/19) | Lineage 2 |
Segment | NA | HA | NP | PB2 | PB1 | M | PA | NS |
---|---|---|---|---|---|---|---|---|
Lineage | Eu | Eu | Eu | Am | Eu | Eu | Eu | Eu |
% Identity | 96% | 96% | 98% | 97% | 98% | 99% | 97% | 98% |
Reference sequences | KX978407.1 KX978025.1 | MF682848.1 CY185497.1 | MF461189.1 MF146988.1 | MF461185.1 MH764127.1 | MF145750.1 KX979824.1 | MK192343.1 MF694084.1 | MF148015.1 MF147897.1 | MF694157.1 MF694139.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trogu, T.; Canziani, S.; Salvato, S.; Tolini, C.; Grilli, G.; Chiari, M.; Farioli, M.; Alborali, L.; Gaffuri, A.; Sala, G.; et al. Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy. Microorganisms 2021, 9, 1957. https://doi.org/10.3390/microorganisms9091957
Trogu T, Canziani S, Salvato S, Tolini C, Grilli G, Chiari M, Farioli M, Alborali L, Gaffuri A, Sala G, et al. Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy. Microorganisms. 2021; 9(9):1957. https://doi.org/10.3390/microorganisms9091957
Chicago/Turabian StyleTrogu, Tiziana, Sabrina Canziani, Sara Salvato, Clara Tolini, Guido Grilli, Mario Chiari, Marco Farioli, Loris Alborali, Alessandra Gaffuri, Giovanni Sala, and et al. 2021. "Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy" Microorganisms 9, no. 9: 1957. https://doi.org/10.3390/microorganisms9091957
APA StyleTrogu, T., Canziani, S., Salvato, S., Tolini, C., Grilli, G., Chiari, M., Farioli, M., Alborali, L., Gaffuri, A., Sala, G., Bianchi, A., Rosignoli, C., Prati, P., Gradassi, M., Sozzi, E., Lelli, D., Lavazza, A., & Moreno, A. (2021). Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy. Microorganisms, 9(9), 1957. https://doi.org/10.3390/microorganisms9091957