Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Isolation of Bacteria
2.2. Identification and Phylogenetic Analysis of Culturable Bacteria
2.3. Growth Temperature Range of Bacterial Strains
2.4. Screening for Utilization of Organic Compounds as Sole Carbon Source
2.5. PCR-Based Detection of Putative Catabolic Genes
2.6. Phenol Degradation
2.7. Catechol-1,2-dioxygenase Activity
3. Results
3.1. Culturable Bacterial Diversity
3.2. Growth Temperature Range
3.3. Screening for Utilization of Organic Compounds as Sole Carbon Sources
3.4. PCR-Based Detection of Biodegradation Related Genes
3.5. Phenol Degradation
3.6. Catechol-1,2-dioxygenase Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böhm, R.; Auer, I.; Brunetti, M.; Maugeri, M.; Nanni, T.; Schöner, W. Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int. J. Climatol. 2001, 21, 1779–1801. [Google Scholar] [CrossRef]
- Ciccarelli, N.; von Hardenberg, J.; Provenzale, A.; Ronchi, C.; Vargiu, A.; Pelosini, R. Climate variability in north-western Italy during the second half of the 20th century. Glob. Planet. Chang. 2008, 63, 185–195. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef][Green Version]
- Praeg, N.; Wagner, A.O.; Illmer, P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant Soil 2017, 410, 193–206. [Google Scholar] [CrossRef][Green Version]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wieder, W.R.; Bonan, G.B.; Allison, S.D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 2013, 3, 909–912. [Google Scholar] [CrossRef]
- Walker, T.W.N.; Kaiser, C.; Strasser, F.; Herbold, C.W.; Leblans, N.I.W.; Woebken, D.; Janssens, I.A.; Sigurdsson, B.D.; Richter, A. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 2018, 8, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, in press.
- D’Alò, F.; Odriozola, I.; Baldrian, P.; Zucconi, L.; Ripa, C.; Cannone, N.; Malfasi, F.; Brancaleoni, L.; Onofri, S. Microbial activity in alpine soils under climate change. Sci. Total. Environ. 2021, 783, 147012. [Google Scholar] [CrossRef]
- Bugg, T.D.; Ahmad, M.; Hardiman, E.M.; Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 2011, 22, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Merimaa, M.; Heinaru, E.; Liivak, M.; Vedler, E.; Heinaru, A. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch. Microbiol. 2006, 186, 287–296. [Google Scholar] [CrossRef]
- Rodríguez-Salazar, J.; Almeida-Juarez, A.G.; Ornelas-Ocampo, K.; Millán-López, S.; Raga-Carbajal, E.; Rodríguez-Mejía, J.L.; Muriel-Millán, L.F.; Godoy-Lozano, E.E.; Rivera-Gómez, N.; Rudiño-Piñera, E.; et al. Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico. Front. Microbiol. 2020, 11, 1100. [Google Scholar] [CrossRef]
- Bianco, F.; Race, M.; Papirio, S.; Esposito, G. Phenanthrene biodegradation in a fed–batch reactor treating a spent sediment washing solution: Techno–economic implications for the recovery of ethanol as extracting agent. Chemosphere 2021, 286, 131361. [Google Scholar] [CrossRef] [PubMed]
- Harayama, S.; Rekik, M. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J. Biol. Chem. 1989, 264, 15328–15333. [Google Scholar] [CrossRef]
- Zhou, N.A.; Kjeldal, H.; Gough, H.L.; Nielsen, J.L. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD32. Environ. Sci. Technol. 2015, 49, 12232–12241. [Google Scholar] [CrossRef] [PubMed]
- Urszula, G.; Izabela, G.; Danuta, W.; Sylwia, Ł. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol. 2009, 40, 285–291. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cydzik-Kwiatkowska, A.; Zielińska, M. Microbial composition of biofilm treating wastewater rich in bisphenol A. J. Environ. Sci. Health Part A 2018, 53, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Siles, J.A.; Cajthaml, T.; Filipová, A.; Minerbi, S.; Margesin, R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol. Biochem. 2017, 112, 1–13. [Google Scholar] [CrossRef]
- Siles, J.A.; Cajthaml, T.; Minerbi, S.; Margesin, R. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol. Ecol. 2016, 92, fiw008. [Google Scholar] [CrossRef][Green Version]
- Siles, J.A.; Cajthaml, T.; Frouz, J.; Margesin, R. Assessment of soil microbial communities involved in cellulose utilization at two contrasting Alpine forest sites. Soil Biol. Biochem. 2019, 129, 13–16. [Google Scholar] [CrossRef]
- Siles, J.A.; Margesin, R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci. Rep. 2017, 7, 2204. [Google Scholar] [CrossRef][Green Version]
- França, L.; Sannino, C.; Turchetti, B.; Buzzini, P.; Margesin, R. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 2016, 20, 855–873. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gassara, F.; Brar, S.K.; Verma, M.; Tyagi, R.D. Bisphenol A Degradation in Water by Ligninolytic Enzymes. Chemosphere 2013, 92, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, M.; Pascual, J.; de la Cruz, M.; Martín, J.; Kath, G.S.; Sigmund, J.M.; Masurekar, P.; Vicente, F.; Genilloud, O.; Bills, G.F. Prescreening bacterial colonies for bioactive molecules with Janus plates, a SBS standard double-faced microbial culturing system. Antonie Van Leeuwenhoek 2012, 102, 361–374. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: Chichester, UK, 1991; pp. 115–175. ISBN 0-471-92906-9. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed][Green Version]
- NCBI. Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef][Green Version]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef][Green Version]
- Margesin, R.; Schinner, F. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 1997, 47, 462–468. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Song, G.; Liu, H.; Sheng, G.; Ding, Z.; Wang, Z.; Sun, Y.; Xu, Y.; Chen, J. Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation. Ann. Microbiol. 2016, 66, 469–478. [Google Scholar] [CrossRef]
- Tuan, N.N.; Hsieh, H.-C.; Lin, Y.-W.; Huang, S.-L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour. Technol. 2011, 102, 4232–4240. [Google Scholar] [CrossRef]
- Nakai, C.; Kagamiyama, H.; Nozaki, M.; Nakazawa, T.; Inouye, S.; Ebina, Y.; Nakazawa, A. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. J. Biol. Chem. 1983, 258, 2923–2928. [Google Scholar] [CrossRef]
- Poyntner, C.; Zhang, D.; Margesin, R. Draft Genome Sequence of the Bacterium Paraburkholderia aromaticivorans AR20-38, a Gram-Negative, Cold-Adapted Degrader of Aromatic Compounds. Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef]
- Margesin, R.; Moertelmaier, C.; Mair, J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int. Biodeterior. Biodegrad. 2013, 84, 185–191. [Google Scholar] [CrossRef]
- Allsop, P.J.; Chisti, Y.; Moo-Young, M.; Sullivan, G.R. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 1993, 41, 572–580. [Google Scholar] [CrossRef]
- Nakazawa, T.; Nakazawa, A. Pyrocatechase (Pseudomonas). Meth. Enzymol. 1970, 17 (A), 518–522. [Google Scholar]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Männistö, M.K.; Häggblom, M.M. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst. Appl. Microbiol. 2006, 29, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Lapanje, A.; Wimmersberger, C.; Furrer, G.; Brunner, I.; Frey, B. Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma Glacier (central Alps) deglaciated granite sand. Microb. Ecol. 2012, 63, 865–882. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Berger, T.; Poyntner, C.; Margesin, R. Culturable bacteria from an Alpine coniferous forest site: Biodegradation potential of organic polymers and pollutants. Folia Microbiol. 2021, 66, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Choo, D.W.; Kurihara, T.; Suzuki, T.; Soda, K.; Esaki, N. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 1998, 64, 486–491. [Google Scholar] [CrossRef][Green Version]
- Tuorto, S.J.; Darias, P.; McGuinness, L.R.; Panikov, N.; Zhang, T.; Häggblom, M.M.; Kerkhof, L.J. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014, 8, 139–149. [Google Scholar] [CrossRef][Green Version]
- Margesin, R.; Bergauer, P.; Gander, S. Degradation of phenol and toxicity of phenolic compounds: A comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida. Extremophiles 2004, 8, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Fonteyne, P.-A.; Redl, B. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 2005, 156, 68–75. [Google Scholar] [CrossRef]
- Kim, D.; Lee, C.H.; Choi, J.N.; Choi, K.Y.; Zylstra, G.J.; Kim, E. Aromatic hydroxylation of indan by o-xylene-degrading Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 2010, 76, 375–377. [Google Scholar] [CrossRef][Green Version]
- Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl Degrader Rhodococcus sp. Strain RHA1|Journal of Bacteriology. Available online: https://journals.asm.org/doi/10.1128/JB.183.22.6598-6606.2001 (accessed on 8 August 2021).
- Peng, Y.-H.; Chen, Y.-J.; Chang, Y.-J.; Shih, Y. Biodegradation of bisphenol A with diverse microorganisms from river sediment. J. Hazard. Mater. 2015, 286, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Nweke, C.O.; Okpokwasili, G.C. Influence of exposure time on phenol toxicity to refinery wastewater bacteria. JECE 2010, 2, 20–27. [Google Scholar] [CrossRef]
- Kasai, D.; Fujinami, T.; Abe, T.; Mase, K.; Katayama, Y.; Fukuda, M.; Masai, E. Uncovering the Protocatechuate 2,3-Cleavage Pathway Genes. J. Bacteriol. 2009, 191, 6758–6768. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Nie, Y.; Tang, Y.-Q.; Song, X.-M.; Cao, K.; Sun, L.-Z.; Wang, Z.-J.; Wu, X.-L. Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal. Front. Microbiol. 2016, 7, 1428. [Google Scholar] [CrossRef] [PubMed]
Phylum (n) | Class (n) | OTUs per Class (n) | Genera (n) | OTUs per Genus (n) |
---|---|---|---|---|
Actinobacteria (2) | 2 | Rhodococcus (2) | 2 | |
Firmicutes (2) | 2 | Sporosarcina (1) | 1 | |
Paenibacillus (1) | 1 | |||
Bacteroidetes (6) | 5 | Pedobacter (3) | 2 | |
Chryseobacterium (2) | 1 | |||
Duganella (1) | 2 | |||
Proteobacteria (45) | Gammaproteobacteria (30) | 13 | Pseudomonas (26) | 10 |
Rhanella (2) | 1 | |||
Serratia (2) | 2 | |||
Betaproteobacteria (15) | 3 | Collimonas (14) | 2 | |
Glaciimonas (1) | 1 |
Compound | Conc. (g/L) | 5 °C | 20 °C | 5 °C only | 20 °C only | 5 °C and 20 °C | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | ||
LSS | 2.0 | 9 | 16.4 | 9 | 16.4 | 4 | 7.3 | 4 | 7.3 | 5 | 9.1 |
5.0 | 25 | 45.5 | 35 | 63.6 | 3 | 5.5 | 13 | 23.6 | 22 | 40.0 | |
Catechol | 0.2 | 12 | 21.8 | 31 | 56.4 | 1 | 1.8 | 20 | 36.4 | 11 | 20.0 |
0.5 | 20 | 36.4 | 45 | 81.8 | 1 | 1.8 | 26 | 47.3 | 19 | 34.5 | |
Phenol | 0.2 | 8 | 14.5 | 10 | 18.2 | 0 | 0.0 | 2 | 3.6 | 8 | 14.5 |
0.5 | 4 | 7.3 | 10 | 18.2 | 0 | 0.0 | 6 | 10.9 | 4 | 7.3 | |
BPA | 0.2 | 2 | 3.6 | 4 | 7.3 | 0 | 0.0 | 2 | 3.6 | 2 | 3.6 |
0.5 | 2 | 3.6 | 2 | 3.6 | 0 | 0.0 | 0 | 0.0 | 2 | 3.6 | |
BPA + YE | 0.2 | 4 | 7.3 | 4 | 7.3 | 1 | 1.8 | 1 | 1.8 | 3 | 5.5 |
0.5 | 5 | 9.1 | 8 | 14.5 | 5 | 9.1 | 8 | 14.5 | 0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poyntner, C.; Kutzner, A.; Margesin, R. Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site. Microorganisms 2021, 9, 1920. https://doi.org/10.3390/microorganisms9091920
Poyntner C, Kutzner A, Margesin R. Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site. Microorganisms. 2021; 9(9):1920. https://doi.org/10.3390/microorganisms9091920
Chicago/Turabian StylePoyntner, Caroline, Andrea Kutzner, and Rosa Margesin. 2021. "Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site" Microorganisms 9, no. 9: 1920. https://doi.org/10.3390/microorganisms9091920