What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Comparison Data Sets
2.3. Whole-Genome Sequencing and Assembly
2.4. Bacterial Characterization
2.5. Testing of Minimum Inhibitory Concentration (MIC) of Isolates
2.6. Phylogenetic Analysis
3. Results
3.1. Analysis of the Wildlife Dataset and Serovar Distribution
3.2. Phenotypic and Genotypic Antimicrobial Resistance in Wildlife Isolates
3.3. Detailed Analyses and Phylogenetic Study of Serovar S. Choleraesuis var. Kunzendorf, ST145 in Wild Boar
3.4. Detailed Analyses and Phylogenetic Study of Serovar S. Enteritidis, ST11 in Wildlife, Especially Foxes
3.5. Detailed Analyses and Phylogenetic Study of Serovar S. Enteritidis, ST183 in Hedgehogs
3.6. Occurrence of S. Typhimurium, ST128, in Pigeons
3.7. Occurrence of Serovar S. Ball, ST3502, in Raccoon
3.8. Salmonella in Rare Predators (Wolf and Wild Cat)
3.9. Wildlife–Human Transmissions of Serovars S. Enteritidis, S. Choleraesuis and S. Typhimurium
4. Discussion
4.1. Wildlife Isolates Have An Overall Low Prevalence of AMR Genes, with Increased Occurrence in Wild Birds
4.2. The Swine-Adapted S. Choleraesuis var. Kunzendorf, ST145 Shows High Prevalence in Wild Boar and Occasionally Carries Multidrug Resistance
4.3. The Chicken-Associated Serovar S. Enteritidis ST11 Is Also Common in Wildlife, Especially in Foxes, without Genetic Divergence
4.4. The Hedgehog-Associated Serovar S. Enteritidis, ST183, Was the Sole Serovar Isolated from Hedgehogs
4.5. The Pigeon-Adapted S. Typhimurium ST128 Is the Dominant Sequence Type in Pigeons
4.6. The Detection of Serovar S. Ball ST3502 in Raccoon as an Incidental Finding and Its Potential to Emerge as a New Persisting Serovar in Germany
4.7. Transmission of Salmonella spp. between Human and Wildlife
Limitations of This Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | antimicrobial resistance |
AD | allele difference |
cgMLST | core genome multilocus sequence typing |
BfR | German Federal Institute for Risk Assessment |
MLST | multilocus sequence typing |
PCR | polymerase chain reaction |
PT | phage type |
RaxML | Randomized Axelerated Maximum Likelihood |
RDNC | reacts with phages but does not conform with definite or provisorial types |
RKI | Robert Koch Institute |
MIC | Minimum inhibitory concentration |
S | Salmonella enterica subsp. enterica |
ST | sequence type |
SNP | single nucleotide polymorphism |
WGS | whole genome sequencing |
NRL | Salmonella German National Reference Laboratory (NRL) for Salmonella |
NRC | Salmonella German National Reference Center (NRC) for Salmonella |
References
- Healy, J.; Bruce, B. Salmonellosis (nontyphoidal). In CDC Yellow Book 2020: Health Information for International Travel; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and persistence of salmonella in water: The impact on microbial quality of water and food safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Dantas, S.T.A.; Camargo, C.H.; Tiba-Casas, M.R.; Vivian, R.C.; Pinto, J.P.; Pantoja, J.C.; Hernandes, R.T.; Júnior, A.F.; Rall, V.L. Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Res. Int. 2020, 129, 108835. [Google Scholar] [CrossRef] [PubMed]
- Uelze, L.; Becker, N.; Borowiak, M.; Busch, U.; Dangel, A.; Deneke, C.; Fischer, J.; Flieger, A.; Hepner, S.; Huber, I.; et al. Toward an integrated genome-based surveillance of salmonella enterica in Germany. Front. Microbiol. 2021, 12, 626941. [Google Scholar] [CrossRef] [PubMed]
- Hauser, E.; Hühn, S.; Junker, E.; Jaber, M.; Schroeter, A.; Helmuth, R.; Rabsch, W.; Winterhoff, N.; Malorny, B. Characterisation of a phenotypic monophasic variant belonging to Salmonella enterica subsp. enterica serovar Typhimurium from wild birds and its possible transmission to cats and humans. Berl. Munch. Tierarztl. Wochenschr. 2009, 122, 169–177. [Google Scholar] [PubMed]
- Lawson, B.; Franklinos, L.; Fernandez, J.R.-R.; Wend-Hansen, C.; Nair, S.; MacGregor, S.K.; John, S.K.; Pizzi, R.; Nunez, A.; Ashton, P.M.; et al. Salmonella Enteritidis ST183: Emerging and endemic biotypes affecting western European hedgehogs (Erinaceus europaeus) and people in Great Britain. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Uelze, L.; Bloch, A.; Simon, S.; Schliephake, A.; Pietsch, M.; Szabo, I. Salmonella ball: A new player in Germany? In Proceedings of the 31st European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Vienna, Austria, 9–12 July 2021; p. 1386. [Google Scholar]
- Williams, S.; Patel, M.; Markey, P.; Muller, R.; Benedict, S.; Ross, I.; Heuzenroeder, M.; Davos, D.; Cameron, S.; Krause, V. Salmonella in the tropical household environment—Everyday, everywhere. J. Infect. 2015, 71, 642–648. [Google Scholar] [CrossRef]
- Uelze, L.; Grützke, J.; Borowiak, M.; Hammerl, J.A.; Juraschek, K.; Deneke, C.; Tausch, S.H.; Malorny, B. Typing methods based on whole genome sequencing data. One Health Outlook 2020, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, 01167-19. [Google Scholar] [CrossRef] [Green Version]
- Perveen, N.; Bin Muzaffar, S.; Al-Deeb, M.A. Exploring human-animal host interactions and emergence of COVID-19: Evolutionary and ecological dynamics. Saudi J. Biol. Sci. 2021, 28, 1417–1425. [Google Scholar] [CrossRef]
- Deneke, C.; Brendebach, H.; Uelze, L.; Borowiak, M.; Malorny, B.; Tausch, S. Species-specific quality control, assembly and contamination detection in microbial isolate sequences with AQUAMIS. Genes 2021, 12, 644. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.J.; Nash, J.; Taboada, E.N. The Salmonella in silico typing resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Schwengers, O.; Barth, P.; Falgenhauer, L.; Hain, T.; Chakraborty, T.; Goesmann, A. Platon: Identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb. Genom. 2020, 6, e000398. [Google Scholar] [CrossRef]
- The European Commission. 2013/652/EU: Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (notified under document C(2013) 7145) text with EEA relevance. In Official Journal of the European Union; L 303; Publications Office of the European Union: Luxembourg, 2013; Volume 56. [Google Scholar]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as sentinels of antimicrobial resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar] [CrossRef] [PubMed]
- Deneke, C.; Uelze, L.; Brendebach, H.; Tausch, S.H.; Malorny, B. Decentralized investigation of bacterial outbreaks based on hashed cgMLST. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Lüth, S.; Deneke, C.; Kleta, S.; Al Dahouk, S. Translatability of WGS typing results can simplify data exchange for surveillance and control of Listeria monocytogenes. Microb. Genom. 2021, 7, 000491. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, A.; LoSasso, C.; Vitulano, F.; Mastrorilli, E.; Turchetto, S.; Petrin, S.; Mantovani, C.; Pozza, M.C.D.; Ramon, E.; Conedera, G.; et al. Insight into an outbreak of Salmonella Choleraesuis var. Kunzendorf in wild boars. Vet. Microbiol. 2019, 238, 108423. [Google Scholar] [CrossRef]
- Leekitcharoenphon, P.; Sørensen, G.; Löfström, C.; Battisti, A.; Szabo, I.; Wasyl, D.; Slowey, R.; Zhao, S.; Brisabois, A.; Kornschober, C.; et al. Cross-border transmission of Salmonella Choleraesuis var. Kunzendorf in European pigs and wild boar: Infection, genetics, and evolution. Front. Microbiol. 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Fenske, G.J.; Antony, L.; Ghimire, S.; Welsh, R.; Ramachandran, A.; Scaria, J. Whole genome sequencing-based detection of antimicrobial resistance and virulence in non-typhoidal Salmonella enterica isolated from wildlife. Gut Pathog. 2017, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament and The Council of The European Union. Regulation (EC) No 2160/2003 of the European Parliament and of the Council of 17 November 2003 on the control of salmonella and other specified food-borne zoonotic agents. In Official Journal of the European Union; L 325; Publications Office of the European Union: Luxembourg, 2003. [Google Scholar]
- Janecko, N.; Čížek, A.; Halová, D.; Karpíšková, R.; Myšková, P.; Literák, I. Prevalence, characterization and antibiotic resistance of Salmonella isolates in large corvid species of Europe and North America between 2010 and 2013. Zoonoses Public Health 2014, 62, 292–300. [Google Scholar] [CrossRef]
- Mather, A.E.; Lawson, B.; de Pinna, E.; Wigley, P.; Parkhill, J.; Thomson, N.R.; Page, A.J.; Holmes, M.A.; Paterson, G.K. Genomic analysis of Salmonella enterica serovar Typhimurium from wild passerines in England and Wales. Appl. Environ. Microbiol. 2016, 82, 6728–6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, R.; Wu, G.; Speed, K.; Kidd, S.; Davies, R.; Coldham, N.; Duff, J. Wild birds carry similar Salmonella enterica serovar Typhimurium strains to those found in domestic animals and livestock. Res. Vet. Sci. 2013, 95, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Neuert, S.; Nair, S.; Day, M.R.; Doumith, M.; Ashton, P.M.; Mellor, K.C.; Jenkins, C.; Hopkins, K.; Woodford, N.; de Pinna, E.; et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front. Microbiol. 2018, 9, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef] [Green Version]
- Pettengill, J.B.; Tate, H.; Gensheimer, K.; Hsu, C.H.; Ihrie, J.; Markon, A.O.; McDermott, P.F.; Zhao, S.; Strain, E.; Bazaco, M.C. Distribution of antimicrobial resistance genes across salmonella enterica isolates from animal and nonanimal foods. J. Food Prot. 2020, 83, 295–304. [Google Scholar] [CrossRef]
- Fischer, J.; Schmoger, S.; Jahn, S.; Helmuth, R.; Guerra, B. NDM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Corvallis isolated from a wild bird in Germany. J. Antimicrob. Chemother. 2013, 68, 2954–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, L.; Guerra, B.; Schmoger, S.; Fischer, J.; Helmuth, R.; Zong, Z.; García-Fernández, A.; Carattoli, A. IncA/C plasmid carrying bla NDM-1, bla CMY-16, and fosA3 in a Salmonella enterica serovar Corvallis strain isolated from a migratory wild bird in Germany. Antimicrob. Agents Chemother. 2015, 59, 6597–6600. [Google Scholar] [CrossRef] [Green Version]
- Loncaric, I.; Stalder, G.L.; Mehinagic, K.; Rosengarten, R.; Hoelzl, F.; Knauer, F.; Walzer, C. Comparison of ESBL—And AmpC producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) isolated from migratory and resident population of rooks (Corvus frugilegus) in Austria. PLoS ONE 2013, 8, e84048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldman, K.; van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of cefotaxime-resistant escherichia coli from wild birds in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Genet. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.S.; Urdahl, A.M.; Madslien, K.; Sunde, M.; Nesse, L.L.; Slettemeås, J.S.; Norström, M. What does the fox say? Monitoring antimicrobial resistance in the environment using wild red foxes as an indicator. PLoS ONE 2018, 13, e0198019. [Google Scholar] [CrossRef]
- Sirichote, P.; Hasman, H.; Pulsrikarn, C.; Schønheyder, H.C.; Samulioniené, J.; Pornruangmong, S.; Bangtrakulnonth, A.; Aarestrup, F.M.; Hendriksen, R.S. Molecular characterization of extended-spectrum cephalosporinase-producing Salmonella enterica serovar Choleraesuis isolates from patients in Thailand and Denmark. J. Clin. Microbiol. 2010, 48, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Methner, U.; Heller, M.; Bocklisch, H. Salmonella enterica subspecies enterica serovar Choleraesuis in a wild boar population in Germany. Eur. J. Wildl. Res. 2009, 56, 493–502. [Google Scholar] [CrossRef]
- Methner, U.; Merbach, S.; Peters, M. Salmonella enterica subspecies enterica serovar Choleraesuis in a German wild boar population: Occurrence and characterisation. Acta Vet. Scand. 2018, 60, 65. [Google Scholar] [CrossRef]
- Pedersen, K.; Sørensen, G.; Löfström, C.; Leekitcharoenphon, P.; Nielsen, B.; Wingstrand, A.; Aarestrup, F.; Hendriksen, R.S.; Baggesen, D.L. Reappearance of Salmonella serovar Choleraesuis var. Kunzendorf in Danish pig herds. Vet. Microbiol. 2015, 176, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Gil Molino, M.; Pérez, D.R.; Blanco, P.G.; Llario, P.F.; Molina, A.Q.; Garcia-Sanchez, A.; Gerveno, J.M.C.; Gordo, L.G.; Cano, F.E.M.; Martínez, R.P.; et al. Outbreaks of antimicrobial resistant Salmonella Choleraesuis in wild boars piglets from central-western Spain. Transbound. Emerg. Dis. 2019, 66, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.-H.; Wu, T.-L.; Su, L.-H.; Chu, C.; Chia, J.-H.; Kuo, A.-J.; Chien, M.-S.; Lin, T.-Y. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N. Engl. J. Med. 2002, 346, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Namimatsu, T.; Osumi, T.; Kojima, A.; Harada, K.; Aoki, H.; Sameshima, T.; Takahashi, T. Molecular typing and antimicrobial resistance of Salmonella enterica subspecies enterica serovar Choleraesuis isolates from diseased pigs in Japan. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Chiari, M.; Ferrari, N.; Giardiello, D.; Lanfranchi, P.; Zanoni, M.; Lavazza, A.; Alborali, L.G. Isolation and identification of Salmonella spp. from red foxes (Vulpes vulpes) and badgers (Meles meles) in northern Italy. Acta Vet. Scand. 2014, 56, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handeland, K.; Nesse, L.L.; Lillehaug, A.; Vikøren, T.; Djønne, B.; Bergsjø, B. Natural and experimental Salmonella Typhimurium infections in foxes (Vulpes vulpes). Vet. Microbiol. 2008, 132, 129–134. [Google Scholar] [CrossRef]
- Nowakiewicz, A.; Zięba, P.; Ziółkowska, G.; Gnat, S.; Muszyńska, M.; Tomczuk, K.; Dziedzic, B.M.; Ulbrych, Ł.; Trościańczyk, A. Free-living species of carnivorous mammals in Poland: Red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus. PLoS ONE 2016, 11, e0155533. [Google Scholar] [CrossRef]
- Glawischnig, W.; Wallner, A.; Lazar, J.; Kornschober, C. Cattle-derived Salmonella enterica serovar Dublin infections in red foxes (Vulpes vulpes ) in Tyrol, Austria. J. Wildl. Dis. 2017, 53, 361–363. [Google Scholar] [CrossRef]
- Millan, J.; Aduriz, G.; Moreno, B.; Juste, R.; Barral, M. Salmonella isolates from wild birds and mammals in the Basque Country (Spain). Rev. Sci. Tech.-Off. Int. Epizoot. 2004, 23, 905–911. [Google Scholar] [CrossRef]
- Achtman, M.; Wain, J.; Weill, F.-X.; Nair, S.; Zhou, Z.; Sangal, V.; Krauland, M.; Hale, J.L.; Harbottle, H.; Uesbeck, A.; et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012, 8, e1002776. [Google Scholar] [CrossRef] [Green Version]
- Keymer, I.F.; Gibson, E.A.; Reynolds, D.J. Zoonoses and other findings in hedgehogs (Erinaceus europaeus): A survey of mortality and review of the literature. Vet. Rec. 1991, 128, 245–249. [Google Scholar] [CrossRef]
- Chomel, B.B.; Riley, P.Y. Hedgehog zoonoses. Emerg. Infect. Dis. 2005, 11, 1146. [Google Scholar] [CrossRef]
- Nauerby, B.; Pedersen, K.; Dietz, H.H.; Madsen, M. Comparison of Danish isolates of Salmonella enterica serovar enteritidis PT9a and PT11 from hedgehogs (Erinaceus europaeus) and humans by plasmid profiling and pulsed-field gel electrophoresis. J. Clin. Microbiol. 2000, 38, 3631–3635. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.M.; Gast, R.K.; Potter, M.E. (Eds.) Salmonella enterica Serovar Enteritidis in Humans and Animals: Epidemiology, Pathogenesis, and Control, 1st ed.; Iowa State University Press: Ames, IA, USA, 1999. [Google Scholar]
- Sangal, V. Multilocus Sequence Typing Analyses of Salmonella Enterica Subspecies Enterica: Population Structure, Asymptomatic Carriage and Host Association. Ph.D. Thesis, Humboldt-Universität, Berlin, Germany, 2009. [Google Scholar]
- Rabsch, W.; Andrews, H.L.; Kingsley, R.; Prager, R.; Tschäpe, H.; Adams, L.G.; Bäumler, A.J. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 2002, 70, 2249–2255. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, R.A.; Kay, S.; Connor, T.; Barquist, L.; Sait, L.; Holt, K.; Sivaraman, K.; Wileman, T.; Goulding, D.; Clare, S.; et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. mBio 2013, 4, e00565-13. [Google Scholar] [CrossRef] [Green Version]
- Kaczorek-Łukowska, E.; Sowińska, P.; Franaszek, A.; Dziewulska, D.; Małaczewska, J.; Stenzel, T. Can domestic pigeon be a potential carrier of zoonotic Salmonella? Transbound. Emerg. Dis. 2020, 68, 13891. [Google Scholar] [CrossRef]
- Yousef, S.; Mamdouh, R. Class I Integron and β-lactamase encoding genes of multidrug resistance Salmonella isolated from pigeons and their environments. Cell. Mol. Biol. 2016, 62, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M.; Pintore, A.; Denurra, D.; Cherchi, M.; Jurado, C.; Vicente, J.; Barasona, J.A. Free-ranging pig and wild boar interactions in an endemic area of African swine fever. Front. Vet. Sci. 2019, 6, 376. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Upsala J. Med Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Maldonado, B.; Vega, S.; Mencía-Gutiérrez, A.; Lorenzo-Rebenaque, L.; de Frutos, C.; González, F.; Revuelta, L.; Marin, C. Urban birds: An important source of antimicrobial resistant Salmonella strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101519. [Google Scholar] [CrossRef] [PubMed]
- Lawson, B.; de Pinna, E.; Horton, R.A.; MacGregor, S.K.; John, S.K.; Chantrey, J.; Duff, J.P.; Kirkwood, J.K.; Simpson, V.R.; Robinson, R.A.; et al. Epidemiological evidence that garden birds are a source of human Salmonellosis in England and Wales. PLoS ONE 2014, 9, e88968. [Google Scholar] [CrossRef] [Green Version]
Serovar | ST | Isolates | wildlife Species | n AMR Genes | n AMR Class | AMR Class | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aminoglycoside | Beta-Lactam | Fluoroquinolone | Folate Pathway Antagonist | Fosfomycin | Macrolide | Phenicol | Tetracycline | ||||||
S. Agona | 13 | 13-SA01988-0, | common pigeon, common buzzard | 1 | 1 | fosA7.2 | |||||||
18-SA01710-S2 | |||||||||||||
S. Choleraesuis | 145 | 20-SA00097-0, | wild boar | 1 | 1 | gyrA_S83F | |||||||
20-SA00507-0, | |||||||||||||
20-SA01576-0 | |||||||||||||
S. Choleraesuis | 145 | 20-SA00100-0 | wild boar | 2 | 1 | aph(3’’)-Ib; aph(6)-Id | |||||||
S. Choleraesuis | 145 | 16-SA01752-0, 16-SA02866-0, 18-SA00001-0, 20-SA00092-0, 20-SA00387-0, 20-SA00474-0, 20-SA00531-0, 20-SA00630-0, 20-SA00989-0, 20-SA01308-0, 20-SA02093-0 | wild boar, red fox | 3 | 2 | aph(3’’)-Ib; aph(6)-Id | sul2 | ||||||
S. Derby | 40 | 18-SA01773-0 | rook | 4 | 3 | sul2 | fosA7.3 | mef(C); mph(G) | |||||
S. Derby | 40 | 19-SA00751-0 | mute swan | 5 | 4 | aph(3’’)-Ib;aph(6)-Id | sul2 | fosA7.3 | floR | ||||
S. Enteritidis | 11 | 17-SA00957-0 | red fox | 1 | 1 | gyrA_D87Y | |||||||
S. Enteritidis | 11 | 18-SA02674-0, | red fox | 1 | 1 | gyrA_S83Y | |||||||
20-SA02382-0 | |||||||||||||
I 4,[5],12:i:- | 34 | 19-SA00203-0 | wild boar | 1 | 1 | tet(B) | |||||||
I 4,[5],12:i:- | 34 | 15-SA01939-0, 16-SA01483-0 | roe deer, mallard | 4 | 3 | aph(3’’)-Ib;aph(6)-Id | blaTEM-1 | sul2 | |||||
I 4,[5],12:i:- | 34 | 12-03646-0, | Eurasian wolf, European starling, owl, red fox | 5 | 4 | aph(3’’)-Ib; aph(6)-Id | blaTEM-1 | sul2 | tet(B) | ||||
15-SA02810-0, | |||||||||||||
19-SA01712-0, | |||||||||||||
19-SA01791-0 | |||||||||||||
S. Mbandaka | 413 | 11-01873 | European quail | 6 | 4 | aph(3’’)-Ib; aph(6)-Id | blaTEM-1 | sul2; dfrA14 | tet(A) | ||||
S. Typhimurium | 19 | 08-00085-0, | roe deer, red fox | 2 | 2 | aadA2 | sul1 | ||||||
08-03273-0 | |||||||||||||
S. Typhimurium | 19 | 15-SA01093-0 | common raven | 3 | 3 | aadA2 | gyrA_D87N | sul1 | |||||
S. Typhimurium | 19 | 16-SA00820-0 | white stork | 3 | 3 | blaCARB-2 | gyrA_D87N | sul1 | |||||
S. Typhimurium | 19 | 09-01709-0, | red fox | 5 | 5 | aadA2 | blaCARB-2 | sul1 | floR | tet(G) | |||
17-SA00138-0 | |||||||||||||
S. Typhimurium | 128 | 20-SA01154-0 | common pigeon | 3 | 2 | blaTEM-1 | sul2; dfrA1 |
Dataset | Description | Collected By | Matrix | Isolation Years | n | SEN | SCS | STM |
---|---|---|---|---|---|---|---|---|
wildlife samples | isolates from wildlife animals (this study) | NRL Salmonella (BfR) | non-human | 2002–2020 | 233 | 73 | 98 | 62 |
NRL database | isolates from food and farm animals collected for routine surveillance by the NRL Salmonella | NRL Salmonella (BfR) | non-human | 2000–2021 | 1864 | 741 | 121 | 1002 |
GSS database | human clinical isolates collected for an ongoing real-time surveillance project [4] | NRC Salmonella (RKI) | human | 2020–2021 | 1046 | 518 | 33 | 495 |
outbreak samples | human clinical samples collected for routine outbreak analysis by the NRC Salmonella | NRC Salmonella (RKI) | human | 2017–2021 | 71 | 60 | - | 11 |
total | 3214 | 1392 | 252 | 1570 | ||||
human/non-human ratio | 35/65% | 42/58% | 13/87% | 32/68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uelze, L.; Bloch, A.; Borowiak, M.; Grobbel, M.; Deneke, C.; Fischer, M.; Malorny, B.; Pietsch, M.; Simon, S.; Szabó, I.; et al. What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms 2021, 9, 1911. https://doi.org/10.3390/microorganisms9091911
Uelze L, Bloch A, Borowiak M, Grobbel M, Deneke C, Fischer M, Malorny B, Pietsch M, Simon S, Szabó I, et al. What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms. 2021; 9(9):1911. https://doi.org/10.3390/microorganisms9091911
Chicago/Turabian StyleUelze, Laura, Angelina Bloch, Maria Borowiak, Mirjam Grobbel, Carlus Deneke, Matthias Fischer, Burkhard Malorny, Michael Pietsch, Sandra Simon, István Szabó, and et al. 2021. "What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany" Microorganisms 9, no. 9: 1911. https://doi.org/10.3390/microorganisms9091911
APA StyleUelze, L., Bloch, A., Borowiak, M., Grobbel, M., Deneke, C., Fischer, M., Malorny, B., Pietsch, M., Simon, S., Szabó, I., Tausch, S. H., & Fischer, J. (2021). What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms, 9(9), 1911. https://doi.org/10.3390/microorganisms9091911