Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere
Abstract
:1. Introduction
2. Material and Methods
2.1. Phylogenetic Analysis
2.2. Transmission Electron Microscopy
2.3. O. tauri RCC4221 and M. algicola OT Cultures and Growth
2.3.1. O. tauri RCC4221 Culture
2.3.2. M. algicola OT Culture
2.3.3. Culture Media
2.4. O. tauri RCC4221 and M. algicola OT Coculture Experiments
2.5. M. algicola OT Growth Tests on Lipids
2.6. In Silico Genomic Screening of O. tauri Phycosphere Sequences and Complete Marinobacter Genomes
2.6.1. Searching for Methionine Synthases Genes
2.6.2. Searching for Lipid Degradation Genes
2.6.3. Searching for Quorum-Sensing Genes
2.7. In Silico Protein Analysis
2.8. Evaluation of M. algicola OT Quorum-Sensing Capacities
3. Results
3.1. Phylogenetic Position of M. algicola OT in the Global Marinobacter Species Tree
3.2. Phylogenetic Features of M. algicola Relative to Other Marinobacter Species Found in Phytoplankton Cultures
3.3. Effect of M. algicola OT on O. tauri RCC4221 Growth in the Absence of Vitamin B12
3.4. M. algicola OT Growth Behaviour in Coculture with O. tauri RCC4221
3.5. M. algicola OT Growth on Lipids
3.6. Attempts to Detect AI-1 or AI-2 from M. algicola OT by Experimentation or Genomic Screening
4. Discussion
4.1. Contrasting Behaviours of Marinobacter Strains in Microalgae Cultures
4.2. M. algicola OT Metabolises Different Lipids
4.3. M. algicola OT Does Not Produce AI-1 or AI-2 QS Autoinducers
4.4. M. algicola OT Is a Commensal Species in O. tauri Cultures and Is Widespread in the Natural Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuhrman, J.; Ammerman, J.; Azam, F. Bacterioplankton in the coastal euphotic zone: Distribution, activity, and possible rela-tionships with phytoplankton. Mar Biol. 1980, 60, 201–207. [Google Scholar] [CrossRef]
- Rooney-Varga, J.; Giewat, M.; Savin, M.; Sood, S.; LeGresley, M.; Martin, J. Links between Phytoplankton and Bacterial Community Dynamics in a Coastal Marine Environment. Microb. Ecol. 2005, 49, 163–175. [Google Scholar] [CrossRef]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A.; Gonzalez, J. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Genet. 2014, 12, 686–698. [Google Scholar] [CrossRef]
- Luo, H.; Csűros, M.; Hughes, A.L.; Moran, M.A. Evolution of Divergent Life History Strategies in Marine Alphaproteobacteria. mBio 2013, 4, e00373-13. [Google Scholar] [CrossRef] [Green Version]
- Grossart, H.-P.; Levold, F.; Allgaier, M.; Simon, M.; Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 2005, 7, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Döbler, I.; Ballhausen, B.; Berger, M.; Brinkhoff, T.; Buchholz, I.; Bunk, B.; Cypionka, H.; Daniel, R.; Drepper, T.; Gerdts, G.; et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: A hitchhiker’s guide to life in the sea. ISME J. 2009, 4, 61–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombetta, T.; Vidussi, F.; Roques, C.; Scotti, M.; Mostajir, B. Marine Microbial Food Web Networks During Phytoplankton Bloom and Non-bloom Periods: Warming Favors Smaller Organism Interactions and Intensifies Trophic Cascade. Front. Microbiol. 2020, 11, 502336. [Google Scholar] [CrossRef]
- Fouilland, E.; Tolosa, I.; Bonnet, D.; Bouvier, C.; Bouvier, T.; Bouvy, M.; Got, P.; Le Floc’H, E.; Mostajir, B.; Roques, C.; et al. Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiol. Ecol. 2013, 87, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Fouilland, E.; Mostajir, B. Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiol. Ecol. 2010, 73, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Keawtawee, T.; Fukami, K.; Songsangjinda, P. Use of a Noctiluca-killing bacterium Marinobacter salsuginis strain BS2 to reduce shrimp mortality caused by Noctiluca scintillans. Fish. Sci. 2012, 78, 641–646. [Google Scholar] [CrossRef]
- Sapp, M.; Schwaderer, A.S.; Wiltshire, K.; Hoppe, H.-G.; Gerdts, G.; Wichels, A. Species-Specific Bacterial Communities in the Phycosphere of Microalgae? Microb. Ecol. 2007, 53, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Abby, S.; Touchon, M.; De Jode, A.; Grimsley, N.; Piganeau, G. Bacteria in Ostreococcus tauri cultures–friends, foes or hitchhikers? Front. Microbiol. 2014, 5, 505. [Google Scholar] [CrossRef] [PubMed]
- Countway, P.D.; Caron, D.A. Abundance and Distribution of Ostreococcus sp. in the San Pedro Channel, California, as Revealed by Quantitative PCR. Appl. Environ. Microbiol. 2006, 72, 2496–2506. [Google Scholar] [CrossRef] [Green Version]
- Courties, C.; Vaquer, A.; Troussellier, M.; Lautier, J.; Chrétiennot-Dinet, M.J.; Neveux, J.; Machado, C.; Claustre, H.; Chr, M.J. Smallest eukaryotic organism. Nat. Cell Biol. 1994, 370, 255. [Google Scholar] [CrossRef]
- O’Kelly, C.; Sieracki, M.; Their, A.; Ic, H. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island New York. J. Phycol. 2003, 39, 850–854. [Google Scholar] [CrossRef]
- Grossart, H.-P.; Simon, M. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 2007, 47, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Worden, A.Z.; Lee, J.-H.; Mock, T.; Rouzé, P.; Simmons, M.P.; Aerts, A.L.; Allen, A.E.; Cuvelier, M.L.; Derelle, E.; Everett, M.V.; et al. Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas. Science 2009, 324, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Croft, M.T.; Lawrence, A.D.; Raux-Deery, E.; Warren, M.; Smith, A. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nat. Cell Biol. 2005, 438, 90–93. [Google Scholar] [CrossRef]
- Kazamia, E.; Czesnick, H.; Van Nguyen, T.T.; Croft, M.T.; Sherwood, E.; Sasso, S.; Hodson, S.J.; Warren, M.J.; Smith, A. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. 2012, 14, 1466–1476. [Google Scholar] [CrossRef]
- Cooper, M.B.; Kazamia, E.; Helliwell, K.; Kudahl, U.J.; Sayer, A.; Wheeler, G.L.; Smith, A.G. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 2019, 13, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Helliwell, K.; Wheeler, G.L.; Leptos, K.; Goldstein, R.; Smith, A. Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes. Mol. Biol. Evol. 2011, 28, 2921–2933. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.A.; Cohen, N.R.; Moreno, C.; Marchetti, A. Cobalamin-independent Methionine Synthase Distribution and Influence on Vitamin B12 Growth Requirements in Marine Diatoms. Protist 2017, 168, 32–47. [Google Scholar] [CrossRef]
- Warren, M.; Raux, E.; Schubert, H.; Escalante-Semerena, J. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 2002, 19, 390–412. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Hart, M.; Blackburn, S.; Bolch, C. Bacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity. Aquat. Microb. Ecol. 2010, 61, 73–87. [Google Scholar] [CrossRef]
- Lupette, J.; Lami, R.; Krasovec, M.; Grimsley, N.; Moreau, H.; Piganeau, G.; Sanchez-Ferandin, S. Marinobacter Dominates the Bacterial Community of the Ostreococcus tauri Phycosphere in Culture. Front. Microbiol. 2016, 7, 1414. [Google Scholar] [CrossRef] [Green Version]
- Green, D.H.; Echavarri-Bravo, V.; Brennan, D.; Hart, M.C. Bacterial diversity associated with the coccolithophorid algae Emiliania huxleyi and Coccolithus pelagicus f. braarudii. BioMed Res. Int. 2015, 2015, 194540. [Google Scholar] [PubMed] [Green Version]
- Kaeppel, E.C.; Gärdes, A.; Seebah, S.; Grossart, H.-P.; Ullrich, M.S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evol. Microbiol. 2012, 62, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Handley, K.M.; Lloyd, J.R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front. Microbiol. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hold, G.; Smith, E.A.; Rappë, M.S.; Maas, E.W.; Moore, E.R.; Stroempl, C.; Stephen, J.R.; Prosser, J.I.; Birkbeck, T.; Gallacher, S. Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol. Ecol. 2001, 37, 161–173. [Google Scholar] [CrossRef]
- Sonnenschein, E.C.; Syit, D.A.; Grossart, H.-P.; Ullrich, M.S. Chemotaxis of Marinobacter adhaerens and Its Impact on Attachment to the Diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 2012, 78, 6900–6907. [Google Scholar] [CrossRef] [Green Version]
- Bonin, P.; Vieira, C.; Grimaud, R.; Militon, C.; Cuny, P.; Lima, O.; Guasco, S.; Brussaard, C.P.D.; Michotey, V. Substrates specialization in lipid compounds and hydrocarbons of Marinobacter genus. Environ. Sci. Pollut. Res. 2015, 22, 15347–15359. [Google Scholar] [CrossRef] [PubMed]
- Rolland, J.L.; Stien, D.; Sanchez-Ferandin, S.; Lami, R. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: A Case of Chemical Interactions in Ecology. J. Chem. Ecol. 2016, 42, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, H.B.; Greenberg, E.P. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol. 1985, 163, 1210–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gram, L.; Grossart, H.; Schlingloff, A.; Kiørboe, T. Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strai. Appl. Environ. Microbiol. 2002, 68, 4111–4116. [Google Scholar] [CrossRef] [Green Version]
- Degraeve-Guilbault, C.; Bréhélin, C.; Haslam, R.; Sayanova, O.; Marie-Luce, G.; Jouhet, J.; Corellou, F. Glycerolipid Characterization and Nutrient Deprivation-Associated Changes in the Green Picoalga Ostreococcus tauri. Plant Physiol. 2017, 173, 2060–2080. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Yau, S.; Krasovec, M.; Benites, L.F.; Rombauts, S.; Groussin, M.; Vancaester, E.; Aury, J.-M.; Derelle, E.; Desdevises, Y.; Escande, M.-L.; et al. Virus-host coexistence in phytoplankton through the genomic lens. Sci. Adv. 2020, 6, eaay2587. [Google Scholar] [CrossRef] [Green Version]
- Marie, D.; Partensky, F.; Jacquet, S.; Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid strain SYBRGreenI. Appl. Environ. Microbiol. 1997, 63, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J.; Waters, R.E.; Taylor, F.J.R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 1980, 16, 28–35. [Google Scholar] [CrossRef]
- Barnier, C.; Clerissi, C.; Lami, R.; Intertaglia, L.; Lebaron, P.; Grimaud, R.; Urios, L. Description of Palleronia rufa sp. nov., a biofilm-forming and AHL-producing Rhodobacteraceae, reclassification of Hwanghaeicola aestuarii as Palleronia aestuarii comb. nov., Maribius pontilimi as Palleronia pontilimi comb. nov., Maribius salinus as Palleronia salina comb. nov., Maribius pelagius as Palleronia pelagia comb. nov. and emended description of the genus Palleronia. Syst. Appl. Microbiol. 2020, 43, 126018. [Google Scholar] [CrossRef] [PubMed]
- Krasovec, M.; Eyre-Walker, A.; Grimsley, N.; Salmeron, C.; Pecqueur, D.; Piganeau, G.; Sanchez-Ferandin, S. Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae. G3 Genes Genomes Genet. 2016, 6, 2063–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 genome project data processing subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, L.L.; Bright, N.G.; Carroll, R.J.J.; Scott, M.C.; Allen, M.S.; Applegate, B.M. Molecular characterization of autoinduction of biolu-minescence in the Microtox indicator strain Vibrio fischeri ATCC 49387. Can. J. Microbiol. 2005, 51, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, C.M.; Chatterjee, J.; Swartzman, E.; Szittner, R.; Meighen, E.A. The role of the lux autoinducer in regulating luminescence in Vibrio harveyi; control of luxR expression. Mol. Microbiol. 1996, 19, 767–775. [Google Scholar] [CrossRef]
- Le Roux, F.; Binesse, J.; Saulnier, D.; Mazel, D. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel ounterselectable suicide vector. Appl. Environ. Microbiol. 2007, 73, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.; Chang, H.Y.; Daugherty, L.; Fraser, M.; Hunter, S.; López, R.; McAnulla, C.; McMenamin, C.; Nuka, G.; Pesseat, S.; et al. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 2015, 43, D213–D221. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 2015, 43, D257–D260. [Google Scholar] [CrossRef]
- Wu, Q.; Peng, Z.; Zhang, Y.; Yang, J. COACH-D: Improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res. 2018, 46, W438–W442. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, E.; Prado, S.; Stien, D.; Da Silva, J.O.; Ferandin, Y.; Batailler, N.; Intertaglia, L.; Escargueil, A.; Lami, R. Quorum Sensing and Quorum Quenching in the Mediterranean Seagrass Posidonia oceanica Microbiota. Front. Mar. Sci. 2017, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.B.; Heydorn, A.; Hentzer, M.; Eberl, L.; Geisenberger, O.; Christensen, B.B.; Molin, S.; Givskov, M. gfp-Based N-Acyl Homoserine-Lactone Sensor Systems for Detection of Bacterial Communication. Appl. Environ. Microbiol. 2001, 67, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Girard, L.; Blanchet, É.; Intertaglia, L.; Baudart, J.; Stien, D.; Suzuki, M.; LeBaron, P.; Lami, R. Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. Sensors 2017, 17, 906. [Google Scholar] [CrossRef] [Green Version]
- Riedel, K.; Steidle, A.; Eberl, L.; Wu, H.; Geisenberger, O.; Molin, S.; Huber, B.; Hentzer, M.; Høiby, N.; Givskov, M. N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 2001, 147, 3249–3262. [Google Scholar] [CrossRef] [Green Version]
- Bassler, B.L.; Greenberg, E.P.; Stevens, A.M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 1997, 179, 4043–4045. [Google Scholar] [CrossRef] [Green Version]
- Taga, M.E. Methods for Analysis of Bacterial Autoinducer-2 Production. Curr. Protoc. Microbiol. 2005, 23, 1C.1.1–1C.1.8. [Google Scholar] [CrossRef]
- Green, D.H.; Bowman, J.; Smith, E.A.; Gutierrez, T.; Bolch, C.J.S. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int. J. Syst. Evol. Microbiol. 2006, 56, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Bratbak, G.; Thingstad, T.F. Phytoplankton-bacteria interactions: An apparant paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 1985, 25, 23–30. [Google Scholar] [CrossRef]
- Gurung, T.B.; Urabe, J.; Nakanishi, M. Regulation of the relationship between phytoplankton Scenedesmus acutus and hetero-trophic bacteria by the balance of light and nutrients. Aquat. Microb. Ecol. 1999, 17, 27–35. [Google Scholar] [CrossRef]
- Paerl, R.; Bouget, F.-Y.; Lozano, J.-C.; Vergé, V.; Schatt, P.; E Allen, E.; Palenik, B.; Azam, F. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton. ISME J. 2017, 11, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Sher, D.; Thompson, J.W.; Kashtan, N.; Croal, L.; Chisholm, S.W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 2011, 5, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Mounier, J.; Camus, A.; Mitteau, I.; Vaysse, P.-J.; Goulas, P.; Grimaud, R.; Sivadon, P. The marine bacteriumMarinobacter hydrocarbonoclasticusSP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol. Ecol. 2014, 90, 816–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennouri, H.; D’Abzac, P.; Hakil, F.; Branchu, P.; Naïtali, M.; Lomenech, A.; Oueslati, R.; Desbrières, J.; Sivadon, P.; Grimaud, R. The extracellular matrix of the oleolytic biofilms ofMarinobacter hydrocarbonoclasticuscomprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ. Microbiol. 2016, 19, 159–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourneroche, A.; Lami, R.; Hubas, C.; Blanchet, E.; Vallet, M.; Escoubeyrou, K.; Paris, A.; Prado, S. Bacterial–Fungal Interactions in the Kelp Endomicrobiota Drive Autoinducer-2 Quorum Sensing. Front. Microbiol. 2019, 10, 1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollak, S.; Omer-Bendori, S.; Even-Tov, E.; Lipsman, V.; Bareia, T.; Ben-Zion, I.; Eldar, A. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc. Natl. Acad. Sci. USA 2016, 113, 2152–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.A.A.; Kazamia, E.; Cicuta, P.; Smith, A.G. Direct exchange of vitamin B12 is demonstrated by modelling the growth dy-namics of algal-bacterial cocultures. ISME J. 2014, 8, 1418–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayali, X. Editorial: Metabolic Interactions Between Bacteria and Phytoplankton. Front. Microbiol. 2018, 9, 727. [Google Scholar] [CrossRef]
- Kimbrel, J.A.; Samo, T.; Ward, C.; Nilson, D.; Thelen, M.P.; Siccardi, A.; Zimba, P.; Lane, T.W.; Mayali, X. Host selection and stochastic effects influence bacterial community assembly on the microalgal phycosphere. Algal Res. 2019, 40, 101489. [Google Scholar] [CrossRef]
- Handley, K.M.; Boothman, C.; Mills, R.A.; Pancost, R.D.; Lloyd, J.R. Functional diversity of bacteria in a ferruginous hy-drothermal sediment. ISME J. 2010, 4, 1193–1205. [Google Scholar] [CrossRef] [Green Version]
- Balzano, S.; Statham, P.J.; Pancost, R.D.; Lloyd, J.R. Role of microbial populations in the release of reduced iron to the water column from marine aggregates. Aquat. Microb. Ecol. 2009, 54, 291–303. [Google Scholar] [CrossRef]
- Kaye, J.Z.; Baross, J.A. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol. Ecol. 2000, 32, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Sivadon, P.; Barnier, C.; Urios, L.; Grimaud, R. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environ. Microbiol. Rep. 2019, 11, 749–764. [Google Scholar] [CrossRef] [PubMed]
B12 Vitamin Synthase Genes | Putative Organism Origin | NCBI Accession Number |
---|---|---|
metH Methionine synthase | Marinobacter algicola | NZ_ABCP01000002 |
metE Methionine synthase | Marinobacter algicola | NZ_ABCP01000027 |
Marinobacter Strains | Accession Number | metH | metE | fadB | fadA |
---|---|---|---|---|---|
M. adhaerens HP15 | PRJNA224116 | √ | √ | √ | √ |
M. algicola DG893 | PRJNA19321 | √ | √ | √ | √ |
M. antarcticus CGMCC 1.10835 | PRJEB18348 | √ | √ | √ | |
M. daepoensis DSM 16072 | PRJNA195792 | √ | √ | √ | √ |
M. excellens HL-55 | PRJNA195885 | √ | √ | √ | √ |
M. hydrocarbonoclasticus ATCC49840 | PRJEA91119 | √ | √ | √ | √ |
M. lipolyticus SM19 | PRJNA196694 | √ | √ | √ | √ |
M. lutaoensis T5054 | PRJNA357186 | √ | √ | √ | √ |
M. manganoxydans MnI7-9 | PRJNA73991 | √ | √ | √ | √ |
M. mobilis CGMCC 1.7059 | PRJEB16583 | √ | √ | √ | √ |
M. nanhaiticus D15-8W | PRJNA193181 | √ | √ | √ | |
M. nitratireducens AK21 | PRJNA178951 | √ | √ | √ | √ |
M. pelagius CGMCC 1.6775 | PRJEB17496 | √ | √ | √ | √ |
M. persicus IBRC-M 10445 | PRJEB17403 | √ | √ | √ | √ |
M. psychrophilus 20041 | PRJNA284323 | √ | √ | √ | √ |
M. salarius R9SW1 | PRJNA227392 | √ | √ | ||
M. salinus Hb8 | PRJNA349097 | √ | √ | √ | √ |
M. santoriniensis NKSG1 | PRJNA188242 | √ | √ | √ | √ |
M. segnicrescens CGMCC 1.6489 | PRJEB17056 | √ | √ | √ | √ |
M. subterrani JG233 | PRJNA284629 | √ | √ | √ | √ |
M. zhejiangensis CGMCC 1.7061 | PRJEB17480 | √ | √ | √ | √ |
Most Abundant Lipid Degradation Genes | Putative Organism Origin | Uniprot Accession Number |
---|---|---|
fadB Fatty acid degradation alpha subunit | Pseudomonas putida | F8FUP1 |
fadA 3-ketoacyl-CoA thiolase | Pseudomonas putida | F8FUP2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.; Lami, R.; Krasovec, M.; Grimaud, R.; Urios, L.; Lupette, J.; Escande, M.-L.; Sanchez, F.; Intertaglia, L.; Grimsley, N.; et al. Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms 2021, 9, 1777. https://doi.org/10.3390/microorganisms9081777
Pinto J, Lami R, Krasovec M, Grimaud R, Urios L, Lupette J, Escande M-L, Sanchez F, Intertaglia L, Grimsley N, et al. Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms. 2021; 9(8):1777. https://doi.org/10.3390/microorganisms9081777
Chicago/Turabian StylePinto, Jordan, Raphaël Lami, Marc Krasovec, Régis Grimaud, Laurent Urios, Josselin Lupette, Marie-Line Escande, Frédéric Sanchez, Laurent Intertaglia, Nigel Grimsley, and et al. 2021. "Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere" Microorganisms 9, no. 8: 1777. https://doi.org/10.3390/microorganisms9081777
APA StylePinto, J., Lami, R., Krasovec, M., Grimaud, R., Urios, L., Lupette, J., Escande, M.-L., Sanchez, F., Intertaglia, L., Grimsley, N., Piganeau, G., & Sanchez-Brosseau, S. (2021). Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms, 9(8), 1777. https://doi.org/10.3390/microorganisms9081777