Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Stability Conditions
2.3. Capture ELISA for Vi PS Identity
2.4. Micro-Hestrin Assay of O-Acetylation
2.5. Molecular Sizing
2.6. DOC Precipitation to Obtain Free Polysaccharide
2.7. Vi Saccharide Content
2.8. pH Determination
3. Results
3.1. Quality of the Polysaccharide
3.2. Integrity of the Conjugate
3.3. Vi Content in Stability Samples
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Diseases 2019 Disease and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Reiner, R.C.; Blacker, B.F.; Goldberg, E.M.; Khalil, I.A.; Troeger, C.E.; Andrews, J.R.; Bhutta, Z.A.; Crump, J.A.; Im, J.; et al. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.B.; Brooks, W.A. Typhoid and paratyphoid (enteric) fever. In Hunter’s Tropical Medicine and Emerging Infectious Diseases, 9th ed.; Magill, A.J., Ryan, E.T., Hill, D.R., Solomon, T., Eds.; Elsevier: Philadelphia, PA, USA, 2013; pp. 568–576. [Google Scholar]
- Wain, J.; Hendriksen, R.S.; Mikoleit, M.L.; Keddy, K.H.; Ochiai, L. Typhoid fever. Lancet 2015, 385, 1136–1145. [Google Scholar] [CrossRef]
- Lanh, M.N.; Van Bay, P.; Ho, V.A.; Thanh, T.C.; Lin, F.Y.C.; Bryla, D.A.; Chu, C.; Schiloach, J.; Robbins, J.B.; Schneerson, R.; et al. Persistent Efficacy of Vi Conjugate Vaccine against Typhoid Fever in Young Children. N. Engl. J. Med. 2003, 349, 1390–1391. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Gibani, M.; Moore, M.; Juel, H.B.; Jones, E.; Meiring, J.; Harris, V.; Gardner, J.; Nebykova, A.; Kerridge, S.A.; et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: A randomised controlled, phase 2b trial. Lancet 2017, 390, 2472–2480. [Google Scholar] [CrossRef] [Green Version]
- Mohan, V.K.; Varanasi, V.; Singh, A.; Pasetti, M.F.; Levine, M.M.; Venkatesan, R.; Ella, K.M. Safety and Immunogenicity of a Vi Polysaccharide–Tetanus Toxoid Conjugate Vaccine (Typbar-TCV) in Healthy Infants, Children, and Adults in Typhoid Endemic Areas: A Multicenter, 2-Cohort, Open-Label, Double-Blind, Randomized Controlled Phase 3 Study. Clin. Infect. Dis. 2015, 61, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Sahastrabuddhe, S.; Saluja, T. Overview of the Typhoid Conjugate Vaccine Pipeline: Current Status and Future Plans. Clin. Infect. Dis. 2019, 68, S22–S26. [Google Scholar] [CrossRef] [PubMed]
- Typhoid Vaccines: WHO Position Paper—March 2018. Weekly Epidemiological 2 Record; World Health Organization: Geneva, Switzerland, 2018; Volume 93, pp. 153–172. Available online: https://apps.who.int/iris/bitstream/handle/10665/272272/WER9313.pdf?ua=1,%204 (accessed on 21 May 2021).
- Cui, C.; Carbis, R.; An, S.J.; Jang, H.; Czerkinsky, C.; Szu, S.C.; Clemens, J.D. Physical and Chemical Characterization and Immunologic Properties of Salmonella enterica Serovar Typhi Capsular Polysaccharide-Diphtheria Toxoid Conjugates. Clin. Vaccine Immunol. 2010, 17, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micoli, F.; Rondini, S.; Pisoni, I.; Proietti, D.; Berti, F.; Costantino, P.; Rappuoli, R.; Szu, S.; Saul, A.; Martin, L. Vi-CRM197 as a new conjugate vaccine against Salmonella Typhi. Vaccine 2011, 29, 712–720. [Google Scholar] [CrossRef] [Green Version]
- Bazhenova, A.; Gao, F.; Bolgiano, B.; Harding, S.E. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: Existing and emerging methods for their analysis. Biophys. Rev. 2021, 13, 221–246. [Google Scholar] [CrossRef]
- WHO—Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control)—List of Prequalified Vaccines—Typbar TCV; World Health Organization: Geneva, Switzerland, 2021; Available online: https://extranet.who.int/pqweb/content/typbar-tcv (accessed on 9 August 2021).
- Guidelines on the Stability Evaluation of Vaccines for Use Under Extended Controlled Temperature Conditions. In Annex 5. WHO Technical Report Series—Number 999; World Health Organization: Geneva, Switzerland, 2016; Available online: https://www.who.int/biologicals/areas/vaccines/Annex_5_Guidelines_on_Stability_evaluation_vaccines_ECTC.pdf (accessed on 21 March 2021).
- Capeding, M.R.; Teshome, S.; Saluja, T.; Syed, K.A.; Kim, D.R.; Park, J.Y.; Yang, J.S.; Kim, Y.H.; Park, J.; Jo, S.-K.; et al. Safety and immunogenicity of a Vi-DT typhoid conjugate vaccine: Phase I trial in Healthy Filipino adults and children. Vaccine 2018, 36, 3794–3801. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Swann, C.; Rigsby, P.; Rijpkema, S.; Lockyer, K.; Logan, A.; Bolgiano, B.; Vi IS Working Group. Evaluation of two WHO First International Standards for Vi polysaccharide from Citrobacter freundii and Salmonella enterica subspecies enterica serovar Typhi. Biologicals 2018, 57, 34–45. [Google Scholar] [CrossRef]
- Lei, Q.P.; Shannon, A.G.; Heller, R.K.; Lamb, D.H. Quantification of free polysaccharide in meningococcal polysaccharide-diphtheria toxoid conjugate vaccines. Dev. Biol. 2000, 103, 259–264. [Google Scholar]
- Szu, S.C.; Li, X.R.; Stone, A.L.; Robbins, J.B. Relation between structure and immunologic properties of the Vi capsular polysaccharide. Infect. Immun. 1991, 59, 4555–4561. [Google Scholar] [CrossRef] [Green Version]
- Robbins, J.D. Reexamination of the Protective Role of the Capsular Polysaccharide (Vi antigen) of Salmonella typhi. J. Infect. Dis. 1984, 150, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Landy, M.; Gaines, S.; Seal, J.R.; Whiteside, J.E. Antibody Responses of Man to Three Types of Antityphoid Immunizing Agents: Heat-Phenol Fluid Vaccine, Acetone-Dehydrated Vaccine, and Isolated Vi and 0 Antigens. Am. J. Public Health Nations Health 1954, 44, 1572–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recommendations to Assure the Quality, Safety and Efficacy of Typhoid Conjugate Vaccines (Replacement of WHO Technical Report Series, No. 987, Annex 3). In WHO Expert Committee on Biological Standardization: Seventy-Second and Seventy-Third Report; Annex 3 (WHO Technical Report Series, No. 1030l; World Health Organization: Geneva, Switzerland, 2020; Available online: https://cdn.who.int/media/docs/default-source/biologicals/ecbs/post-ecbs-who-tcv-recommendations-final-3-nov-2020.pdf?sfvrsn=aeecbad0_2&download=true (accessed on 9 August 2021).
- Giannelli, C.; Cappelletti, E.; Di Benedetto, R.; Pippi, F.; Arcuri, M.; Di Cioccio, V.; Martin, L.; Saul, A.; Micoli, F. Determination of free polysaccharide in Vi glycoconjugate vaccine against typhoid fever. J. Pharm. Biomed. Anal. 2017, 139, 143–147. [Google Scholar] [CrossRef] [PubMed]
Sample | Storage | Identity | Molecular Size | Free Vi Content | Vi Content | O-Acetyl Content | ||
---|---|---|---|---|---|---|---|---|
Lot and age | Temp | Duration | By ELISA | Peak KD | % eluting by KD = 0.5 | % of total Vi PS | µg/SHD by HPAEC-PAD | µmole/SHD by Hestrin |
Typbar TCV (Single-dose) tested at 35 months | +4 °C | 3–7 day | + | 0.10 | 95.4 | 7.7 | 28 | 0.089 |
+45 °C | 3 days | + | 0.09 | 95.9 | 11.4 | 27 | 0.084 | |
+45 °C | 7 days | + | 0.10 | 95.8 | 14.6 | 27 | 0.090 | |
+56 °C | 3 days | + | 0.10 | 96.3 | 13.7 | 28 | 0.097 | |
+56 °C | 7 days | + | 0.11 | 95.4 | 17.5 | 31 | 0.093 | |
Typbar TCV (Multi-dose) tested at 35 months | +4 °C | 3–7 day | + | 0.13 | 98.8 | 7.7 | 36 | 0.099 |
+45 °C | 3 days | + | 0.13 | 99.7 | 12.6 | 30 | 0.101 | |
+45 °C | 7 days | + | 0.13 | 99.2 | 13.6 | 28 | 0.096 | |
+56 °C | 3 days | + | 0.13 | 99.3 | 14.8 | 27 | 0.090 | |
+56 °C | 7 days | + | 0.14 | 99.6 | 20.4 | 27 | 0.087 | |
Typbar PS (Single-dose) tested at 35 months | +4 °C | 3–7 day | + | 0.10 | 96.0 | n/a | 25 | 0.090 |
+45 °C | 3 days | + | 0.09 | 94.3 | n/a | 29 | 0.104 | |
+45 °C | 7 days | + | 0.09 | 96.3 | n/a | 30 | 0.084 | |
+56 °C | 3 days | + | 0.10 | 94.8 | n/a | 30 | 0.093 | |
+56 °C | 7 days | + | 0.09 | 92.0 | n/a | 18 | 0.075 |
Sample | Exposure | O-Acetyl Content | Vi Content | Free Vi Content | |
---|---|---|---|---|---|
Lot no. and age | Temperature | Duration | µmoles/SHD by Hestrin | µg/SHD by Rocket | % of total Vi PS |
76DL16001, Day 0 | +4 °C | 0 day | 0.093 | 27 | 4.4 |
76DL16001, 35 Months | +40 °C | 3 days | 0.089 | 27 | 11.3 |
76DL16001, 35 Months | +40 °C | 7 days | 0.084 | 26 | 13.5 |
76DL16001, 35 Months | +55 °C | 3 days | 0.086 | 28 | 16.7 |
76DL16002, Day 0 | +4 °C | 0 day | 0.098 | 27 | 5.0 |
76DL16002, 35 Months | +40 °C | 3 days | 0.086 | 27 | 10.7 |
76DL16002, 35 Months | +40 °C | 7 days | 0.082 | 28 | 11.8 |
76DL16002, 35 Months | +55 °C | 3 days | 0.085 | 28 | 14.9 |
76DL16003, Day 0 | +4 °C | 0 day | 0.095 | 27 | 4.1 |
76DL16003, 35 Months | +40 °C | 3 days | 0.087 | 26 | 12.8 |
76DL16003, 35 Months | +40 °C | 7 days | 0.083 | 27 | 13.7 |
76DL16003, 35 Months | +55 °C | 3 days | 0.087 | 27 | 17.9 |
76DL16033, Day 0 | +4 °C | 0 day | 0.085 | 28 | 5.6 |
76DL16033, 35 Months | +40 °C | 3 days | 0.089 | 28 | 10.5 |
76DL16033, 35 Months | +40 °C | 7 days | 0.089 | 29 | 11.2 |
76DL16033, 35 Months | +55 °C | 3 days | 0.086 | 28 | 11.8 |
76DL16034, Day 0 | +4 °C | 0 day | 0.073 | 28 | 4.8 |
76DL16034, 35 Months | +40 °C | 3 days | 0.080 | 28 | 9.3 |
76DL16034, 35 Months | +40 °C | 7 days | 0.082 | 28 | 9.8 |
76DL16034, 35 Months | +55 °C | 3 days | 0.078 | 28 | 10.4 |
76DL16035, Day 0 | +4 °C | 0 day | 0.081 | 28 | 5.1 |
76DL16035, 35 Months | +40 °C | 3 days | 0.081 | 28 | 11.5 |
76DL16035, 35 Months | +40 °C | 7 days | 0.080 | 28 | 11.9 |
76DL16035, 35 Months | +55 °C | 3 days | 0.076 | 28 | 12.6 |
Sample | Exposure | O-Acetyl Content | Vi Content | Free Vi Content | |
---|---|---|---|---|---|
Lot no. and age | Temperature | Duration | µmoles/SHD by Hestrin | µg/SHD by Rocket | % of total Vi PS |
76CJ16003, Day 0 | +4 °C | 0 day | 0.098 | 29 | 5.9 |
76CJ16003, 35 Months | +40 °C | 3 days | 0.097 | 27 | 10.9 |
76CJ16003, 35 Months | +40 °C | 7 days | 0.096 | 28 | 11.7 |
76CJ16003, 35 Months | +55 °C | 3 days | 0.095 | 27 | 11.5 |
76CJ16004, Day 0 | +4 °C | 0 day | 0.104 | 28 | 4.2 |
76CJ16004, 35 Months | +40 °C | 3 days | 0.099 | 28 | 12.3 |
76CJ16004, 35 Months | +40 °C | 7 days | 0.098 | 28 | 12.9 |
76CJ16004, 35 Months | +55 °C | 3 days | 0.098 | 28 | 12.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Lockyer, K.; Logan, A.; Davis, S.; Bolgiano, B.; Rijpkema, S.; Singh, G.; Prasad, S.D.; Dondapati, S.P.; Sounkhla, G.S. Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines. Microorganisms 2021, 9, 1707. https://doi.org/10.3390/microorganisms9081707
Gao F, Lockyer K, Logan A, Davis S, Bolgiano B, Rijpkema S, Singh G, Prasad SD, Dondapati SP, Sounkhla GS. Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines. Microorganisms. 2021; 9(8):1707. https://doi.org/10.3390/microorganisms9081707
Chicago/Turabian StyleGao, Fang, Kay Lockyer, Alastair Logan, Sarah Davis, Barbara Bolgiano, Sjoerd Rijpkema, Gopal Singh, Sai D. Prasad, Samuel Pradeep Dondapati, and Gurbaksh Singh Sounkhla. 2021. "Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines" Microorganisms 9, no. 8: 1707. https://doi.org/10.3390/microorganisms9081707
APA StyleGao, F., Lockyer, K., Logan, A., Davis, S., Bolgiano, B., Rijpkema, S., Singh, G., Prasad, S. D., Dondapati, S. P., & Sounkhla, G. S. (2021). Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines. Microorganisms, 9(8), 1707. https://doi.org/10.3390/microorganisms9081707