An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Perennial Ryegrass Seed Processing
2.3. DNA Extraction and 16S Amplicon Sequencing
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Variation of Single Seed Microbiomes Between Cultivar/E. Festucae var. lolii Combinations
3.2. Biogeography Impacts the Lolium Perenne Seedborne Microbiome
3.3. Microbiome Variation between Seed Production Farms
3.4. The Temporal Effect on Seed Microbiomes
3.5. Culturability of the Dominant Microbiome
4. Discussion
4.1. The Core and Supplemental Microbiome
4.2. Biogeography Drives the Composition of the Biogeography Seed Microbiome
4.3. Microbiome Breeding
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, K.F.M. Perennial pasture grasses—An historical review of their introduction, use and development for southern Australia. Crop Pasture Sci. 2014, 65. [Google Scholar] [CrossRef]
- Kaur, J.; Ekanayake, P.N.; Tian, P.; van Zijll de Jong, E.; Dobrowolski, M.P.; Rochfort, S.J.; Mann, R.C.; Smith, K.F.; Forster, J.W.; Guthridge, K.M.; et al. Discovery and characterisation of novel asexual Epichloë endophytes from perennial ryegrass (Lolium perenne L.). Crop Pasture Sci. 2015, 66, 1058. [Google Scholar] [CrossRef]
- Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Moreno, Z.R.; Caballero-Mellado, J.; Coutinho, B.G.; Mendonca-Previato, L.; James, E.K.; Venturi, V. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb. Ecol. 2012, 63, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, R.; Helander, M.; Kumar, M.; Saikkonen, K. Heritable Epichloe symbiosis shapes fungal but not bacterial communities of plant leaves. Sci. Rep. 2019, 9, 5253. [Google Scholar] [CrossRef]
- Tannenbaum, I.; Kaur, J.; Mann, R.; Sawbridge, T.; Rodoni, B.; Spangenberg, G. Profiling the Lolium perenne microbiome: From seed to seed. Phytobiomes J. 2020, 4, 281–289. [Google Scholar] [CrossRef]
- Adam, E.; Bernhart, M.; Müller, H.; Winkler, J.; Berg, G. The Cucurbita pepo seed microbiome: Genotype-specific composition and implications for breeding. Plant Soil 2016, 422, 35–49. [Google Scholar] [CrossRef]
- Rodríguez, C.E.; Antonielli, L.; Mitter, B.; Trognitz, F.; Sessitsch, A. Heritability and functional importance of the Setaria viridis bacterial seed microbiome. Phytobiomes J. 2020, 4, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Flory, E.; Koyro, H.W.; Abideen, Z.; Schikora, A.; Suarez, C.; Schnell, S.; Cardinale, M. Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare L.). Syst. Appl. Microbiol. 2018, 41, 386–398. [Google Scholar] [CrossRef]
- Eyre, A.W.; Wang, M.; Oh, Y.; Dean, R.A. Identification and characterization of the core rice seed microbiome. Phytobiomes J. 2019, 3, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Shenton, M.; Iwamoto, C.; Kurata, N.; Ikeo, K. Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice (N. Y.) 2016, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Pembleton, L.W.; Drayton, M.C.; Bain, M.; Baillie, R.C.; Inch, C.; Spangenberg, G.C.; Wang, J.; Forster, J.W.; Cogan, N.O. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. Theor. Appl. Genet. 2016, 129, 991–1005. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; Del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 12151. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Cardona, C.; Li, Y.; Shi, Y.; Xiang, X.; Shen, C.; Wang, H.; Gilbert, J.A.; Chu, H. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 2017, 113, 275–284. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Zhang, J.; Liu, Y.; Guo, Y.; Shi, P.; Wei, G. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Sci. Total Environ. 2018, 627, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists' warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.A.; Lamanna, C.; Morlon, H.; Kerkhoff, A.J.; Enquist, B.J.; Green, J.L. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. USA 2008, 105, 11505–11511. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, N.; Bariana, H.S.; Zhang, P.; McIntosh, R.; Bansal, U.K. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis. 2017, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, D.S.; Yourstone, S.; Mieczkowski, P.; Jones, C.D.; Dangl, J.L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 2013, 10, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghalith, G.A.; Montassier, E.; Ward, D.; Knights, D. NINJA-OPS: Fast accurate marker gene alignment using concatenated ribosomes. PLoS Comput. Biol. 2016, 12, e1004658. [Google Scholar] [CrossRef]
- de Souza, R.S.; Okura, V.K.; Armanhi, J.S.; Jorrín, B.; Lozano, N.; da Silva, M.J.; González-Guerrero, M.; de Araújo, L.M.; Verza, N.C.; Bagheri, H.C.; et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 2016, 6, 28774. [Google Scholar] [CrossRef] [Green Version]
- Bastias, D.A.; Martínez-Ghersa, M.A.; Ballaré, C.L.; Gundel, P.E. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends Plant Sci. 2017, 22, 939–948. [Google Scholar] [CrossRef]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Shade, A.; Jacques, M.A.; Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Cortés, G.; Bonneau, S.; Bouchez, O.; Genthon, C.; Briand, M.; Jacques, M.A.; Barret, M. Functional microbial features driving community assembly during seed germination and emergence. Front. Plant Sci. 2018, 9, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pembleton, L.W.; Shinozuka, H.; Wang, J.; Spangenberg, G.C.; Forster, J.W.; Cogan, N.O. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles. Front. Plant Sci. 2015, 6, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorogood, D.; Kaiser, W.J.; Jones, J.G.; Armstead, I. Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 2002, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.A.; Lana, U.G.P.; Quensen, J.F.; de Sousa, S.M.; Oliveira, C.A.; Guo, J.; Guimarães, L.J.M.; Tiedje, J.M. Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes J. 2018, 2, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, X.; Chen, T.; Wang, W.; Liu, G.; Zhang, W.; Li, S.; Wang, M.; Zhao, C.; Zhou, H.; et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 2018, 9, 2479. [Google Scholar] [CrossRef] [Green Version]
- Kavamura, V.N.; Robinson, R.J.; Hughes, D.; Clark, I.; Rossmann, M.; Melo, I.S.; Hirsch, P.R.; Mendes, R.; Mauchline, T.H. Wheat dwarfing influences selection of the rhizosphere microbiome. Sci. Rep. 2020, 10, 1452. [Google Scholar] [CrossRef]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6. [Google Scholar] [CrossRef]
- Silini-Chérif, H.; Silini, A.; Ghoul, M.; Yadav, S. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2. Pak. J. Biol. Sci. 2012, 15, 267–276. [Google Scholar] [CrossRef]
- David, B.V.; Chandrasehar, G.; Selvam, P.N. Pseudomonas fluorescens: A Plant-Growth-Promoting Rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–243. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Li, Y.; Guan, G.; Chen, S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 2019, 7, e7445. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.; Kale, A.; Ajane, G.; Sheikh, R.; Patil, S. Plant growth-promoting rhizobium: Mechanisms and biotechnological prospective. In Rhizobium Biology and Biotechnology; Springer: Cham, Switzerland, 2017; pp. 105–134. [Google Scholar] [CrossRef]
Cultivar | Fungal Endophyte | KASP | Number of Seedlings |
---|---|---|---|
Alto | AR1 | + | 6 |
− | 6 | ||
AR37 | + | 5 | |
− | 5 | ||
SE | + | 6 | |
− | 2 | ||
WE | NA | 6 | |
Trojan | AR37 | + | 6 |
− | 6 |
Species | Cultivar | Source | Location |
---|---|---|---|
Lolium perenne | Trojan | 20008 | Dawsons Rd, Ashburton |
20040 | Surveyors Rd, Ashburton | ||
20052 | Wards Rd, Aylesbury | ||
20057 | Hinds River Rd, Ashburton | ||
20076 | Longbeach Rd, Ashburton | ||
20090 | Terrace Rd, Ashburton | ||
20094 | Pooles Rd, Ashburton | ||
20111 | Pendarves Rakaia Rd, Ashburton | ||
20121 | Winslow Rd, Ashburton | ||
20129 | Milford, Temuka | ||
20142 | Grahams Rd, Ashburton | ||
20184 | Hoskyns Rd, Kirwee | ||
20185 | Hoskyns Rd, Kirwee |
Homology to Isolates | Any Rank (% of Reps) | Rank 1 (% of Reps) | |||||
---|---|---|---|---|---|---|---|
OTU | Name | 97% | 100% | NZ | SS | NZ | SS |
OTU_1 | g_Pantoea | Erwinia persicina | 100% | 100% | 54% | 40% | |
OTU_2 | g_Duganella | 99% | 85% | 6% | 6% | ||
OTU_3 | g_Pseudomonas_6 | Pseudomonas poae | Pseudomonas poae | 51% | 81% | 2% | 11% |
OTU_4 | g_Allo-Neo-Para-Rhizobium | Rhizobium skierniewicense | Rhizobium skierniewicense | 91% | 79% | 1% | 0% |
OTU_5 | g_Massilia | Massilia aurea | 99% | 77% | 3% | 2% | |
OTU_6 | f_Enterobacteriaceae_1 | Erwinia persicina | Erwinia persicina | 43% | 75% | 6% | 6% |
OTU_7 | g_Pseudomonas_5 | Pseudomonas cichorii | Pseudomonas cichorii | 0% | 58% | 0% | 4% |
OTU_8 | g_Pseudomonas_2 | Pseudomonas cichorii | 3% | 52% | 1% | 17% | |
OTU_9 | f_Burkholderiaceae | Acidovorax lacteus | 0% | 48% | 0% | 2% | |
OTU_10 | g_Pseudomonas_4 | Pseudomonas cichorii | 100% | 40% | 8% | 0% | |
OTU_11 | g_Flavobacterium | 13% | 38% | 0% | 2% | ||
OTU_12 | g_Pseudomonas_1 | Pseudomonas cichorii | 85% | 33% | 11% | 0% | |
OTU_13 | g_Pseudomonas_3 | Pseudomonas poae | 25% | 29% | 3% | 9% | |
OTU_14 | f_Enterobacteriaceae_2 | Erwinia persicina | 22% | 0% | 3% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tannenbaum, I.; Rodoni, B.; Spangenberg, G.; Mann, R.; Sawbridge, T. An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding. Microorganisms 2021, 9, 1205. https://doi.org/10.3390/microorganisms9061205
Tannenbaum I, Rodoni B, Spangenberg G, Mann R, Sawbridge T. An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding. Microorganisms. 2021; 9(6):1205. https://doi.org/10.3390/microorganisms9061205
Chicago/Turabian StyleTannenbaum, Ian, Brendan Rodoni, German Spangenberg, Ross Mann, and Tim Sawbridge. 2021. "An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding" Microorganisms 9, no. 6: 1205. https://doi.org/10.3390/microorganisms9061205
APA StyleTannenbaum, I., Rodoni, B., Spangenberg, G., Mann, R., & Sawbridge, T. (2021). An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding. Microorganisms, 9(6), 1205. https://doi.org/10.3390/microorganisms9061205