Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Media
2.2. Microsatellite Genotyping (MLVA-14)
2.3. Minisatellite Typing (MLVA-31)
2.4. Typeability of SWIO Strains with XAC1051-qPCR
2.5. Detached Leaf Assay-Based Pathogenicity Tests
2.6. Attached Leaf Assay-Based Pathogenicity and in Planta Growth of Lineage 1 Strains
3. Results
3.1. Genetic Diversity among Strains from Different Islands in the SWIO Region Revealed by Microsatellite Typing and Cop-PCR
3.2. Minisatellite-Based Assignation of SWIO Strains to X. citri pv. citri Genetic Lineages
3.3. Pathogenicity Assays Confirm the Prevalence of Pathotype A and the Limited Presence of Pathotype A* in the SWIO Region
3.4. Relative Virulence of SWIO Strains from the Four Major Genetic Clusters on Three Citrus Species
4. Discussion
4.1. Genetic Lineage 1 is Markedly Prevalent in the SWIO Region, Displays a Geographic Structure and Sporadically Cohabits with Nonepidemic Lineage 4 Strains
4.2. The Seychelles Host Genetically Diverse X. citri pv. citri Pathotype A Strains Differing in Pathogenicity
4.3. Microsatellite Typing Suggests that the Pathogen’s Inter- and Intra-Island Movements Differ
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D.; McNair, S.; Janecka, J.; Wightman, J.; Simmonds, C.; O’Connell, C.; Wong, E.; Russel, L.; Zern, J.; Aquino, T.; et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 2001, 84, 1–20. [Google Scholar] [CrossRef]
- Vurro, M.; Bonciani, B.; Vannacci, G. Emerging infectious diseases of crop plants in developing countries: Impact on agriculture and socio-economic consequences. Food Secur. 2010, 2, 113–132. [Google Scholar] [CrossRef]
- Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2013, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef]
- Wu, G.A.; Terol, J.; Ibanez, V.; Lopez-Garcia, A.; Perez-Roman, E.; Borreda, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomonas axonopodis pvcitri: Factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Graham, J.H. A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens. Phytopathology 1992, 82, 930–935. [Google Scholar] [CrossRef]
- Vernière, C.; Gottwald, T.R.; Pruvost, O. Disease development and symptom expression of Xanthomonas axonopodis pv. citri in various citrus plant tissues. Phytopathology 2003, 93, 832–843. [Google Scholar] [CrossRef]
- Vernière, C.; Hartung, J.S.; Pruvost, O.P.; Civerolo, E.L.; Alvarez, A.M.; Maestri, P.; Luisetti, J. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur. J. Plant Pathol. 1998, 104, 477–487. [Google Scholar] [CrossRef]
- Sun, X.A.; Stall, R.E.; Jones, J.B.; Cubero, J.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N.; Schubert, T.S.; Chaloux, P.H.; Stromberg, V.K.; et al. Detection and characterization of a new strain of citrus canker bacteria from key Mexican lime and Alemow in South Florida. Plant Dis. 2004, 88, 1179–1188. [Google Scholar] [CrossRef]
- Bull, C.T.; Koike, S.T. Practical benefits of knowing the enemy: Modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2015, 53, 157–180. [Google Scholar] [CrossRef]
- Vernière, C.; Bui Thi Ngoc, L.; Jarne, P.; Ravigné, V.; Guérin, F.; Gagnevin, L.; Le Mai, N.; Chau, N.M.; Pruvost, O. Highly polymorphic markers reveal the establishment of an invasive lineage of the citrus bacterial pathogen Xanthomonas citri pv. citri in its area of origin. Environ. Microbiol. 2014, 16, 2226–2237. [Google Scholar] [CrossRef]
- Pruvost, O.; Magne, M.; Boyer, K.; Leduc, A.; Tourterel, C.; Drevet, C.; Ravigné, V.; Gagnevin, L.; Guérin, F.; Chiroleu, F.; et al. A MLVA genotyping scheme for global surveillance of the citrus pathogen Xanthomonas citri pv. citri suggests a worldwide geographical expansion of a single genetic lineage. PLoS ONE 2014, 9, e98129. [Google Scholar] [CrossRef]
- Leduc, A.; Traoré, Y.N.; Boyer, K.; Magne, M.; Grygiel, P.; Juhasz, C.; Boyer, C.; Guérin, F.; Wonni, I.; Ouedraogo, L.; et al. Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ. Microbiol. 2015, 17, 4429–4442. [Google Scholar] [CrossRef]
- Pruvost, O.; Boyer, K.; Ravigné, V.; Richard, D.; Vernière, C. Deciphering how plant pathogenic bacteria disperse and meet: Molecular epidemiology of Xanthomonas citri pv. citri at microgeographic scales in a tropical area of Asiatic citrus canker endemicity. Evol. Appl. 2019, 12, 1523–1538. [Google Scholar] [CrossRef]
- Gordon, J.L.; Lefeuvre, P.; Escalon, A.; Barbe, V.; Cruveiller, S.; Gagnevin, L.; Pruvost, O. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genom. 2015, 16, 1098. [Google Scholar] [CrossRef]
- Bui Thi Ngoc, L.; Vernière, C.; Pruvost, O.; Kositcharoenkul, N.; Phawichit, S. First report in Thailand of Xanthomonas axonopodis pv. citri-A* causing citrus canker on lime. Plant Dis. 2007, 91, 771. [Google Scholar] [CrossRef]
- Derso, E.; Vernière, C.; Pruvost, O. First report of Xanthomonas citri pv. citri-A* causing citrus canker on lime in Ethiopia. Plant Dis. 2009, 93, 203. [Google Scholar] [CrossRef]
- Pruvost, O.; Goodarzi, T.; Boyer, K.; Soltaninejad, H.; Escalon, A.; Alavi, S.M.; Javegny, S.; Boyer, C.; Cottyn, B.; Gagnevin, L.; et al. Genetic structure analysis of strains causing citrus canker in Iran reveals the presence of two different lineages of Xanthomonas citri pv. citri pathotype A*. Plant Pathol. 2015, 64, 776–784. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus canker: The pathogen and its impact. Plant Health Prog. 2002, 3, 15. [Google Scholar] [CrossRef]
- Richard, D.; Ravigné, V.; Rieux, A.; Facon, B.; Boyer, C.; Boyer, K.; Grygiel, P.; Javegny, S.; Terville, M.; Canteros, B.I.; et al. Adaptation of genetically monomorphic bacteria: Evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol. Ecol. 2017, 26, 2131–2149. [Google Scholar] [CrossRef] [PubMed]
- Behlau, F.; Gochez, A.M.; Jones, J.B. Diversity and copper resistance of Xanthomonas affecting citrus. Trop. Plant Pathol. 2020, 45, 200–212. [Google Scholar] [CrossRef]
- Richard, D.; Tribot, N.; Boyer, C.; Terville, M.; Boyer, K.; Javegny, S.; Roux-Cuvelier, M.; Pruvost, O.; Moreau, A.; Chabirand, A.; et al. First report of copper-resistant Xanthomonas citri pv. citri pathotype A causing Asiatic citrus canker in Réunion, France. Plant Dis. 2017, 101, 503. [Google Scholar] [CrossRef]
- Aubert, B. Vergers de la Réunion et de l’Océan Indien. In Hommes et Fruits en Pays du Sud; CIRAD: Montpellier, France, 2014; pp. 111–166. [Google Scholar]
- Grygiel, P.; Seny-Couty, A.; Abdou Hassani, F.; Boyer, C.; Boyer, K.; Vernière, C.; Pruvost, O.; Hamza, A.A. First report of Xanthomonas citri pv. citri pathotype A causing Asiatic citrus canker in Grande Comore and Anjouan. Plant Dis. 2014, 98, 1739. [Google Scholar] [CrossRef]
- Pruvost, O.; Roumagnac, P.; Gaube, C.; Chiroleu, F.; Gagnevin, L. New media for the semi-selective isolation and enumeration of Xanthomonas campestris pv. mangiferaeindicae, the causal agent of mango bacterial black spot. J. Appl. Microbiol. 2005, 99, 803–815. [Google Scholar] [CrossRef]
- Behlau, F.; Canteros, B.I.; Jones, J.B.; Graham, J.H. Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp citri. Eur. J. Plant Pathol. 2012, 133, 949–963. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Ferro, J.A.; Reinach, F.C.; Farah, C.S.; Furlan, L.R.; Quaggio, R.B.; Monteiro-Vitorello, C.B.; Van Sluys, M.A.; Almeida, N.F.; Alves, L.M.; et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417, 459–463. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef]
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinform. 2012, 13, 87. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Robene, I.; Maillot-Lebon, V.; Chabirand, A.; Moreau, A.; Becker, N.; Moumene, A.; Rieux, A.; Campos, P.; Gagnevin, L.; Gaudeul, M.; et al. Development and comparative validation of genomic-driven PCR-based assays to detect Xanthomonas citri pv. citri in citrus plants. BMC Microbiol. 2020, 20, 296. [Google Scholar] [CrossRef]
- Favaro, M.A.; Micheloud, N.G.; Roeschlin, R.A.; Chiesa, M.A.; Castagnaro, A.P.; Vojnov, A.A.; Gmitter, F.G., Jr.; Gadea, J.; Rista, L.M.; Gariglio, N.F.; et al. Surface barriers of mandarin ‘Okitsu’ leaves make a major contribution to canker disease resistance. Phytopathology 2014, 104, 970–976. [Google Scholar] [CrossRef]
- Reed, H.S.; HIrano, E. The density of stomata in citrus leaves. J. Agric. Res. 1931, 43, 209–222. [Google Scholar]
- Simko, I.; Piepho, H.P. The Area Under the Disease Progress Stairs: Calculation, advantage, and application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2019; p. 608. [Google Scholar]
- Scherm, H.; Ojiambo, P.S. Applications of survival analysis in botanical epidemiology. Phytopathology 2004, 94, 1022–1026. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; p. 495. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Escalon, A.; Javegny, S.; Vernière, C.; Noël, L.D.; Vital, K.; Poussier, S.; Hajri, A.; Boureau, T.; Pruvost, O.; Arlat, M.; et al. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. Mol. Plant Pathol. 2013, 14, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Pruvost, O.; Boher, B.; Brocherieux, C.; Nicole, M.; Chiroleu, F. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 2002, 92, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Timmer, L.W.; Gottwald, T.R.; Zitko, S.E. Bacterial exudation from lesions of asiatic citrus canker and citrus bacterial spot. Plant Dis. 1991, 75, 192–195. [Google Scholar] [CrossRef]
- Richard, D.; Rieux, A.; Lefeuvre, P.; Hamza, A.; Lobin, K.K.; Naiken, M.; Stravens, R.; Boyer, C.; Boyer, K.; Javegny, S.; et al. Draft genome sequences of 284 Xanthomonas citri pv. citri strains causing Asiatic citrus canker. Microbiol. Resour. Announc. 2021, 10, 1. [Google Scholar] [CrossRef]
- Estoup, A.; Jarne, P.; Cornuet, J.M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 2002, 11, 1591–1604. [Google Scholar] [CrossRef]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef]
- Favaro, M.A.; Molina, M.C.; Roeschlin, R.A.; Gadea, J.; Gariglio, N.; Marano, M.R. Different responses in mandarin cultivars uncover a role of cuticular waxes in the resistance to citrus canker. Phytopathology 2020, 110, 1791–1801. [Google Scholar] [CrossRef]
- Newberry, E.A.; Bhandari, R.; Minsavage, G.V.; Timilsina, S.; Jibrin, M.O.; Kemble, J.; Sikora, E.J.; Jones, J.B.; Potnis, N. Independent evolution with the gene flux originating from multiple Xanthomonas species explains genomic heterogeneity in Xanthomonas perforans. Appl. Environ. Microbiol. 2019, 85, e00885-19. [Google Scholar] [CrossRef]
- Newberry, E.; Bhandari, R.; Kemble, J.; Sikora, E.; Potnis, N. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ. Microbiol. 2020, 22, 2693–2708. [Google Scholar] [CrossRef]
Island | N 1 | NH 2 | A 3 | AP 4 | HE 5 | Cluster 6 |
---|---|---|---|---|---|---|
The Comoros | ||||||
Anjouan | 21 | 19 | 3.786 | 0.000 | 0.430 | GC1 (95%) |
Grande Comore | 78 | 51 | 3.604 | 0.000 | 0.490 | GC1 (100%) |
Mayotte | 92 | 56 | 3.117 | 0.185 | 0.439 | GC1 (99%) |
Moheli | 86 | 78 | 5.644 | 0.082 | 0.666 | GC1 (74%) |
The Mascarenes | ||||||
Mauritius | 133 | 73 | 4.013 | 0.083 | 0.468 | GC1 (95%) |
Réunion 7 | 1320 | 789 | 5.289 | 0.455 | 0.633 | GC1 (98 %) |
Rodrigues | 73 | 63 | 5.265 | 0.014 | 0.649 | GC1 (63%) |
The Seychelles | ||||||
Mahé | 82 | 46 | 3.512 | 0.549 | 0.680 | GC2 (54%) GC3 (30%) GC4 (16%) |
Cluster (Microsatellite Data) | Country (Archipelago) | Source | n | Genetic Lineage (Minisatellite Data) 1 |
---|---|---|---|---|
GC1 | Anjouan (The Comoros) | This study | 16 | 1 |
GC1 | Grande Comore (The Comoros) | This study | 5 | 1 |
GC1 | Mayotte (The Comoros) | This study | 56 | 1 |
GC1 | Moheli (The Comoros) | This study | 22 | 1 |
GC1 | Mauritius (The Mascarenes) | This study | 25 | 1 |
GC1 | Rodrigues (The Mascarenes) | This study | 11 | 1 |
GC1 | Réunion (The Mascarenes) | This study | 25 | 1 |
GC1 | Réunion (The Mascarenes) | [23] | 162 | 1 |
GC2 | Mahé (The Seychelles) | This study | 13 | 1 |
GC3 | Mahé (The Seychelles) | This study | 6 | 1 |
GC4 | Mahé (The Seychelles) | This study | 5 | 1 |
minor/singleton | Anjouan (The Comoros) | This study | 1 | 1 |
minor/singleton | Mayotte (The Comoros) | This study | 1 | 1 |
minor/singleton | Moheli (The Comoros) | This study | 18 | 1 |
minor/singleton | Moheli (The Comoros) | This study | 1 | 4 |
minor/singleton | Mauritius (The Mascarenes) | This study | 4 | 1 |
minor/singleton | Mauritius (The Mascarenes) | This study | 2 | 4 |
minor/singleton | Rodrigues (The Mascarenes) | This study | 24 | 1 |
minor/singleton | Réunion (The Mascarenes) | This study | 10 | 1 |
minor/singleton | Réunion (The Mascarenes) | This study | 1 | 4 |
minor/singleton | Réunion (The Mascarenes) | [23] | 5 | 1 |
Citron | Mandarin | Sweet Orange | |||||
---|---|---|---|---|---|---|---|
Exuded | Total | Exuded | Total | Exuded | Total | ||
ANOVA probability | 0.002 | 0.004 | 0.006 | < 0.001 | < 0.001 | 0.025 | |
GC | Strain | Log-transformed cfu lesion−1 compared using Tukey’s tests | |||||
1 | LH241 | 6.69 ab | 7.43 a | 6.20 ab | 7.33 abc | 6.97 ab | 7.43 ab |
1 | LM089-41 | 7.00 a | 7.41 a | 6.63 a | 7.62 a | 6.88 abc | 7.27 ab |
1 | LN005-4 | 6.65 ab | 7.08 ab | 6.20 ab | 6.99 abc | 6.91 abc | 7.58 a |
1 | LN007-3 | 6.47 b | 7.30 ab | 6.30 ab | 7.21 abc | 6.79 abc | 7.47 ab |
2 | JZ092 | 6.45 b | 7.12 ab | 6.29 ab | 7.19 abc | 6.98 abc | 7.32 ab |
2 | LB100-1 | 6.56 ab | 7.14 ab | 5.93 ab | 6.79 bc | 6.52 c | 6.90 b |
2 | LJ001 | 6.54 b | 6.92 ab | 6.50 ab | 7.49 ab | 6.72 abc | 7.07 ab |
2 | LP029-15 | 6.80 ab | 7.09 ab | 5.65 ab | 6.60 c | 6.39 c | 7.19 ab |
3 | JZ094 | 6.16 b | 6.75 ab | 6.12 ab | 7.13 abc | 6.70 abc | 7.01 ab |
3 | LP027-3 | 6.75 ab | 7.28 ab | 5.64 ab | 6.49 c | 6.88 abc | 7.38 ab |
3 | LP027-5 | 6.32 b | 6.64 b | 6.49 ab | 7.07 abc | 6.60 bc | 7.23 ab |
3 | LP027-13 | 6.58 ab | 7.06 ab | 5.85 ab | 6.89 abc | 6.52 c | 7.12 ab |
4 | LP028-2 | 6.84 ab | 7.36 a | 5.60 b | 6.57 c | 6.46 bc | 7.17 ab |
4 | LP028-3 | 6.73 ab | 7.15 ab | 5.70 ab | 6.64 c | 7.02 a | 7.39 ab |
4 | LP028-5 | 6.66 ab | 7.00 ab | 5.92 ab | 6.63 bc | 6.63 abc | 7.34 ab |
4 | LP028-6 | 6.80 ab | 7.16 ab | 6.11 ab | 6.82 c | 6.69 abc | 7.31 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruvost, O.; Richard, D.; Boyer, K.; Javegny, S.; Boyer, C.; Chiroleu, F.; Grygiel, P.; Parvedy, E.; Robène, I.; Maillot-Lebon, V.; et al. Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms 2021, 9, 945. https://doi.org/10.3390/microorganisms9050945
Pruvost O, Richard D, Boyer K, Javegny S, Boyer C, Chiroleu F, Grygiel P, Parvedy E, Robène I, Maillot-Lebon V, et al. Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms. 2021; 9(5):945. https://doi.org/10.3390/microorganisms9050945
Chicago/Turabian StylePruvost, Olivier, Damien Richard, Karine Boyer, Stéphanie Javegny, Claudine Boyer, Frédéric Chiroleu, Pierre Grygiel, Evelyne Parvedy, Isabelle Robène, Véronique Maillot-Lebon, and et al. 2021. "Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region" Microorganisms 9, no. 5: 945. https://doi.org/10.3390/microorganisms9050945
APA StylePruvost, O., Richard, D., Boyer, K., Javegny, S., Boyer, C., Chiroleu, F., Grygiel, P., Parvedy, E., Robène, I., Maillot-Lebon, V., Hamza, A., Lobin, K. K., Naiken, M., & Vernière, C. (2021). Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms, 9(5), 945. https://doi.org/10.3390/microorganisms9050945