Investigation of Commensal Escherichia coli Populations of Cormorant Hatchlings in the Absence of Anthropogenic Impacts in Remote Areas of West Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions
2.2. Study Area
2.3. Collection of Bacterial Isolates
2.4. Antimicrobial Susceptibility Testing
2.5. DNA Preparation, Virulence, and ECoR Genotyping
2.6. E. coli Adhesion Assay
2.7. Statistical Analyses
2.8. Ethics Statement
3. Results
3.1. Clonal Diversity of E. coli Populations of Two Cormorant Colonies
3.2. Virulence-Associated Gene Profiles and Phylogenetic Affiliation
3.3. Adhesion Assays
3.4. exVAG Profiles of E. coli and Relationship between Different Colonization Parameters
3.5. Antimicrobial Susceptibility and Possible Correlations with Adhesion Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huffnagle, G.B. The Microbiota and Allergies/Asthma. PLoS Pathog. 2010, 6, e1000549. [Google Scholar] [CrossRef] [Green Version]
- Rödiger, S.; Kramer, T.; Frömmel, U.; Weinreich, J.; Roggenbuck, D.; Guenther, S.; Schaufler, K.; Schröder, C.; Schierack, P. Intestinal E. Coli Colonization in a Mallard Duck Population over Four Consecutive Winter Seasons. Environ. Microbiol. 2015, 17, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Conway, T.; Cohen, P.S. Commensal and Pathogenic E. Coli Metabolism in the Gut. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Schierack, P.; Walk, N.; Ewers, C.; Wilking, H.; Steinrück, H.; Filter, M.; Wieler, L.H. ExPEC-Typical Virulence-Associated Genes Correlate with Successful Colonization by Intestinal E. Coli in a Small Piglet Group. Environ. Microbiol. 2008, 10, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Smith, D.; Hutkins, R.W. Measurements of Fitness and Competition in Commensal E. Coli O157:H7 Strains. Appl. Environ. Microbiol. 2004, 70, 6466–6472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic E. Coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. E. Coli from Animal Reservoirs as a Potential Source of Human Extraintestinal Pathogenic E. Coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tannock, G.W. Molecular Assessment of Intestinal Microflora. Am. J. Clin. Nutr. 2001, 73, 410s–414s. [Google Scholar] [CrossRef] [Green Version]
- Schierack, P.; Römer, A.; Jores, J.; Kaspar, H.; Guenther, S.; Filter, M.; Eichberg, J.; Wieler, L.H. Isolation and Characterization of Intestinal E. Coli Clones from Wild Boars in Germany. Appl. Environ. Microbiol. 2009, 75, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Schierack, P.; Kadlec, K.; Guenther, S.; Filter, M.; Schwarz, S.; Ewers, C.; Wieler, L.H. Antimicrobial Resistances Do Not Affect Colonization Parameters of Intestinal E. Coli in a Small Piglet Group. Gut Pathog. 2009, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Semmler, T.; Stubbe, A.; Stubbe, M.; Wieler, L.H.; Schaufler, K. Chromosomally Encoded ESBL Genes in E. Coli of ST38 from Mongolian Wild Birds. J. Antimicrob. Chemother. 2017, 72, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Merlino, J.; Siarakas, S.; Robertson, G.J.; Funnell, G.R.; Gottlieb, T.; Bradbury, R. Evaluation of CHROMagar Orientation for Differentiation and Presumptive Identification of Gram-Negative Bacilli and Enterococcus Species. J. Clin. Microbiol. 1996, 34, 1788–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, C.; Guenther, S.; Wieler, L.H.; Schierack, P. Mallard Ducks—A Waterfowl Species with High Risk of Distributing E. Coli Pathogenic for Humans. Environ. Microbiol. Rep. 2009, 1, 510–517. [Google Scholar] [CrossRef]
- Guenther, S.; Filter, M.; Tedin, K.; Szabo, I.; Wieler, L.H.; Nöckler, K.; Walk, N.; Schierack, P. Enterobacteriaceae Populations during Experimental Salmonella Infection in Pigs. Vet. Microbiol. 2010, 142, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L.; Shryock, T.R.; Apley, M.; Brown, S.D.; Gray, J.T.; Heine, H.; Hunter, R.P.; Mevius, D.J.; Paich, M.G.; Silley, P. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard—Third Edition; Clinical and Labaratory Standards Institute: Annapolis, MD, USA, 2008. [Google Scholar]
- Frömmel, U.; Lehmann, W.; Rödiger, S.; Böhm, A.; Nitschke, J.; Weinreich, J.; Groß, J.; Roggenbuck, D.; Zinke, O.; Ansorge, H.; et al. Adhesion of Human and Animal E. Coli Strains in Association with Their Virulence-Associated Genes and Phylogenetic Origins. Appl. Environ. Microbiol. 2013, 79, 5814–5829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rödiger, S.; Schierack, P.; Böhm, A.; Nitschke, J.; Berger, I.; Frömmel, U.; Schmidt, C.; Ruhland, M.; Schimke, I.; Roggenbuck, D.; et al. A Highly Versatile Microscope Imaging Technology Platform for the Multiplex Real-Time Detection of Biomolecules and Autoimmune Antibodies. In Molecular Diagnostics; Seitz, H., Schumacher, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–74. ISBN 9783642376917. [Google Scholar]
- Herzer, P.J.; Inouye, S.; Inouye, M.; Whittam, T.S. Phylogenetic Distribution of Branched RNA-Linked Multicopy Single-Stranded DNA among Natural Isolates of E. Coli. J. Bacteriol. 1990, 172, 6175–6181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and Simple Determination of the E. Coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont E. Coli Phylo-typing Method Revisited: Improvement of Specificity and Detection of New Phylo-groups. Available online: https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12019 (accessed on 22 January 2021).
- Ali, A.; Kolenda, R.; Khan, M.M.; Weinreich, J.; Li, G.; Wieler, L.H.; Tedin, K.; Roggenbuck, D.; Schierack, P. Novel Avian Pathogenic E. Coli Genes Responsible for Adhesion to Chicken and Human Cell Lines. Appl. Environ. Microbiol. 2020, 86, e01068-20. [Google Scholar] [CrossRef]
- Schierack, P.; Kleta, S.; Tedin, K.; Babila, J.T.; Oswald, S.; Oelschlaeger, T.A.; Hiemann, R.; Paetzold, S.; Wieler, L.H. E. Coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells. PLoS ONE 2011, 6, e14712. [Google Scholar] [CrossRef] [Green Version]
- Kolenda, R.; Burdukiewicz, M.; Schiebel, J.; Rödiger, S.; Sauer, L.; Szabo, I.; Orłowska, A.; Weinreich, J.; Nitschke, J.; Böhm, A.; et al. Adhesion of Salmonella to Pancreatic Secretory Granule Membrane Major Glycoprotein GP2 of Human and Porcine Origin Depends on FimH Sequence Variation. Front. Microbiol. 2018, 9, 1905. [Google Scholar] [CrossRef] [PubMed]
- Willitzki, A.; Hiemann, R.; Peters, V.; Sack, U.; Schierack, P.; Rödiger, S.; Anderer, U.; Conrad, K.; Bogdanos, D.P.; Reinhold, D.; et al. New Platform Technology for Comprehensive Serological Diagnostics of Autoimmune Diseases. Clin. Dev. Immunol. 2012, 2012, 284740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. A Language and Environment of Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 3319242776. [Google Scholar]
- Großwendt, A.; Röglin, H. Improved Analysis of Complete-Linkage Clustering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 656–667. [Google Scholar]
- Fair, J.M.; Paul, E.; Jones, J. Guidelines to the Use of Wild Birds in Research; Ornithological Council: Washington, DC, USA, 2010. [Google Scholar]
- Schrag, S.J.; Perrot, V.; Levin, B.R. Adaptation to the Fitness Costs of Antibiotic Resistance in E. Coli. Proc. Biol. Sci. 1997, 264, 1287–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toloza, L.; Giménez, R.; Fábrega, M.J.; Alvarez, C.S.; Aguilera, L.; Cañas, M.A.; Martín-Venegas, R.; Badia, J.; Baldomà, L. The Secreted Autotransporter Toxin (Sat) Does Not Act as a Virulence Factor in the Probiotic E. Coli Strain Nissle 1917. BMC Microbiol. 2015, 15, 250. [Google Scholar] [CrossRef] [Green Version]
- Bingen-Bidois, M.; Clermont, O.; Bonacorsi, S.; Terki, M.; Brahimi, N.; Loukil, C.; Barraud, D.; Bingen, E. Phylogenetic Analysis and Prevalence of Urosepsis Strains of E. Coli Bearing Pathogenicity Island-like Domains. Infect. Immun. 2002, 70, 3216–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, C.; Li, G.; Wilking, H.; Kieβling, S.; Alt, K.; Antáo, E.-M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T.; et al. Avian Pathogenic, Uropathogenic, and Newborn Meningitis-Causing E. Coli: How Closely Related Are They? Int. J. Med. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef]
- Kuczkowski, M.; Krawiec, M.; Voslamber, B.; Książczyk, M.; Płoskońska-Bugla, G.; Wieliczko, A. Virulence Genes and the Antimicrobial Susceptibility of E. Coli, Isolated from Wild Waterbirds, in the Netherlands and Poland. Vector-Borne Zoonotic Dis. 2016, 16, 528–536. [Google Scholar] [CrossRef]
- Le Gall, T.; Clermont, O.; Gouriou, S.; Picard, B.; Nassif, X.; Denamur, E.; Tenaillon, O. Extraintestinal Virulence Is a Coincidental By-Product of Commensalism in B2 Phylogenetic Group E. Coli Strains. Mol. Biol. Evol. 2007, 24, 2373–2384. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing E. Coli in Birds of Prey from Germany and Mongolia. PLoS ONE 2012, 7, e53039. [Google Scholar] [CrossRef] [Green Version]
Number of Isolates Per PFGE Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 11 | 39 |
---|---|---|---|---|---|---|---|---|---|---|
Cormorant colony-1 | 43 * | 9 * | 2 | 1 | 0 | 1 | 3 | 0 | 0 | 1 |
Cormorant colony-2 | 21 | 5 | 1 | 1 | 2 | 0 | 0 | 2 | 1 | 0 |
Genes | Functions | Cormorants n = 60 | Mallard Ducks n = 220 | Other Wild Birds n = 54 | Total Wild Birds n = 334 | Wild Mammals n = 187 |
---|---|---|---|---|---|---|
kpsMTII | Adhesin | 21.7 | 14.4 | 0.0 * | 13.2 | 0.0 *,+ |
afa/dra | Adhesin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
sfa/foc | Adhesin | 3.3 | 9.3 | 9.3 | 8.4 | 2.1 + |
pic | Miscellaneous | 3.3 | 9.6 | 14.8 | 9.3 | 14.4 * |
hra | Adhesin | 53.3 | 17.8 * | 40.7 | 28.4 | 34.8 * |
hlyA | Toxin | 0.0 | 8.7 * | 0.0 | 5.7 | 3.7 |
ibeA | Invasin | 5.0 | 15.2 | 31.5 * | 16.2 | 16.0 * |
traTa | Protectin | 60.0 | 41.3 * | 38.9 * | 44.6 | 41.2 * |
sitchr | Siderophore | 20.0 | 33.4 * | 31.5 | 31.7 | 20.3 + |
ompA | Protectin | 100.0 | 99.5 | 100.0 | 99.7 | 99.5 |
iroNa | Siderophore | 0.0 | 21.6 * | 25.9 * | 18.6 | 10.2 *,+ |
sitep | Siderophore | 1.7 | 13.2 * | 7.4 | 10.2 | 4.3 + |
vat | Toxin | 33.3 | 22.9 | 24.1 | 25.1 | 15.5 *,+ |
tsha | Adhesin | 1.7 | 7.0 | 18.5 * | 8.1 | 3.2 + |
iucDa | Siderophore | 8.3 | 8.6 | 5.6 | 8.1 | 3.2 + |
cvi/cvaa | Protectin | 0.0 | 13.8 * | 1.9 | 9.3 | 4.3 |
papC | Adhesin | 0.0 | 9.1 * | 0.0 | 6.0 | 1.6 + |
issa | Protectin | 10.0 | 19.7 | 1.9 | 15.3 | 2.1 *,+ |
EAST1 | Toxin | 50.0 | 24.9 * | 29.6 * | 30.5 | 31.6 * |
cnf1/2 | Toxin | 0.0 | 7.3 | 0.0 | 4.8 | 0.0 + |
iutAa | Siderophore | 6.7 | 8.9 | 7.4 | 8.4 | 3.2 + |
mat | Adhesin | 93.3 | 74.8 * | 85.2 | 80.2 | 78.1 * |
fyuA | Siderophore | 23.3 | 37.2 * | 40.7 | 35.9 | 20.3 + |
sat | Toxin | 13.3 | 0.0 * | 0.0 * | 2.4 | 0.0 * |
malX | Miscellaneous | 33.3 | 22.3 | 25.9 | 25.1 | 17.1 *,+ |
csgA | Adhesin | 95.0 | 73.4 * | 90.7 | 80.5 | 89.3 + |
fimC | Adhesin | 100.0 | 92.7 | 96.3 | 94.6 | 96.8 |
irp2 | Siderophore | 31.7 | 34.9 | 33.3 | 34.1 | 20.3 + |
ireA | Siderophore | 6.7 | 3.9 | 5.6 | 4.8 | 12.8 + |
tia | Invasin | 1.7 | 2.0 | 18.5 * | 4.8 | 15.0 *,+ |
chuA | Siderophore | 23.3 | 46.9 * | 63.0 * | 45.8 | 41.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.M.; Kolenda, R.; Schierack, P.; Weinreich, J.; Rödiger, S.; Schierack, J.; Stubbe, M.; Lkhagvasuren, D.; Guenther, S.; Schaufler, K. Investigation of Commensal Escherichia coli Populations of Cormorant Hatchlings in the Absence of Anthropogenic Impacts in Remote Areas of West Mongolia. Microorganisms 2021, 9, 372. https://doi.org/10.3390/microorganisms9020372
Khan MM, Kolenda R, Schierack P, Weinreich J, Rödiger S, Schierack J, Stubbe M, Lkhagvasuren D, Guenther S, Schaufler K. Investigation of Commensal Escherichia coli Populations of Cormorant Hatchlings in the Absence of Anthropogenic Impacts in Remote Areas of West Mongolia. Microorganisms. 2021; 9(2):372. https://doi.org/10.3390/microorganisms9020372
Chicago/Turabian StyleKhan, Muhammad Moman, Rafal Kolenda, Peter Schierack, Jörg Weinreich, Stefan Rödiger, Jakob Schierack, Michael Stubbe, Davaa Lkhagvasuren, Sebastian Guenther, and Katharina Schaufler. 2021. "Investigation of Commensal Escherichia coli Populations of Cormorant Hatchlings in the Absence of Anthropogenic Impacts in Remote Areas of West Mongolia" Microorganisms 9, no. 2: 372. https://doi.org/10.3390/microorganisms9020372
APA StyleKhan, M. M., Kolenda, R., Schierack, P., Weinreich, J., Rödiger, S., Schierack, J., Stubbe, M., Lkhagvasuren, D., Guenther, S., & Schaufler, K. (2021). Investigation of Commensal Escherichia coli Populations of Cormorant Hatchlings in the Absence of Anthropogenic Impacts in Remote Areas of West Mongolia. Microorganisms, 9(2), 372. https://doi.org/10.3390/microorganisms9020372