The Effect of Lactiplantibacillus plantarum BX62 Alone or in Combination with Chitosan on the Qualitative Characteristics of Fresh-Cut Apples during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Apple Samples
2.1.2. Preparation of Coating Solution
2.2. Application of the Coatings
2.3. Determination of Weight Loss Rate
2.4. Browning Rate Assessment
2.5. Measurement of TA and SSC
2.6. Determination of TPC
2.7. Assay of Total Antioxidant Activity
2.8. Enzymatic Assays
2.9. Microbiological Analysis
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Browning Rate
3.3. TA and SSC
3.4. Total Phenolic Content
3.5. Total Antioxidant Activity
3.6. Enzyme Activities
3.7. Microbiological Analysis
3.8. Sensory Evaluation
3.9. Pearson Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbara, S.; Daniela, C.; Antonio, B.; Clelia, A.; Milena, S.; Rosaria, C.M. Viability of Lactobacillus Plantarum on Fresh-Cut Chitosan and Alginate-Coated Apple and Melon Pieces. Front. Microbiol. 2018, 9, 2538–2545. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent Developments in Shelf-Life Extension of Fresh-Cut Fruits and Vegetables by Application of Different Edible Coatings: A Review. LWT Food Sci. Technol. 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Mantilla, N.; Castell-Perez, M.E.; Gomes, C.; Moreira, R.G. Multilayered Antimicrobial Edible Coating and Its Effect on Quality and Shelf-Life of Fresh-Cut Pineapple (Ananas comosus) LWT Food Sci. Technol. 2013, 51, 37–43. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Echeverría, G.; Viñas, I.; López, M.L.; Abadias, M. Biopreservation of Fresh-Cut Pear Using Lactobacillus rhamnosus GG and Effect on Quality and Volatile Compounds. LWT Food Sci. Technol. 2018, 87, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Leneveu-Jenvrin, C.; Charles, F.; Barba, F.J.; Remize, F. Role of Biological Control Agents and Physical Treatments in Maintaining the Quality of Fresh and Minimally-Processed Fruit and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 2837–2855. [Google Scholar] [CrossRef] [PubMed]
- Abriana, A.; Laga, S. Application of Edible Coating from Chitosan Skin Shrimp (Paneus monodon) to Apple (Malus sylvestris) Minimum Processed. J. Food Studies. 2016, 5, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Artès, F.; Gómez, P.A.; Artés-Hernández, F. Physical, Physiological and Microbial Deterioration of Minimally Fresh Processed Fruits and Vegetables. Food Sci. Technol. Int. 2007, 13, 177–188. [Google Scholar] [CrossRef]
- De Oliveira, K.Á.; Fernandes, K.F.; de Souza, E.L. Current Advances on the Development and Application of Probiotic-Loaded Edible Films and Coatings for the Bioprotection of Fresh and Minimally Processed Fruit and Vegetables. Foods 2021, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Zudaire, L.; Viñas, I.; Plaza, L.; Iglesias, M.B.; Abadias, M.; Aguiló-Aguayo, I. Evaluation of Postharvest Calcium Treatment and Biopreservation with Lactobacillus rhamnosus GG on the Quality of Fresh-Cut ‘Conference’ Pears. J. Sci. Food Agric. 2018, 98, 4978–4987. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.J.; Sun, J.J.; Chen, L.; Niu, P.F.; Yang, X.B.; Guo, Y.R. Preparation and Characterization of Chitosan Film Incorporated with Thinned Young Apple Polyphenols as an Active Packaging Material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehtesham Nia, A.; Taghipour, S.; Siahmansour, S. Pre-Harvest Application of Chitosan and Postharvest Aloe Vera Gel Coating Enhances Quality of Table Grape (Vitis vinifera L. Cv. ‘Yaghouti’) during Postharvest Period. Food Chem. 2021, 347, 129012. [Google Scholar] [CrossRef]
- Molaei, S.; Soleimani, A.; Rabiei, V.; Razavi, F. Impact of Chitosan in Combination with Potassium Sorbate Treatment on Chilling Injury and Quality Attributes of Pomegranate Fruit during Cold Storage. J. Food Biochem. 2021, 45, e13633. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.S.; Anjum, M.A.; Naz, S.; Ali, S.; Hussain, S.; Azam, M.; Sardar, H.; Khaliq, G.; Canan, İ.; Ejaz, S. Incorporation of Ascorbic Acid in Chitosan-Based Edible Coating Improves Postharvest Quality and Storability of Strawberry Fruits. Int. J. Biol. Macromol. 2021, 189, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Bambace, M.F.; Alvarez, M.V.; Moreira, M.R. Ready-to-Eat Blueberries as Fruit-Based Alternative to Deliver Probiotic Microorganisms and Prebiotic Compounds. LWT Food Sci. Technol. 2021, 142, 111009. [Google Scholar] [CrossRef]
- Remize, F.; Leneveu-Jenvrin, C.; Garcia, C. Editorial for Special Issue “Lactic Acid Bacteria, Biopreservation Agents for Fruit and Vegetables”. Microorganisms 2021, 9, 939. [Google Scholar] [CrossRef]
- Bagher, H.S.M.; Dornoush, J. Bioactive Edible Film Based on Konjac Glucomannan and Probiotic Lactobacillus plantarum Strains: Physicochemical Properties and Shelf Life of Fresh-Cut Kiwis. J. Food Sci. 2021, 86, 513–522. [Google Scholar] [CrossRef]
- Yi, L.; Qi, T.; Ma, J.; Zeng, K. Genome and Metabolites Analysis Reveal Insights into Control of Foodborne Pathogens in Fresh-Cut Fruits by Lactobacillus pentosus MS031 Isolated from Chinese Sichuan Paocai. Postharvest Biol. Technol. 2020, 164, 111150. [Google Scholar] [CrossRef]
- Sorrentino, E.; Reale, A.; Tremonte, P.; Maiuro, L.; Succi, M.; Tipaldi, L.; Di Renzo, T.; Pannella, G.; Coppola, R. Lactobacillus plantarum 29 Inhibits Penicillium Spp. Involved in the Spoilage of Black Truffles (Tuber aestivum). J. Food Sci. 2013, 78, M1188–M1194. [Google Scholar] [CrossRef] [PubMed]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Tabanelli, G.; Montanari, C.; Gardini, F.; Lanciotti, R. Lactic Acid Bacteria and Natural Antimicrobials to Improve the Safety and Shelf-Life of Minimally Processed Sliced Apples and Lamb’s Lettuce. Food Microbiol. 2015, 47, 74–84. [Google Scholar] [CrossRef]
- Fang, X.; Duan, Q.C.; Wang, Z.; Li, F.Y.; Du, J.X.; Ke, W.C.; Liu, D.R.; Beier, R.C.; Guo, X.S.; Zhang, Y. Products of Lactobacillus delbrueckii Subsp. Bulgaricus Strain F17 and Leuconostoc lactis Strain H52 Are Biopreservatives for Improving Postharvest Quality of ‘Red Globe’ Grapes. Microorganisms 2020, 8, 656. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.L.; Guo, W.; Ke, W.C.; Bi, S.S.; Guo, X.S.; Zhang, Y. Lactobacillus delbrueckii Subsp. Bulgaricus F17 and Leuconostoc lactis H52 Supernatants Delay the Decay of Strawberry Fruits: A Microbiome Perspective. Food Funct. 2019, 10, 7767–7781. [Google Scholar] [CrossRef]
- Chen, M. Screening and Characterizing of Lactic Acid Bacteria with High Antioxidant Activity from the Tibetan Plateau. Master’s Thesis, Lanzhou University, Lanzhou, China, 2017. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1017715621.nh&DbName=CMFD2019 (accessed on 17 November 2021).
- Ding, W.R.; Shi, C.; Chen, M.; Zhou, J.W.; Long, R.J.; Guo, X.S. Screening for Lactic Acid Bacteria in Traditional Fermented Tibetan Yak Milk and Evaluating Their Probiotic and Cholesterol-Lowering Potentials in Rats Fed a High-Cholesterol Diet. J. Funct. Foods. 2017, 32, 324–332. [Google Scholar] [CrossRef]
- Chen, M.; Ke, W.C.; Bao, A.A.; Zhang, H.; Jing, P.X.; Zhang, J.; Ding, W. Screening of Lactic Acid Bacteria with High Antioxidant Capacity in Tibetan Plateau Yak Yogurt. Sci. Technol. Food Ind. 2016, 37, 201–205. [Google Scholar] [CrossRef]
- Saba, M.K.; Sogvar, O.B. Combination of Carboxymethyl Cellulose-Based Coatings with Calcium and Ascorbic Acid Impacts in Browning and Quality of Fresh-Cut Apples LWT Food Sci. Technol. 2016, 66, 165–171. [Google Scholar] [CrossRef]
- Keydis, M.; Marta, O.; Alberto, A.; Clara, G.G.C.; Eliana, V.M.; David, G.T.C. The Effect of Edible Chitosan Coatings Incorporated with Thymus Capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria × ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.L.; Luo, Y.G.; Zhou, B.; Ingram, D.T. Dual Effectiveness of Ascorbic Acid and Ethanol Combined Treatment to Inhibit Browning and Inactivate Pathogens on Fresh-Cut Apples. LWT Food Sci. Technol. 2017, 80, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.F.; Hu, Y.H.; Lin, H.T.; Liu, X.; Chen, Y.H.; Zhang, S.; Chen, Q.X. Inhibitory Effects of Propyl Gallate on Tyrosinase and Its Application in Controlling Pericarp Browning of Harvested Longan Fruits. J. Agric. Food Chem. 2013, 61, 2889–2895. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Applications of Salt Solutions before and after Harvest Affect the Quality and Incidence of Postharvest Gray Mold of ‘Italia’ Table Grapes Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of Hydroxypropylmethylcellulose and Chitosan Coatings with and without Bergamot Essential Oil on Quality and Safety of Cold-Stored Grapes. Postharvest Biol. Technol. 2010, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.R.; Tomadoni, B.; Martín-Belloso, O.; Soliva-Fortuny, R. Preservation of Fresh-Cut Apple Quality Attributes by Pulsed Light in Combination with Gellan Gum-Based Prebiotic Edible Coatings. LWT Food Sci. Technol. 2015, 64, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.Z.; Chai, W.M.; Ou-Yang, C.; Huang, Q.; Xu, X.H.; Peng, Y.Y. Antityrosinase Mechanism of Omeprazole and Its Application on the Preservation of Fresh-Cut Fuji Apple. Int. J. Biol. Macromol. 2018, 117, 538–545. [Google Scholar] [CrossRef]
- Ana, G.; David, S.; Eduardo, E.; Carla, N.; Maribel, A.; Célia, Q. Evaluation of Microbial Quality and Yeast Diversity in Fresh-Cut Apple. Food Microbiol. 2015, 51, 179–185. [Google Scholar] [CrossRef]
- Bambace, M.F.; Alvarez, M.V.; Moreira, M.D.R. Novel Functional Blueberries: Fructo-Oligosaccharides and Probiotic Lactobacilli Incorporated into Alginate Edible Coatings. Food Res Int. 2019, 122, 653–660. [Google Scholar] [CrossRef]
- Alegre, I.; Viñas, I.; Usall, J.; Anguera, M.; Altisent, R.; Abadias, M. Antagonistic Effect of Pseudomonas Graminis Cpa-7 against Foodborne Pathogens in Fresh-Cut Apples under Simulated Commercial Conditions. Food Microbiol. 2013, 33, 139–148. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Varghese, E. Improving the Shelf Life of Fresh-Cut ‘Royal Delicious’ Apple with Edible Coatings and Anti-Browning Agents. J. Food Sci. Technol. 2018, 55, 3767–3778. [Google Scholar] [CrossRef] [PubMed]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of Quality and Shelf-Life of Strawberries with Edible Coatings Enriched with Chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Effect of Chitosan and Sodium Alginate Edible Coatings on the Postharvest Quality of Fresh-Cut Nectarines during Storage. Fruits 2016, 71, 79–85. [Google Scholar] [CrossRef]
- Cropotova, J.; Tylewicz, U.; Cocci, E.; Romani, S.; Rosa, M.D. A Novel Fluorescence Microscopy Approach to Estimate Quality Loss of Stored Fruit Fillings as a Result of Browning. Food Chem. 2016, 194, 175–183. [Google Scholar] [CrossRef]
- Lamikanra, O.; Chen, J.C.; Banks, D.; Hunter, P.A. Biochemical and Microbial Changes during the Storage of Minimally Processed Cantaloupe. J. Agric. Food Chem. 2000, 48, 5955–5961. [Google Scholar] [CrossRef]
- Bizjak, J.; Slatnar, A.; Stampar, F.; Veberic, R. Changes in Quality and Biochemical Parameters in ‘Idared’ Apples during Prolonged Shelf Life and 1-MCP Treatment. Food Sci. Technol. Int. 2012, 18, 569–577. [Google Scholar] [CrossRef]
- Shyu, Y.S.; Chen, G.W.; Chiang, S.C.; Sung, W.C. Effect of Chitosan and Fish Gelatin Coatings on Preventing the Deterioration and Preserving the Quality of Fresh-Cut Apples. Molecules 2019, 24, 2008. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, A.K.; Gu, L. Antioxidant Capacity, Phenolic Content, Profiling of Phenolic Compounds in the Seeds, Skin, Pulp of Vitis rotundifolia (Muscadine Grapes) as Determined by Hplc-Dad-Esi-Ms(N). J. Agric. Food Chem. 2010, 58, 4681–4692. [Google Scholar] [CrossRef] [PubMed]
- Aneta, B.; Kristýna, B.; Pavlína, S.; Radek, V.; Pavel, J.; Petr, C.; František, Š.; Hana, S. Content of Major Phenolic Compounds in Apples: Benefits of Ultra-Low Oxygen Conditions in Long-Term Storage. J. Food Compos. Anal. 2020, 92, 103587. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Effects of Chitosan Coating on Enzymatic Browning and Decay during Postharvest Storage of Litchi (Litchi chinensis Sonn.) Fruit. Postharvest Biol. Technol. 1997, 12, 195–202. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Recent Advances in Controlling Polyphenol Oxidase Activity of Fruit and Vegetable Products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- Qiao, L.P.; Gao, M.; Zheng, J.X.; Zhang, J.Y.; Lu, L.F.; Liu, X. Novel Browning Alleviation Technology for Fresh-Cut Products: Preservation Effect of the Combination of Sonchus oleraceus L. Extract and Ultrasound in Fresh-Cut Potatoes. Food Chem. 2021, 348, 129132. [Google Scholar] [CrossRef] [PubMed]
- Narsaiah, K.; Wilson, R.A.; Gokul, K.; Mandge, H.M.; Jha, S.N.; Bhadwal, S.; Anurag, R.K.; Malik, R.K.; Vij, S. Effect of Bacteriocin-Incorporated Alginate Coating on Shelf-Life of Minimally Processed Papaya (Carica papaya L. ) Postharvest Biol. Technol. 2015, 100, 212–218. [Google Scholar] [CrossRef]
- Li, M.L.; Li, X.A.; Han, C.; Ji, N.N.; Jin, P.; Zheng, Y.H. Physiological and Metabolomic Analysis of Cold Plasma Treated Fresh-Cut Strawberries. J. Agric. Food Chem. 2019, 67, 4043–4053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological Safety of Ready-to-Eat Fresh-Cut Fruits and Vegetables Sold on the Canadian Retail Market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Solís-Contreras, G.A.; Rodríguez-Guillermo, M.C.; de la Luz Reyes-Vega, M.; Aguilar, C.N.; Rebolloso-Padilla, O.N.; Corona-Flores, J.; de Abril Alexandra Soriano-Melgar, L.; Ruelas-Chacon, X. Extending Shelf-Life and Quality of Minimally Processed Golden Delicious Apples with Three Bioactive Coatings Combined with Cinnamon Essential Oil. Foods 2021, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Ruiz, Y.; Grande-Tovar, C.D.; Navia Porras, D.P.; Sinning-Mangonez, A.; Delgado-Ospina, J.; Gonzalez-Locarno, M.; Maza Pautt, Y.; Chaves-Lopez, C. Packham’s Triumph Pears (Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil. Molecules 2021, 26, 725. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, A.; Sohrabvandi, S.; Mortazavian, A.M.; Jazaeri, S. Viability of Probiotic Bacteria and Some Chemical and Sensory Characteristics in Cornelian Cherry Juice during Cold Storage. Electron. J. Biotechnol. 2016, 21, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Khodaei, D.; Hamidi-Esfahani, Z. Influence of Bioactive Edible Coatings Loaded with Lactobacillus plantarum on Physicochemical Properties of Fresh Strawberries. Postharvest Biol. Technol. 2019, 156, 110944. [Google Scholar] [CrossRef]
- Yan, M.H.; Wang, B.H.; Sang, J.H.; Zhou, Y.N.; Wang, G.J.; Tabrac, H.T.; Meister, T.D.; Yu, Y.; Miao, J.L.; Liu, Z.M.; et al. Potential of Changchong Pear (Pyrus pyrifolia Nakai Cv. Changchong) to Improve the Growth and Survival of Probiotic lactobacilli Strains. LWT-Food Sci. Technol. 2021, 139, 110615. [Google Scholar] [CrossRef]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Barbosa, A.A.T.; de Araujo, H.G.S.; Matos, P.N.; Carnelossi, M.A.G.; de Castro, A.A. Effects of Nisin-Incorporated Films on the Microbiological and Physicochemical Quality of Minimally Processed Mangoes. Int. J. Food Microbiol. 2013, 164, 135–140. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||
AMB | Control | 2.63 ± 0.07 b | 2.25 ± 0.08 ab | 2.53 ± 0.23 a | 2.61 ± 0.17 b | 3.31 ± 0.05 a |
CT | 2.68 ± 0.14 b | <1.00 c | <1.00 c | <1.00 c | <1.00 c | |
BX62 | 3.28 ± 0.11 a | 2.52 ± 0.21 a | 2.56 ± 0.22 a | 2.49 ± 0.07 a | 2.29 ± 0.11 b | |
CT + BX62 | 3.11 ± 0.08 a | 2.05 ± 0.20 b | 1.75 ± 0.09 b | 1.19 ± 0.07 b | <1.00 c | |
LAB | BX62 | 8.98 ± 0.10 a | 6.13 ± 0.13 a | 3.53 ± 0.13 a | 3.33 ± 0.09 a | 2.53 ± 0.32 a |
CT + BX62 | 8.94 ± 0.11 a | 5.15 ± 0.07 b | 2.84 ± 0.11 b | 2.11 ± 0.05 b | 0.00 ± 0.00 b | |
APB | Control | 1.63 ± 0.01 a | 2.45 ± 0.21 b | 2.78 ± 0.14 a | 3.21 ± 0.08 a | 3.55 ± 0.12 a |
CT | 1.54 ± 0.07 a | <1.00 a | <1.00 c | <1.00 c | <1.00 b | |
BX62 | 1.63 ± 0.07 a | 2.46 ± 0.11 a | 2.42 ± 0.05 b | 2.91 ± 0.18 b | 3.40 ± 0.14 a | |
CT + BX62 | 1.73 ± 0.05 a | <1.00 b | <1.00 c | <1.00 c | <1.00 b | |
YAMs | Control | 1.63 ± 0.01 a | 1.87 ± 0.09 a | 2.31 ± 0.06 a | 2.65 ± 0.05 a | 2.58 ± 0.03 a |
CT | 1.52 ± 0.06 a | <1.00 c | <1.00 b | <1.00 b | <1.00 b | |
BX62 | 1.57 ± 0.04 a | 1.54 ± 0.05 b | 2.28 ± 0.13 a | 2.36 ± 0.10 a | 2.54 ± 0.13 a | |
CT + BX62 | 1.60 ± 0.11 a | <1.00 c | <1.00 b | <1.00 b | <1.00 b |
Index | Pearson Correlation Coefficient (r) | |||
---|---|---|---|---|
Control | CT | BX62 | CT + BX62 | |
WLR vs. AMB | 0.588 | −0.875 | −0.986 ** | −0.939 * |
WLR vs. APB | 0.998 ** | −0.875 | 0.922 * | −0.904 * |
WLR vs. YAMs | 0.930 * | −0.875 | 0.765 | −0.904 * |
WLR vs. LAB | -- | -- | −0.956 * | −0.991 ** |
BR vs. AMB | 0.633 | −0.659 | −0.743 | −0.904 * |
BR vs. APB | 0.978 ** | −0.659 | 0.842 | −0.687 |
BR vs. YAMs | 0.979 ** | −0.659 | 0.973 ** | −0.687 |
BR vs. LAB | -- | -- | −0.924 * | −0.953 * |
SSC vs. AMB | −0.460 | 0.895 * | 0.953 * | 0.935 * |
SSC vs. APB | −0.985 ** | 0.895 * | −0.951 * | 0.867 |
SSC vs. YAMs | −0.927 * | 0.895 * | −0.855 | 0.867 |
SSC vs. LAB | -- | -- | 0.982 ** | 0.990 ** |
DPPH vs. AMB | −0.573 | 0.810 | 0.879 * | 0.927 * |
DPPH vs. APB | −0.994 ** | 0.810 | −0.967 ** | 0.835 |
DPPH vs. YAMs | −0.977 ** | 0.810 | −0.911 * | 0.835 |
DPPH vs. LAB | -- | -- | 0.956 * | 0.988 ** |
POD vs. AMB | 0.475 | −0.900 * | −0.962 ** | −0.955 * |
POD vs. APB | 0.979 ** | −0.900 * | 0.971 ** | −0.840 |
POD vs. YAMs | 0.967 ** | −0.900 * | 0.842 | −0.840 |
POD vs. LAB | -- | -- | −0.971 ** | −0.992 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Tang, S.; Fang, X.; Wang, Z.; Jiang, Y.; Guo, X.; Zhu, J.; Zhang, Y. The Effect of Lactiplantibacillus plantarum BX62 Alone or in Combination with Chitosan on the Qualitative Characteristics of Fresh-Cut Apples during Cold Storage. Microorganisms 2021, 9, 2404. https://doi.org/10.3390/microorganisms9112404
Zhao Q, Tang S, Fang X, Wang Z, Jiang Y, Guo X, Zhu J, Zhang Y. The Effect of Lactiplantibacillus plantarum BX62 Alone or in Combination with Chitosan on the Qualitative Characteristics of Fresh-Cut Apples during Cold Storage. Microorganisms. 2021; 9(11):2404. https://doi.org/10.3390/microorganisms9112404
Chicago/Turabian StyleZhao, Qian, Shihua Tang, Xiang Fang, Zhuo Wang, Yu Jiang, Xusheng Guo, Jianning Zhu, and Ying Zhang. 2021. "The Effect of Lactiplantibacillus plantarum BX62 Alone or in Combination with Chitosan on the Qualitative Characteristics of Fresh-Cut Apples during Cold Storage" Microorganisms 9, no. 11: 2404. https://doi.org/10.3390/microorganisms9112404
APA StyleZhao, Q., Tang, S., Fang, X., Wang, Z., Jiang, Y., Guo, X., Zhu, J., & Zhang, Y. (2021). The Effect of Lactiplantibacillus plantarum BX62 Alone or in Combination with Chitosan on the Qualitative Characteristics of Fresh-Cut Apples during Cold Storage. Microorganisms, 9(11), 2404. https://doi.org/10.3390/microorganisms9112404