Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. E. coli Strains
2.2. Serological Typing
2.3. Antigenic Reactivity Compared between E. coli O104 and O9
2.4. Detection of Virulence Genes
2.5. Phylogenetic Group
2.6. Antimicrobial Sensitivity
2.7. Chromosomal Profiles by Pulse Field Gel Electrophoresis (PFGE)
3. Results
3.1. Origin of the Strains
3.2. Antigenic Elements Shared between E. coli O104 and O9
3.3. Serotypes, Phylogenetic Groups, Virulence Gene Content and Pathotypes of E. coli O104 Strains
3.4. Serotypes, Phylogenetic Groups and Pathotypes of E. coli O9 Strains
3.5. Serotypes, Phylogenetic Groups and Genes Associated with Virulence in Reference Strains
3.6. Sensitivity to Antimicrobials
3.7. Pulsed-Field Gel Electrophoresis (PFGE)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beutin, L.; Martin, A. Outbreak of Shiga Toxin–Producing Escherichia Coli (STEC) O104:H4 Infection in Germany Causes a Paradigm Shift with Regard to Human Pathogenicity of STEC Strains. J. Food Prot. 2012, 75, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Frank, C.; Faber, M.S.; Askar, M.; Bernard, H.; Fruth, A.; Gilsdorf, A.; Höhle, M.; Karch, H.; Krause, G.; Prager, R.; et al. Large and Ongoing Outbreak of Haemolytic Uraemic Syndrome, Germany, May 2011. Eurosurveillance 2011, 16. [Google Scholar] [CrossRef]
- Karch, H.; Denamur, E.; Dobrindt, U.; Finlay, B.B.; Hengge, R.; Johannes, L.; Ron, E.Z.; Tønjum, T.; Sansonetti, P.J.; Vicente, M. The Enemy within Us: Lessons from the 2011 European Escherichia Coli O104: H4 Outbreak. EMBO Mol. Med. 2012, 4, 841–848. [Google Scholar] [CrossRef]
- Scheutz, F.; Nielsen, E.M.; Frimodt-Møller, J.; Boisen, N.; Morabito, S.; Tozzoli, R.; Nataro, J.; Caprioli, A. Characteristics of the Enteroaggregative Shiga Toxin/Verotoxin-Producing Escherichia Coli O104: H4 Strain Causing the Outbreak of Haemolytic Uraemic Syndrome in Germany, May to June 2011. Eurosurveillance 2011, 16, 19889. [Google Scholar] [CrossRef] [Green Version]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia Coli Strain Associated with an Outbreak of Haemolytic Uraemic Syndrome in Germany, 2011: A Microbiological Study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.; Young, J.C.; Constantinou, N.; Frankel, G. Infection Strategies of Enteric Pathogenic Escherichia Coli. Gut Microbes 2012, 3, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia Coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, P.; Weagant, S.D.; Monday, S.R. Genetic Analysis for Virulence Factors in Escherichia Coli O104: H21 That Was Implicated in an Outbreak of Hemorrhagic Colitis. J. Clin. Microbiol. 2001, 39, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Monecke Stefan; Mariani-Kurkdjian Patricia; Bingen Edouard; Weill François-Xavier; Balière Charlotte; Slickers Peter; Ehricht Ralf Presence of Enterohemorrhagic Escherichia Coli ST678/O104:H4 in France Prior to 2011. Appl. Environ. Microbiol. 2011, 77, 8784–8786. [CrossRef] [Green Version]
- Alexander, D.; Hao, W.; Gilmour, M.; Zittermann, S.; Sarabia, A.; Melano, R.; Peralta, A.; Lombos, M.; Warren, K.; Amatnieks, Y.; et al. Escherichia Coli O104:H4 Infections and International Travel. Emerg. Infect. Dis. J. 2012, 18, 473. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Shiga Toxin-producing E. Coli (STEC) O104: H4 2011 Outbreaks in Europe: Taking Stock. EFSA J. 2011, 9, 2390. [Google Scholar]
- Frank, C.; Werber, D.; Cramer, J.P.; Askar, M.; Faber, M.; an der Heiden, M.; Bernard, H.; Fruth, A.; Prager, R.; Spode, A.; et al. Epidemic Profile of Shiga-Toxin–Producing Escherichia Coli O104:H4 Outbreak in Germany. N. Engl. J. Med. 2011, 365, 1771–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieler, L.H.; Semmler, T.; Eichhorn, I.; Antao, E.M.; Kinnemann, B.; Geue, L.; Karch, H.; Guenther, S.; Bethe, A. No Evidence of the Shiga Toxin-Producing E. Coli O104:H4 Outbreak Strain or Enteroaggregative E. Coli (EAEC) Found in Cattle Faeces in Northern Germany, the Hotspot of the 2011 HUS Outbreak Area. Gut Pathog. 2011, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, U.; Bernard, H.; Werber, D.; Böhmer, M.M.; Remschmidt, C.; Wilking, H.; Deleré, Y.; an der Heiden, M.; Adlhoch, C.; Dreesman, J.; et al. German Outbreak of Escherichia Coli O104:H4 Associated with Sprouts. N. Engl. J. Med. 2011, 365, 1763–1770. [Google Scholar] [CrossRef]
- Kauffmann, F. The Serology of the Coli Group. J. Immunol. 1947, 57, 71–100. [Google Scholar]
- DebRoy, C.; Fratamico, P.M.; Yan, X.; Baranzoni, G.; Liu, Y.; Needleman, D.S.; Tebbs, R.; O’Connell, C.D.; Allred, A.; Swimley, M. Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia Coli and Proposal for Adopting a New Nomenclature for O-Typing. PLoS ONE 2016, 11, e0147434. [Google Scholar]
- DebRoy, C.; Fratamico, P.M.; Roberts, E. Molecular Serogrouping of Escherichia Coli. Anim. Health Res. Rev. 2018, 19, 1–16. [Google Scholar] [CrossRef]
- Liu, B.; Furevi, A.; Perepelov, A.V.; Guo, X.; Cao, H.; Wang, Q.; Reeves, P.R.; Knirel, Y.A.; Wang, L.; Widmalm, G. Structure and Genetics of Escherichia Coli O Antigens. FEMS Microbiol. Rev. 2020, 44, 655–683. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, F.; Ørskov, I. 2 Serotyping of Escherichia Coli. Methods Microbiol. 1984, 14, 43–112. [Google Scholar]
- Cravioto, A.; Reyes, R.E.; Trujillo, F.; Uribe, F.; Navarro, A.; de la Roca, J.M.; Hernandez, J.M.; Perez, G.; VAZQUEZ, V. Risk of Diarrhea during the First Year of Life Associated with Initial and Subsequent Colonization by Specific Enteropathogens. Am. J. Epidemiol. 1990, 131, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Ochman, H.; Selander, R.K. Standard Reference Strains of Escherichia Coli from Natural Populations. J. Bacteriol. 1984, 157, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Schjørring, S.; Scheutz, F.; Torpdahl, M.; Larsson, J.; Møller Nielsen, E. Fourth External Quality Assessment Scheme for Typing of Verocytotoxin-Producing E. coli (VTEC); European Centre for Disease Prevention and Control ECDC: Stockholm, Sweden, 2014. [Google Scholar] [CrossRef]
- Schjørring, S.; Sørensen, G.; Kiil, K.; Scheutz, F.; Ligowska-Marzeta, M.; Møller Nielsen, E. Eighth External Quality Assessment Scheme for Typing of Shiga Toxin-Producing Escherichia coli; European Centre for Disease Prevention and Control ECDC: Stockholm, Sweden, 2019. [Google Scholar] [CrossRef]
- Ewing, W.H. Edwards and Ewing’s Identification of Enterobacteriaceae; Elsevier: New York, NY, USA, 1986. [Google Scholar]
- Navarro, A.; Eslava, C.; Perea, L.M.; Inzunza, A.; Delgado, G.; Morales-Espinosa, R.; Cheasty, T.; Cravioto, A. New Enterovirulent Escherichia Coli Serogroup 64474 Showingantigenic and Genotypic Relationships to Shigella Boydii 16. J. Med. Microbiol. 2010, 59, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H.; Plaschke, B.; Franke, S.; Rüssmann, H.; Schwarzkopf, A.; Heesemann, J.; Karch, H. Differentiation in Virulence Patterns of Escherichia Coli Possessing Eae Genes. Med. Microbiol. Immunol. 1994, 183, 23–31. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S. Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Beutin, L.; Karch, H. Molecular Analysis of the Plasmid-Encoded Hemolysin of Escherichia Coli O157: H7 Strain EDL 933. Infect. Immun. 1995, 63, 1055–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.B.; Mohamed, J.A.; Nataro, J.P.; DuPont, H.L.; Jiang, Z.-D.; Okhuysen, P.C. Virulence Characteristics and the Molecular Epidemiology of Enteroaggregative Escherichia Coli Isolates from Travellers to Developing Countries. J. Med. Microbiol. 2007, 56, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Nishi, J.; Sheikh, J.; Mizuguchi, K.; Luisi, B.; Burland, V.; Boutin, A.; Rose, D.J.; Blattner, F.R.; Nataro, J.P. The Export of Coat Protein from Enteroaggregative Escherichia Coli by a Specific ATP-Binding Cassette Transporter System. J. Biol. Chem. 2003, 278, 45680–45689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, I.F.N.; Boisen, N.; da Silva Quetz, J.; Havt, A.; de Carvalho, E.B.; Soares, A.M.; Lima, N.L.; Mota, R.M.S.; Nataro, J.P.; Guerrant, R.L.; et al. Prevalence of Enteroaggregative Escherichia Coli and Its Virulence-Related Genes in a Case-Control Study among Children from North-Eastern Brazil. J. Med. Microbiol. 2013, 62, 683–693. [Google Scholar] [CrossRef]
- Morales-Espinosa, R.; Hernández-Castro, R.; Delgado, G.; Mendez, J.L.; Navarro, A.; Manjarrez, Á.; Cravioto, A. UPEC Strain Characterization Isolated from Mexican Patients with Recurrent Urinary Infections. J. Infect. Dev. Ctries. 2016, 10, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Stell, A.L. Extended Virulence Genotypes of Escherichia Coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The C Lermont E Scherichia Coli Phylo-typing Method Revisited: Improvement of Specificity and Detection of New Phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Day, W.H.; Edelsbrunner, H. Efficient Algorithms for Agglomerative Hierarchical Clustering Methods. J. Classif. 1984, 1, 7–24. [Google Scholar] [CrossRef]
- Kogan, G.; Jann, B.; Jann, K. Structure of the Escherichia Coli 0104 Polysaccharide and Its Identity with the Capsular K9 Polysaccharide. FEMS Microbiol. Lett. 1992, 91, 135–140. [Google Scholar] [CrossRef]
- Delannoy, S.; Beutin, L.; Burgos, Y.; Fach, P. Specific Detection of Enteroaggregative Hemorrhagic Escherichia Coli O104: H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR. J. Clin. Microbiol. 2012, 50, 3485–3492. [Google Scholar] [CrossRef] [Green Version]
- Balabanova, Y.; Klar, S.; Delere, Y.; Wilking, H.; Faber, M.S.; Lassen, S.G.; Gilsdorf, A.; Dupke, S.; Nitschke, M.; Sayk, F. Serological Evidence of Asymptomatic Infections during Escherichia Coli O104: H4 Outbreak in Germany in 2011. PLoS ONE 2013, 8, e73052. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Cauich-Sánchez, P.I.; Trejo, A.; Gutiérrez, A.; Díaz, S.P.; Díaz, C.M.; Cravioto, A.; Eslava, C. Characterization of Diarrheagenic Strains of Escherichia Coli Isolated from Cattle Raised in Three Regions of Mexico. Front. Microbiol. 2018, 9, 2373. [Google Scholar] [CrossRef] [Green Version]
- Shridhar, P.B.; Patel, I.R.; Gangiredla, J.; Noll, L.W.; Shi, X.; Bai, J.; Elkins, C.A.; Strockbine, N.A.; Nagaraja, T. Genetic Analysis of Virulence Potential of Escherichia Coli O104 Serotypes Isolated from Cattle Feces Using Whole Genome Sequencing. Front. Microbiol. 2018, 9, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miko, A.; Delannoy, S.; Fach, P.; Strockbine, N.A.; Lindstedt, B.A.; Mariani-Kurkdjian, P.; Reetz, J.; Beutin, L. Genotypes and Virulence Characteristics of Shiga Toxin-Producing Escherichia Coli O104 Strains from Different Origins and Sources. Int. J. Med. Microbiol. 2013, 303, 410–421. [Google Scholar] [CrossRef]
- Enriquez-Gómez, E.; Talavera-Rojas, M.; Soriano-Vargas, E.; Navarro-Ocaña, A.; Vega-Sánchez, V.; de Oca, S.A.-M.; Acosta-Dibarrat, J. Serotypes, Virulence Genes Profiles and Antimicrobial Resistance Patterns of Escherichia Coli Recovered from Feces of Healthy Lambs in Mexico. Small Rumin. Res. 2017, 153, 41–47. [Google Scholar] [CrossRef]
- Amor, K.; Heinrichs, D.E.; Frirdich, E.; Ziebell, K.; Johnson, R.P.; Whitfield, C. Distribution of Core Oligosaccharide Types in Lipopolysaccharides from Escherichia Coli. Infect. Immun. 2000, 68, 1116–1124. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Delavari, P.; Kuskowski, M.; Stell, A.L. Phylogenetic Distribution of Extraintestinal Virulence-Associated Traits in Escherichia Coli. J. Infect. Dis. 2001, 183, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, M.; Zweifel, C.; Blanco, M.; Blanco, J.; Blanco, J.; Beutin, L.; Stephan, R. Escherichia Coli O157 and Non-O157 Shiga Toxin–Producing Escherichia Coli in Fecal Samples of Finished Pigs at Slaughter in Switzerland. J. Food Prot. 2006, 69, 260–266. [Google Scholar] [CrossRef]
- DesROSIERS, A.; Fairbrother, J.M.; Johnson, R.P.; Desautels, C.; Letellier, A.; Quessy, S. Phenotypic and Genotypic Characterization of Escherichia Coli Verotoxin-Producing Isolates from Humans and Pigs. J. Food Prot. 2001, 64, 1904–1911. [Google Scholar] [CrossRef]
- WHO/CSR/APH/98.8. World Health Organization Zoonotic Non-O157 Shiga Toxin-Producing Escherichia coli (STEC). In Proceedings of the WHO Scientific Working Group Meeting, Berlin, Germany, 23–26 June 1999; World Health Organ: Geneva, Switzerland, 1999. [Google Scholar]
- Li, D.; Shen, M.; Xu, Y.; Liu, C.; Wang, W.; Wu, J.; Luo, X.; Jia, X.; Ma, Y. Virulence Gene Profiles and Molecular Genetic Characteristics of Diarrheagenic Escherichia Coli from a Hospital in Western China. Gut Pathog. 2018, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, P.; Schembri, M.; Hasty, D.L. The FimH Protein of Type 1 Fimbriae. Anti-Adhes. Ther. Microb. Dis. 1996, 408, 193–195. [Google Scholar]
- Bok, E.; Mazurek, J.; Stosik, M.; Wojciech, M.; Baldy-Chudzik, K. Prevalence of Virulence Determinants and Antimicrobial Resistance among Commensal Escherichia Coli Derived from Dairy and Beef Cattle. Int. J. Environ. Res. Public. Health 2015, 12, 970–985. [Google Scholar] [CrossRef] [Green Version]
- Tomazi, T.; Coura, F.; Gonçalves, J.; Heinemann, M.; Santos, M. Antimicrobial Susceptibility Patterns of Escherichia Coli Phylogenetic Groups Isolated from Bovine Clinical Mastitis. J. Dairy Sci. 2018, 101, 9406–9418. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Tobes, R. Bloody Coli: A Gene Cocktail in Escherichia Coli O104: H4. MBio 2013, 4, e00066-13. [Google Scholar] [CrossRef] [Green Version]
- Mora, A.; Herrrera, A.; López, C.; Dahbi, G.; Mamani, R.; Pita, J.M.; Alonso, M.P.; Llovo, J.; Bernárdez, M.I.; Blanco, J.E. Characteristics of the Shiga-Toxin-Producing Enteroaggregative Escherichia Coli O104: H4 German Outbreak Strain and of STEC Strains Isolated in Spain. Int Microbiol 2011, 14, 121–141. [Google Scholar]
- Prager, R.; Lang, C.; Aurass, P.; Fruth, A.; Tietze, E.; Flieger, A. Two Novel EHEC/EAEC Hybrid Strains Isolated from Human Infections. PLoS ONE 2014, 9, e95379. [Google Scholar] [CrossRef] [PubMed]
- Patel, I.R.; Gangiredla, J.; Lacher, D.W.; Mammel, M.K.; Jackson, S.A.; Lampel, K.A.; Elkins, C.A. FDA Escherichia Coli Identification (FDA-ECID) Microarray: A Pangenome Molecular Toolbox for Serotyping, Virulence Profiling, Molecular Epidemiology, and Phylogeny. Appl. Environ. Microbiol. 2016, 82, 3384–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurpel, D.J.; Beatson, S.A.; Totsika, M.; Petty, N.K.; Schembri, M.A. Chaperone-Usher Fimbriae of Escherichia coli. PLoS ONE 2013, 8, e52835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.; Cheasty, T.; Chart, H.; Rowe, B. Isolation of Vero Cytotoxin-ProducingEscherichia Coli Serotypes O9ab:H- and O101:H-Carrying VT2 Variant Gene Sequences from a Patient with Haemolytic Uraemic Syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 1994, 13, 1074–1076. [Google Scholar] [CrossRef]
- Schroeder, C.M.; Zhao, C.; DebRoy, C.; Torcolini, J.; Zhao, S.; White, D.G.; Wagner, D.D.; McDermott, P.F.; Walker, R.D.; Meng, J. Antimicrobial Resistance of Escherichia Coli O157 Isolated from Humans, Cattle, Swine, and Food. Appl. Environ. Microbiol. 2002, 68, 576–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogarten, J.; Doolittle, W.F.; Lawrence, J.G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 2002, 19, 2226–2238. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.; Darlu, P.; Clermont, O.; Wieser, A.; Magistro, G.; Hoffmann, C.; Weinert, K.; Tenaillon, O.; Matic, I.; Denamur, E. Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia Coli Species. PLoS Pathog. 2009, 5, e1000257. [Google Scholar] [CrossRef] [Green Version]
- Gyles, C.; Boerlin, P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet. Pathol. 2014, 51, 328–340. [Google Scholar] [CrossRef] [PubMed]
Genes | Nucleotide Sequence 5′-3′ | Product Size (pb) | Reference |
---|---|---|---|
eae universal | F: CCC GAA TTC GGC ACA AGC ATA AGC R: CCC GGA TCC GTC TCG CCA GTA TTC | 863 | [26] |
Stx1 | F: GTA CGG GGA TGC AGA TAA ATC GC R: AGC AGT CAT TAC ATA AGA ACG YCC ACT | 209 | [27] |
Stx2 | F4: GGC ACT GTC TGA AAC TGC TCC TGT R 1: AAT AAA CTG CAC TTC AGC AAA TCC | 625 | |
F4-f: CGC TGT CTG AGG CAT CTC CGC T R1e/f: TAA ACT TCA CCT GGG CAA AGC C | 627 | ||
hlyA | F: GGT GCA GCA GAA AAA GTT GTA G R: TCT CGC CTG ATA GTG TTT GGT A | 1551 | [28] |
aggR | F: CTA ATT GTA CAA TCG ATG TA R: ATG AAG TAA TTC TTG AAT | 308 | [29] |
aapA | F: CTT TTC TGG CAT CTT GGG T R: GTA AC AAC CCC TTT GGA AGT | 232 | |
aatA | F: ATG TTA CCA GAT ATA AAT ATA G R: CAT TTC CCC TGT ATT GGA AAT G | 1064 | [30] |
aaiC | F: ATT GTC CTC AGG CAT TTC ACA CG R: ACA CCC CTG ATA AAC AA | 215 | [31] |
sat | F: GGTGAGTCCGGTGCATGGGC R: CAAGTTCCGCCTGCGGCTCA | 412 | [32] |
fim H | F: TGCAGAACGGATAAGCCGTGG R: GCAGTCACCTGCCCTCCGGTA | 508 | [33] |
arpA | F: AAC GCT ATT CGC CAG CTT GC R-TCT CCC CAT ACC GTA CGC TA | 400 | [34] |
chuA | F: ATG GTA CCG GAC GAA CCA AC R: TGC CGC CAG TAC CAA AGA CA | 288 | |
yjaA | F: CAA ACG TGA AGT GTC AGG AG R: AAT GCG TTC CTC AAC CTG TG | 211 | |
TspE4.C2 | F: CAC TAT TCG TAA GGT CAT CC R: AGT TTA TCG CTG CGG GTC GC | 152 |
Location | Year of Isolation | Origin | E. coli Serotypes | * Phylogenetic Group | Strains | Virulence Genes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eae | stx1 | stx2 | hlyA | aggR | app | aatA | aaiC | sat | fimH | Pathotype | ||||||
Mexico | 1998 | ** IMSS | O104:H4 | B1 | 1 | 1 | − | − | − | 1 | 1 | 1 | − | − | 1 | a-EPEC/EAEC |
2003 | O104:H7 | 1 | 1 | 1 | − | − | − | − | − | − | − | 1 | STEC | |||
O104:H12 | 1 | − | − | 1 | − | − | − | − | − | − | 1 | STEC | ||||
O104:H12 | A | 2 | 2 | 2 | − | − | − | − | − | − | − | 2 | STEC | |||
Egypt | 1996 | Egypt | O104:H4 | A | 1 | 1 | 1 | − | 1 | 1 | 1 | 1 | 1 | 1 | − | STEC/EAEC |
Argentina | 2003 | Argentina | O104:H12 | A | 3 | 3 | 2 | 3 | 2 | − | − | − | − | − | 3 | STEC |
O104:H4 | 1 | 1 | 1 | − | 1 | − | 1 | − | 1 | 1 | − | STEC | ||||
Bangladesh | 2009 | *** ICDDR,B | O104:H4 | A | 1 | 1 | 1 | − | − | 1 | 1 | 1 | 1 | 1 | − | STEC/EAEC |
O104:H12 | 1 | 1 | 1 | − | − | 1 | 1 | 1 | 1 | 1 | − | STEC/EAEC | ||||
O104:H4 | B1 | 1 | 1 | 1 | − | 1 | 1 | 1 | 1 | 1 | 1 | − | STEC/EAEC | |||
N (%) | 13 | 12 (92) | 10 (77) | 4 (31) | 5(39) | 5 (39) | 6 (46) | 5 (39) | 5 (39) | 5 (39) | 8 (62) |
Location | Isolation Year | Origin | Serotype | Phylogenetic Group * | Strains | Virulence Genes | Pathotype | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eae | stx1 | hlyA | aggR | app | aatA | sat | fimH | |||||||
Mexico | 1986, 1987 | Tlaltizapan 1, Mor. | O9:NM | A | 5 | − | 5 | 1 | − | 3 | − | − | 4 | STEC |
1986 | O9:NM | 1 | − | − | − | 1 | 1 | − | − | 1 | EAEC | |||
O9:H9 | 2 | − | 2 | − | 2 | − | 2 | − | 2 | STEC/EAEC | ||||
O9:H10 | 1 | − | 1 | − | 1 | − | − | − | 1 | STEC/EAEC | ||||
1987 | O9:H11 | B1 | 2 | − | 2 | − | − | - | − | 2 | 2 | STEC | ||
1986 | O9:NM | C | 2 | − | 2 | 2 | − | 2 | − | − | 2 | STEC | ||
1996 | ** IMSS | O9:H4 | A | 1 | − | 1 | − | − | - | − | − | 1 | STEC | |
O9:H33 | 2 | 2 | 2 | − | − | - | − | 2 | 2 | STEC | ||||
O9:H4 | 3 | − | 3 | − | 3 | 2 | 1 | − | 3 | STEC/EAEC | ||||
O9:H33 | 2 | 2 | − | − | − | - | − | 2 | 2 | a-EPEC | ||||
O9:NM | 1 | − | 1 | − | 1 | - | − | − | 1 | STEC/EAEC | ||||
O9:H21 | B1 | 1 | − | − | 1 | − | - | − | − | 1 | ND | |||
2000 | O9:H25 | 3 | − | 3 | − | 3 | − | − | − | 3 | STEC/EAEC | |||
O9:H25 | 4 | − | − | 2 | 4 | − | − | − | 4 | EAEC | ||||
Egypt | 1997 | Egypt | O9:NM | B2 | 1 | − | − | − | 1 | - | − | − | 1 | EAEC |
O9:NM | A | 1 | 1 | 1 | 1 | STEC/EAEC | ||||||||
1999 | O9:NM | A | 1 | − | − | − | 1 | - | − | − | 1 | EAEC | ||
O9:H9 | 1 | − | − | − | 1 | - | − | − | 1 | EAEC | ||||
N (%) | 34 | 4 (12) | 23 (68) | 6 (18) | 19 (56) | 8 (24) | 3 (9) | 6 (18) | 33 (97) |
Origin | Year of Isolation | E. coli Serotypes | Phylogenetic Group | Strains | Virulence Genes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eae | stx1 | hlyA | aggR | app | aatA | aaiC | sat | fimH | Pathotype | |||||
ECOR26 | 1984 | O104:H21 | A | 1 | 1 | − | 1 | − | − | − | − | − | 1 | a-EPEC |
ECOR27 | O104:H21 | 1 | − | 1 | 1 | − | − | − | − | − | 1 | STEC | ||
ECOR28 | O104:H2 | 1 | − | − | 1 | − | − | − | − | − | 1 | ND | ||
SSI | 2013 | O104:H4 | D | 1 | − | − | − | 1 | 1 | 1 | 1 | 1 | − | EAEC |
2018 | O104:H4 | B1 | 1 | − | − | − | 1 | 1 | 1 | 1 | 1 | − | EAEC | |
GBRU | 1999 | O9:H12 | A | 1 | − | − | − | 1 | - | − | − | − | 1 | EAEC |
ECOR16 | 1984 | O9:H10 | 1 | − | − | − | − | − | − | − | 1 | ND | ||
N (%) | 7 | 1 (14) | 1 (14) | 3 (43) | 3 (43) | 2 (29) | 2 (29) | 2 (29) | 2 (29) | 5 (71) |
Country | Year of Isolation | Serotype | Strains | Number of Strains | Antimicrobial Resistance | ||||
---|---|---|---|---|---|---|---|---|---|
ATM | CAZ | NA | TE | SXT | |||||
Mexico | 1998 | O104:H4 | 1 | R | 1 | ||||
2003 | O104:H12 | 2 | R | R | 2 | ||||
O104:H12 | 1 | R | R | R | 3 | ||||
Egypt | 1996 | O104:H4 | 1 | R | 1 | ||||
Bangladesh | 2009 | O104:H4 | 1 | R | 1 | ||||
O104:H4 | 2 | R | R | 2 | |||||
SSI | 2013–2018 | O104:H4 | 2 | R | R | 2 | |||
N (%) | 10 | 1 (10) | 1 (10) | 7 (70) | 7 (70) | 3 (30) |
Country | Year of Isolation | Origin | Serotype | Strains | Antimicrobial Resistance | Total Antimicrobials | |||
---|---|---|---|---|---|---|---|---|---|
ATM | NA | TE | SXT | ||||||
Mexico | 1986–1987 | Tlaltizapan Mor., 1 | O9:NM | 2 | R | 1 | |||
O9:NM | 1 | R | 1 | ||||||
O9:NM | 2 | R | 2 | ||||||
O9:H10 | 1 | R | 1 | ||||||
O9:H11 | 2 | R | 2 | ||||||
1996 | ** IMSS | O9:NM | 1 | R | 1 | ||||
O9:H33 | 2 | R | R | 2 | |||||
O9:H4 | 1 | R | 1 | ||||||
O9:H33 | 1 | R | R | 2 | |||||
1999 | O9:H- | 1 | R | 1 | |||||
2000 | O9:H25 | 2 | R | 1 | |||||
O9:H25 | 1 | R | 1 | ||||||
O9:H25 | 2 | R | R | 2 | |||||
Egypt | 1999 | O9:NM | 1 | R | 1 | ||||
O9:NM | 1 | R | R | 2 | |||||
Total N (%) | 21 (62) | 1 (3) | 1 (3) | 11 (32) | 6 (18) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, A.; van der Ploeg, C.; Rogé, A.; Licona-Moreno, D.; Delgado, G.; Morales-Espinosa, R.; Cravioto, A.; Eslava, C. Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions. Microorganisms 2021, 9, 2227. https://doi.org/10.3390/microorganisms9112227
Navarro A, van der Ploeg C, Rogé A, Licona-Moreno D, Delgado G, Morales-Espinosa R, Cravioto A, Eslava C. Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions. Microorganisms. 2021; 9(11):2227. https://doi.org/10.3390/microorganisms9112227
Chicago/Turabian StyleNavarro, Armando, Claudia van der Ploeg, Ariel Rogé, Delia Licona-Moreno, Gabriela Delgado, Rosario Morales-Espinosa, Alejandro Cravioto, and Carlos Eslava. 2021. "Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions" Microorganisms 9, no. 11: 2227. https://doi.org/10.3390/microorganisms9112227
APA StyleNavarro, A., van der Ploeg, C., Rogé, A., Licona-Moreno, D., Delgado, G., Morales-Espinosa, R., Cravioto, A., & Eslava, C. (2021). Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions. Microorganisms, 9(11), 2227. https://doi.org/10.3390/microorganisms9112227