Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve?
Abstract
:1. Introduction
2. Enterococci in Food—Enterococci as Probiotics
3. Virulence Determinants Associated with Enterococci
3.1. Colonization-Related Virulence Factors
3.1.1. Aggregation Substance
3.1.2. Endocarditis Specific Antigen—EfaA
3.1.3. Surface Protein—Esp
3.2. Virulence Factors Affecting Host Tissues
3.2.1. Gelatinase—GelE
3.2.2. Hyaluronidase—Hyl
4. Other Enterococcal Virulence Factors
4.1. Sex Pheromones
4.2. Biogenic Amines
5. Are There Any Other Limitations to the Use of Enterococci as Probiotics?
5.1. Resistance to Innate Immunity
5.2. Intestinal Translocation
5.3. Transfer of Virulence Determinants and Antibiotic Resistance Genes
6. Virulence Potential of Foodborne Enterococcal Strains: Myth vs. Reality
7. Regulation of Enterococcus spp. Safety
8. Enterococcus spp.: A Glance at Tomorrow—Focus on the Safety
9. Concluding Remarks and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/ WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; World Health Organization: London, ON, Canada, 2002. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Zommiti, M.; Connil, N.; Ben Hamida, J.; Ferchichi, M. Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca. Probiotics Antimicrob. Proteins 2017, 9, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Zommiti, M.; Cambronel, M.; Maillot, O.; Barreau, M.; Sebei, K.; Feuilloley, M.; Ferchichi, M.; Connil, N. Evaluation of Probiotic Properties and Safety of Enterococcus faecium Isolated From Artisanal Tunisian Meat “Dried Ossban”. Front. Microbiol. 2018, 9, 1685. [Google Scholar] [CrossRef] [Green Version]
- Zommiti, M.; Bouffartigues, E.; Maillot, O.; Barreau, M.; Szunerits, S.; Sebei, K.; Feuilloley, M.; Connil, N.; Ferchichi, M. In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat “Dried Ossban”. Front. Microbiol. 2018, 9, 2607. [Google Scholar] [CrossRef]
- Daba, G.M.; El-Dien, A.N.; Saleh, S.A.A.; Elkhateeb, W.A.; Awad, G.; Nomiyama, T.; Yamashiro, K.; Zendo, T. Evaluation of Enterococcus strains newly isolated from Egyptian sources for bacteriocin production and probiotic potential. Biocatalysis Agric. Biotechnol. 2021, 35, 102058. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Holzapfel, W.H.; Todorov, S.D. Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. Curr. Res. Microb. Sci. 2021, 2, 100070. [Google Scholar]
- Hamid, N.H.; Daud, H.M.; Kayansamruaj, P.; Hassim, H.A.; Yusoff, M.S.M.; Abu Bakar, S.N.; Srisapoome, P. Short- and long-term probiotic effects of Enterococcus hirae isolated from fermented vegetable wastes on the growth, immune responses, and disease resistance of hybrid catfish (Clarias gariepinus × Clarias macrocephalus). Fish Shellfish Immunol. 2021, 114, 1–19. [Google Scholar] [CrossRef]
- Oruc, O.; Cetin, O.; Darilmaz, D.O.; Yüsekdag, Z.N. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. LWT Food Sci. Technol. 2021, 148, 111741. [Google Scholar] [CrossRef]
- Markowiak, P; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 15, 9. [Google Scholar]
- Goderska, K.; Agudo Pena, S.; Alarcon, T. Helicobacter pylori treatment: Antibiotics or probiotics. Appl. Microbiol. Biotechnol. 2018, 102, 1–7. [Google Scholar] [CrossRef]
- Casas-Solís, J.; Huizar-López, M.D.R.; Irecta-Nájera, C.A.; Pita-López, M.L.; Santerre, A. Immunomodulatory effect of Lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob. Proteins 2019, 12, 1012–1024. [Google Scholar] [CrossRef]
- Zommiti, M.; Chikindas, M.L.; Ferchichi, M. Probiotics-Live Biotherapeutics: A Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob. Proteins 2019, 12, 1266–1289. [Google Scholar] [CrossRef]
- Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef]
- Uymaz Tezel, B. Preliminary In Vitro Evaluation of the Probiotic Potential of the Bacteriocinogenic Strain Enterococcus lactis PMD74 Isolated from Ezine Cheese. J. Food Qual. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. N. Am. 2020, 34, 751–771. [Google Scholar] [CrossRef]
- Rehaiem, A.; Belgacem, Z.B.; Edalatian, M.R.; Martínez, B.; Rodríguez, A.; Manai, M.; Guerrae, N.P. Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control 2014, 37, 343–350. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Anghinoni, T.; Camargo, F.; Brandelli, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 2014, 37, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Giraffa, G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 2003, 88, 215–222. [Google Scholar] [CrossRef]
- Ogier, J.C.; Serror, P. Safety assessment of dairy microorganisms: The Enterococcus genus. Int. J. Food Microbiol. 2008, 126, 291–301. [Google Scholar] [CrossRef]
- Wu, Y.; Renxian; Li, R.; Ding, W.; Croes, J.; Yang, M. Mechanism Study and Reduction of Minivan Interior Booming Noise during Acceleration. Shock Vib. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, L.; Telli, G.S.; de Carla Dias, D.; Gonçalves, G.S.; Ishikawa, C.M.; Cavalcante, R.B.; Natori, M.M.; BenHamed, S.; Ranzani-Paiva, M.J.T. Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquacult. Rep. 2020, 16, 100277. [Google Scholar] [CrossRef]
- Furlaneto-Maia, L.; Ramalho, R.; Rocha, K.R.; Furlaneto, M.C. Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria. Biotechnol. Lett. 2020, 42, 797–806. [Google Scholar] [CrossRef]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The genus Enterococcus: Between probiotic potential and safety concerns-an update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Nami, Y.; Bakhshayesh, R.V.; Jalaly, H.M.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Probiotic properties of Enterococcus isolated from artisanal dairy products. Front. Microbiol. 2019, 10, 300. [Google Scholar] [CrossRef]
- Pajarilloa, E.A.B.; Chae, J.P.; Balolong, M.P.; Kim, H.B.; Park, C.S.; Kang, D.K. Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing. Anim. Feed Sci. Technol. 2015, 201, 80–88. [Google Scholar] [CrossRef]
- Holzapfel, W.; Arini, A.; Aeschbacher, M.; Coppolecchia, R.; Pot, B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef. Microbes 2018, 9, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Silvetti, T.; Brasca, M. Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin. Antonie Van Leeuwenhoek 2013, 103, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Barlow, S.; Chesson, A.; Collins, J.D.; Dybing, E.; Flynn, A.; Fruijtier-Pölloth, C.; Hardy, A.; Knaap, A.; Kuiper, H.; Le Neindre, P.; et al. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J. 2007, 587, 1–16. [Google Scholar]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristich, C.J.; Li, Y.H.; Cvitkovitch, D.G.; Dunny, G.M. Esp-independent biofilm formation by Enterococcus faecalis. J. Bacteriol. 2004, 186, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.; Stiles, M.E.; Schleifer, K.H.; Holzapfel, W.H. Enterococci in foods-a conundrum for food safety. Int. J. Food Microbiol. 2003, 88, 105–122. [Google Scholar] [CrossRef]
- Busani, L.; Del Grosso, M.; Paladini, C.; Graziani, C.; Pantosti, A.; Biavasco, F.; Caprioli, A. Antimicrobial susceptibility of vancomycin-susceptible and resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. Int. J. Food Microbiol. 2004, 97, 17–22. [Google Scholar] [CrossRef]
- Willems, R.J.; Bonten, M.J.M. Glycopeptide-resistant enterococci: Deciphering virulence, resistance and epidemicity. Curr. Opin. Infect. Dis. 2007, 20, 384–390. [Google Scholar] [CrossRef]
- Inoglu, Z.N.; Tuncer, Y. Safety assessment of Enterococcus faecium and Enterococcus faecalis strains isolated from Turkish Tulum cheese. J. Food Saf. 2013, 33, 369–377. [Google Scholar] [CrossRef]
- Chiang, H.Y.; Perencevich, E.N.; Nair, R.; Nelson, R.E.; Samore, M.; Khader, K.; Chorazy, M.L.; Herwaldt, L.A.; Blevins, A.; Ward, M.A.; et al. Incidence and outcomes associated with infections caused by vancomycin-resistant enterococci in the United States: Systematic literature review and meta-analysis. Infect. Control Hosp. Epidemiol. 2017, 38, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.A.P.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Agudelo Higuita, N.I.; Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Nascimento, L.C.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L. Probiotic potential and safety of enterococci strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Santos Melo, C.C.; Freire, A.S.; Galdeano, M.A.; da Costa, C.F.; Gonçalves, A.P.D.O.; Dias, F.S.; Menezes, D.R. Probiotic potential of Enterococcus hirae in goat milk and its survival in canine gastrointestinal conditions simulated in vitro. Res. Vet. Sci. 2021, 138, 188–195. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huycke, M.M. Risks associated with enterococci as probiotics. Food Res. Int. 2020, 129, 108788. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P.; Parani, M. First complete genome sequence of a probiotic Enterococcus faecium strain T-110 and its comparative genome analysis with pathogenic and non-pathogenic Enterococcus faecium genomes. J. Genet. Genom. 2015, 42, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Sakkas, H.; Delis, G.; Gousia, P. Antibiotic resistance in Enterococcus spp. friend or foe? In Foodborne Pathogens and Antibiotic Resistance, 1st ed.; Singh, O.V., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 365–395. [Google Scholar]
- Olvera-Garcıa, M.; Sanchez-Flores, A.; Quirasco Baruch, M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl. Microbiol. Biotechnol. 2018, 102, 2251–2267. [Google Scholar] [CrossRef] [PubMed]
- Bybee, S.; Scorza, A.; Lappin, M. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef]
- Opera, S.F.; Zervos, M.J. Enterococcus and its association with foodborne illness. In Infectious Disease: Foodborne Diseases; Humana Press Inc.: Totowa, NJ, USA, 2007; pp. 157–174. [Google Scholar]
- Riemann, H.; Bryan, F.L. Foodborne Infections and Intoxications; Academic: New York, NY, USA, 1979. [Google Scholar]
- Guerrero-Ramos, E.; Cordero, J.; Molina-Gonzalez, D.; Poeta, P.; Igrejas, G.; Alonso-Calleja, C.; Capita, R. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol. 2016, 53, 156–164. [Google Scholar] [CrossRef]
- Baccouri, O.; Boukerb, A.M.; Farhat, L.B.; Zébré, A.; Zimmermann, K.; Domann, E.; Cambronel, M.; Barreau, M.; Maillot, O.; Rincé, I.; et al. Probiotic Potential and Safety Evaluation of Enterococcus faecalis OB14 and OB15, Isolated From Traditional Tunisian Testouri Cheese and Rigouta, Using Physiological and Genomic Analysis. Front. Microbiol. 2019, 10, 881. [Google Scholar] [CrossRef]
- Tomita, H.; Ike, Y. Tissue-specific adherent Enterococcus faecalis strains that show highly efficient adhesion to human bladder carcinoma T24 cells also adhere to extracellular matrix proteins. Infect. Immun. 2004, 72, 5877–5885. [Google Scholar] [CrossRef] [Green Version]
- Foulquie Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef]
- Strzelecki, J.; Sadowy, E.; Hryniewicz, W. Enterococcal surface proteins responsible for interactions with host tissues. Adv. Microbiol. 2011, 50, 31–42. [Google Scholar]
- Hollenbeck, B.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef] [Green Version]
- Gentry-Weeks, C.R.; Karkhoff-Schweizer, R.; Pikis, A.; Estay, M.; Keith, J.M. Survival of Enterococcus faecalis in mouse peritoneal macrophages. Infect. Immun. 1999, 67, 2160–2165. [Google Scholar] [CrossRef] [Green Version]
- Huycke, M.M.; Moore, D.; Joyce, W.; Wise, P.; Shepard, L.; Kotake, Y.; Gilmore, M.S. Extracellular superoxide production by Enterococcus faecalis requires de-methylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol. 2001, 42, 729–740. [Google Scholar] [CrossRef]
- Wang, X.; Huycke, M.M. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007, 132, 551–561. [Google Scholar] [CrossRef]
- Wang, X.; Allen, T.D.; May, R.J.; Lightfoot, S.; Houchen, C.W.; Huycke, M.M. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008, 68, 9909–9917. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, Y.; Moore, D.R.; Nimmo, S.L.; Lightfoot, S.A.; Huycke, M.M. 4-Hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 2012, 142, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Domann, E.; Hain, T.; Ghai, R.; Billion, A.; Kuenne, C.; Zimmermann, K.; Chakraborty, T. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int. J. Med. Microbiol. 2007, 297, 533–539. [Google Scholar] [CrossRef]
- Pillar, C.M.; Gilmore, M.S. Enterococcal virulence–pathogenicity island of E. faecalis. Front. Biosci. 2004, 9, 2335–2346. [Google Scholar] [CrossRef] [Green Version]
- Chajecka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors of Enterococcus spp. presented in food. LWT—Food Sci. Technol. 2017, 75, 670–676. [Google Scholar] [CrossRef]
- Ben Braiek, O.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. BioMed Res. Int. 2019, 2019, 5938210. [Google Scholar] [CrossRef]
- Garsin, D.A.; Frank, K.L.; Silanpää, J.; Ausubel, F.M.; Hartke, A.; Shankar, N.; Murray, B.E. Pathogenesis and Models of Enterococcal Infection. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Paulsen, I.T.; Banerjei, L.; Myers, G.S.; Nelson, K.E.; Seshadri, R.; Read, T.D.; Fouts, D.E.; Eisen, J.A.; Gill, J.F.; Heidelberg, S.R.; et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003, 299, 2071–2074. [Google Scholar] [CrossRef] [Green Version]
- Hirt, H.; Manias, D.A.; Bryan, E.M.; Klein, J.R.; Marklund, J.K.; Staddon, J.H.; Paustian, M.L.; Kapur, V.; Dunny, G.M. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: Complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J. Bacteriol. 2005, 187, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Bhatty, M.; Cruz, M.R.; Frank, K.L.; Gomez, J.A.; Andrade, F.; Garsin, D.A.; Dunny, G.M.; Kaplan, H.B.; Christie, P.J. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. Mol. Microbiol. 2015, 95, 660–677. [Google Scholar]
- Dramsi, S.; Trieu-Cuot, P.; Bierne, H. Sorting sortases: A nomenclature proposal for the various sortases of gram-positive bacteria. Res. Microbiol. 2005, 156, 289–297. [Google Scholar] [CrossRef]
- Schmitt, A.; Jiang, K.; Camacho, M.I.; Jonna, V.R.; Hofer, A.; Westerlund, F.; Christie, P.J.; Berntsson, R.P. PrgB promotes aggregation, biofilm formation, and conjugation through DNA binding and compaction. Mol. Microbiol. 2018, 109, 291–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlievert, P.M.; Gahr, P.J.; Assimacopoulos, A.P.; Dinges, M.M.; Stoehr, J.A.; Harmala, J.W.; Hirt, H.; Dunny, G.M. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 1998, 66, 218–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, O.N.; Schlievert, P.M.; Wells, C.L.; Manias, D.A.; Tripp, T.J.; Dunny, G.M. Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect. Immun. 2009, 77, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clewell, D.B.; An, F.Y.; Flannagan, S.E.; Antiporta, M.; Dunny, G.M. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 2000, 35, 246–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunny, G.M.; Leonard, B.A.; Hedberg, P.J. Pheromone-inducible conjugation in Enterococcus faecalis: Interbacterial and host—Parasite chemical communication. J. Bacteriol. 1995, 177, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Kozlowicz, B.K.; Dworkin, M.; Dunny, G.M. Pheromone inducible conjugation in Enterococcus faecalis: A model for the evolution of biological complexity? Int. J. Med. Microbiol. 2006, 296, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Wardal, E.; Gawryszewska, I.; Hryniewicz, W.; Sadowy, E. Abundance and diversity of plasmid-associated genes among clinical isolates of Enterococcus faecalis. Plasmid 2013, 70, 329–342. [Google Scholar] [CrossRef]
- Gilmore, S.M.; Coburn, P.S.; Nallapareddy, S.R.; Murray, B.E. Enterococcal virulence. In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; Gilmore, M.S., Ed.; American Society for Microbiology: Washington, DC, USA, 2002; pp. 301–354. [Google Scholar]
- Clewell, D.B. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007, 58, 205–227. [Google Scholar] [CrossRef]
- Dunny, G.M. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: Cell-cell signalling, gene transfer, complexity and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1185–1193. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, A.P.; Willems, R.J.; Bonten, M.J.; Van Schaik, W. LPxTG surface proteins of enterococci. Trends Microbiol. 2009, 17, 423–430. [Google Scholar] [CrossRef]
- Suk-Kyung, L.; Koichi, T.; Haruyoshi, T.; Yasuyoshi, I. Pheromone- Responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from humans and chicken feces. Appl. Environ. Microbiol. 2006, 72, 6544–6553. [Google Scholar]
- Eaton, T.J.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [Green Version]
- Sava, I.G.; Heikens, E.; Huebner, J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 2010, 16, 533–540. [Google Scholar] [CrossRef]
- Abrantes, M.C.; Kok, J.; Lopes Mde, F. EfaR is a major regulator of Enterococcus faecalis manganese transporters and influences processes involved in host colonization and infection. Infect. Immun. 2013, 81, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Archimbaud, C.; Shankar, N.; Forestier, C.; Baghdayan, A.; Gilmore, M.S.; Charbonné, F.; Joly, B. In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res. Microbiol. 2002, 153, 75–80. [Google Scholar] [CrossRef]
- Semedo, T.; Santos, M.A.; Lopes, M.F.; Marques, J.J.F.; Crespo, M.T.; Tenreiro, R. Virulence factors in food, clinical and reference enterococci: A common trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef]
- Jimenez, E.; Ladero, V.; Chico, I.; Maldonado-Barragan, A.; Lopez, M.; Martín, V.; Fernández, L.; Fernández, M.; Álvarez, M.A.; Torres, C.; et al. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol. 2013, 13, 288. [Google Scholar] [CrossRef] [Green Version]
- Shankar, N.; Baghdayan, A.S.; Gilmore, M.S. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 2002, 417, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Leavis, H.; Top, J.; Shankar, N.; Borgen, K.; Bonten, M.; van Embden, J.; Willems, R.J.L. A novel putative pathogenicity Island linked to esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 2004, 186, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, V.; Baghdayan, A.S.; Huycke, M.M.; Lindahl, G.; Gilmore, M.S. Infection derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 1999, 67, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 2001, 69, 4366–4372. [Google Scholar] [CrossRef] [Green Version]
- Top, J.; Paganelli, F.L.; Zhang, X.; van Schaik, W.; Leavis, H.L.; van Luit-Asbroek, M.; Willems, R.J. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization. PLoS ONE 2013, 8, e65224. [Google Scholar] [CrossRef] [Green Version]
- Heikens, E.; Singh, K.V.; Jacques-Palaz, K.D.; van Luit-Asbroek, M.; Oostdijk, E.A.N.; Bonten, M.J.M.; Murray, B.E.; Willems, R.J.L. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect. 2011, 13, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penadés, J.R.; Lasa, I. The enterococcal protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545. [Google Scholar] [CrossRef] [Green Version]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Tendolkar, P.M.; Baghdayan, A.S.; Gilmore, M.S.; Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun. 2004, 72, 6032–6039. [Google Scholar] [CrossRef] [Green Version]
- Latasa, C.; Solano, C.; Penade, S.J.R.; Lasa, I. Biofilm associated proteins. Comptes Rendus Biol. 2006, 329, 849–857. [Google Scholar] [CrossRef]
- Billstrom, H.; Lund, B.; Sullivan, A.; Nord, C.E. Virulence and antimicrobial resistance in clinical Enterococcus faecium. Int. J. Antimicrob. Agents 2008, 32, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, S.A.; Escalona, G.; Cruz-Cordova, A.; Davila, L.B.; Saldana, Z.; Cazares-Domímguez, V.; Eslava, C.A.; López-Martínez, B.; Hernández-Castro, R.; Aquino-Jarquin, G.; et al. Molecular analysis and distribution of multidrug—resistant Enterococcus faecium isolates belonging to clonal complex 17 in a tertiary care center in Mexico City. BMC Microbiol. 2013, 13, 291. [Google Scholar] [CrossRef] [Green Version]
- Oancea, C.; Klare, I.; Witte, W.; Werner, G. Conjugative transfer of the virulence gene, esp, among isolates of Enterococcus faecium and Enterococcus faecalis. J. Antimicrob. Chem. 2004, 54, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Goguen, J.D.; Hoe, N.P.; Subrahmanyam, Y.V. Proteases and bacterial virulence: A view from the trenches. Infect. Agents Dis. 1995, 4, 47–54. [Google Scholar]
- Park, S.Y.; Shin, Y.P.; Kim, C.H.; Park, H.J.; Seong, Y.S.; Kim, B.S.; Seo, S.J.; Lee, I.H. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J. Immunol. 2008, 181, 6328–6336. [Google Scholar] [CrossRef] [Green Version]
- Maharshak, N.; Huh, E.Y.; Paiboonrungruang, C.; Shanahan, M.; Thurlow, L.; Herzog, J.; Djukic, Z.; Orlando, R.; Pawlinski, R.; Ellermann, M.; et al. Enterococcus faecalis gelatinase mediates intestinal permeability via protease-activated receptor 2. Infect. Immun. 2015, 83, 2762–2770. [Google Scholar] [CrossRef] [Green Version]
- Waters, C.M.; Antiporta, M.H.; Murray, B.E.; Dunny, G.M. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J. Bacteriol. 2003, 185, 3613–3623. [Google Scholar] [CrossRef] [Green Version]
- Hancock, L.E.; Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 2004, 186, 5629–5639. [Google Scholar] [CrossRef] [Green Version]
- Pillai, S.K.; Sakoulas, G.; Eliopoulos, G.M.; Moellering, R.C.; Murray, B.E.; Inouye, R.T. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J. Infect. Dis. 2004, 190, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Podbielski, A.; Kreikemeyer, B. Cell density-dependent regulation, basic principles and effects on the virulence of Gram-positive cocci. Int. J. Infect. Dis. 2004, 8, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, J.A.; Huang, D.B. Biofilm formation by enterococci. J. Med. Microbiol. 2007, 56, 1581–1588. [Google Scholar] [CrossRef] [Green Version]
- Pinkston, K.L.; Gao, P.; Diaz-Garcia, D.; Sillanpa, J.; Nallapareddy, S.R.; Murray, B.E.; Harvey, B.R. The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J. Bacteriol. 2011, 193, 4317–4325. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, N.; Santos, S.; Marujo, P.; Yokohata, R.; Iyer, V.S.; Nakayama, J.; Hancock, L.E.; Serror, P.; Lopes, M.F.S. The incongruent gelatinase genotype and phenotype in Enterococcus faecalis are due to shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal. Microbiology 2012, 158, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vankerckhoven, V.; Van Autgaerden, T.; Vael, C.; Lammens, C.; Chapelle, S.; Rossi, R.; Jabes, D.; Goossens, H. Development of Multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in Enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J. Clin. Microbiol. 2004, 42, 4473–4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, K.; Cupakova, S.; Karpiskova, R. Virulence factors and antibiotic resistance in Enterococci isolated from food-stuffs. Vet. Med. 2011, 56, 352–357. [Google Scholar] [CrossRef]
- Comerlato, C.B.; Resende, M.C.; Caierao, J.; D’azevedo, P.A. Presence of virulence factors in Enterococcus faecalis and Enterococcus faecium susceptible and resistant to vancomycin. Mem. Inst. Oswaldo Cruz 2013, 108, 590–595. [Google Scholar] [CrossRef] [Green Version]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resis. 2014, 7, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.M.A.P.; Muscholl-Silberhorn, A.B.; Yousif, N.M.K.; Vancanneyt, M.; Swings, J.; Holzapfel, W.H. Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl. Environ. Microbiol. 2001, 67, 4385–4389. [Google Scholar] [CrossRef] [Green Version]
- Giraffa, G. Enterococci from foods. FEMS Microbiol. Rev. 2002, 26, 163–171. [Google Scholar] [CrossRef]
- Clewell, D.B.; Francia, M.V.; Flannagan, S.E.; An, F.Y. Enterococcal plasmid transfer: Sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 2002, 48, 193–201. [Google Scholar] [CrossRef]
- Chandler, J.R.; Dunny, G.M. Enterococcal peptide sex pheromones: Synthesis and control of biological activity. Peptides 2004, 25, 1377–1388. [Google Scholar] [CrossRef]
- Clewell, D.B. Bacterial sex pheromone-induced plasmid transfer. Cell 1993, 73, 9–12. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Malik, R.K.; Chauan, P. Functional and safety aspects of enterococci in dairy foods. Ind. J. Microbiol. 2008, 48, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Falcioni, G.C.; Coderoni, S.; Tedeschi, G.G.; Brunori, M.; Rotilio, G. Red cell lysis induced by microorganisms as a case of superoxide- and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobin. Biochim. Biophys. Acta 1981, 678, 437–441. [Google Scholar] [CrossRef]
- Emerit, I.; Garban, F.; Vassy, J.; Levy, A.; Filipe, P.; Freitas, J. Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase. Proc. Natl. Acad. Sci. USA 1996, 93, 12799–12804. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.L.; Bakhoum, S.F.; Compton, D.A. Mechanisms of chromosomal instability. Curr. Biol. 2010, 20, R285–R295. [Google Scholar] [CrossRef] [Green Version]
- Bakhoum, S.F.; Ngo, B.; Laughney, A.M.; Cavallo, J.A.; Murphy, C.J.; Ly, P.; Shah, P.; Sriram, R.K.; Watkins, T.B.K.; Taunk, N.K.; et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018, 553, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Kucerova, K.; Svobodova, H.; Tuma, S.; Ondrackova, I.; Plockova, M. Production of biogenic amines by Enterococci. Czech J. Food Sci. 2009, 27, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Aspri, M.; Bozoudi, D.; Tsaltas, D.; Hill, C.; Papademas, P. Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control 2017, 73, 81–90. [Google Scholar] [CrossRef]
- Martın-Platero, A.M.; Valdivia, E.; Maqueda, M.; Martınez-Bueno, M. Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int. J. Food Microbiol. 2009, 132, 24–32. [Google Scholar] [CrossRef]
- Gimenez-Pereira, M.L. Enterococci in Milk Products. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2005. [Google Scholar]
- Asahara, T.; Takahashi, M.; Nomoto, K.; Takayama, H.; Onoue, M.; Morotomi, M.; Tanaka, R.; Yokokura, T.; Yamashita, N. Assessment of safety of lactobacillus strains based on resistance to host innate defense mechanisms. Clin. Diagn. Lab. Immunol. 2003, 10, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, C.L.; Jechorek, R.P.; Erlandsen, S.L. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J. Infect. Dis. 1990, 162, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Shankar, N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell. Microbiol. 2016, 18, 831–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verneuil, N.; Sanguinetti, M.; Le Breton, Y.; Posteraro, B.; Fadda, G.; Auffray, Y.; Hartke, A.; Giard, J.C. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect. Immun. 2004, 72, 4424–4431. [Google Scholar] [CrossRef] [Green Version]
- Verneuil, N.; Rince, A.; Sanguinetti, M.; Posteraro, B.; Fadda, G.; Auffray, Y.; Hartke, A.; Giard, J.C. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005, 151, 3997–4004. [Google Scholar] [CrossRef] [Green Version]
- Coburn, P.S.; Baghdayan, A.S.; Dolan, G.T.; Shankar, N. An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect. Immun. 2008, 76, 5668–5676. [Google Scholar] [CrossRef] [Green Version]
- La Carbona, S.; Sauvageot, N.; Giard, J.C.; Benachour, A.; Posteraro, B.; Auffray, Y.; Hartke, A. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol. Microbiol. 2007, 66, 1148–1163. [Google Scholar] [CrossRef]
- Maekawa, S.; Yoshioka, M.; Kumamoto, Y. Proposal of a new scheme for the serological typing of Enterococcus faecalis strains. Microbiol. Immunol. 1992, 36, 671–681. [Google Scholar] [CrossRef]
- Hancock, L.E.; Gilmore, M.S. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc. Natl. Acad. Sci. USA 2002, 99, 1574–1579. [Google Scholar] [CrossRef] [Green Version]
- Thurlow, L.R.; Thomas, V.C.; Hancock, L.E. Capsular polysaccharide production in Enterococcus faecalis and contribution of CpsF to capsule serospecificity. J. Bacteriol. 2009, 191, 6203–6210. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Kapila, S.; Mani, J.; Malik, R.K. Comparison of susceptibility to opsonic killing by in vitro human immune response of Enterococcus strains isolated from dairy products, clinical samples and probiotic preparation. Int. J. Food Microbiol. 2009, 128, 513–515. [Google Scholar] [CrossRef]
- Liong, M.T. Safety of probiotics: Translocation and infection. Nutr. Rev. 2008, 66, 192–202. [Google Scholar] [CrossRef]
- Guarner, C.; Runyon, B.A.; Young, S.; Heck, M.; Seikh, M.Y. Intestinal bacterial overgrowth and bacterial translocation in an experimental model of cirrhosis in rats. J. Hepatol. 1997, 26, 1372–1378. [Google Scholar] [CrossRef]
- Chiva, M.; Guarner, C.; Peralta, C.; Llovet, T.; Gomez, G.; Soriano, G.; Balanzo, J. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats. Eur. J. Gastroenterol. Hepatol. 2003, 15, 145–150. [Google Scholar] [CrossRef]
- Manfredo Vieira, S.; Hiltensperger, M.; Kumar, V.; Zegarra-Ruiz, D.; Dehner, C.; Khan, N.; Costa, F.R.C.; Tiniakou, E.; Greiling, T.; Ruff, W.; et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018, 359, 1156–1161. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.D.; Moore, D.R.; Wang, X.; Casu, V.; May, R.; Lerner, M.R.; Houchen, C.; Brackett, D.J.; Huycke, M.M. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J. Med. Microbiol. 2008, 57, 1193–1204. [Google Scholar] [CrossRef]
- Kraehenbuhl, J.P.; Neutra, M.R. Epithelial M cells: Differentiation and function. Ann. Rev. Cell Dev. Biol. 2000, 16, 301–332. [Google Scholar] [CrossRef]
- Schulz, O.; Jaensson, E.; Persson, E.K.; Liu, X.; Worbs, T.; Agace, W.W.; Pabst, O. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009, 206, 3101–3114. [Google Scholar] [CrossRef]
- Knoop, K.A.; McDonald, K.G.; Kulkarni, D.H.; Newberry, R.D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 2016, 65, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.; Mason, L.J.; Mackin, K.E.; Srikhanta, Y.N.; Lyras, D.; Prakash, M.D.; Nargali, K.; Venegas, A.; Hill, M.D.; Moore, R.J.; et al. Translocation and dissemination of commensal bacteria in post- stroke infection. Nat. Med. 2016, 22, 1277–1284. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huycke, M.M. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut 2015, 64, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, X.; Moore, D.R.; Lightfoot, S.A.; Huycke, M.M. TNF-α mediates macrophage-induced bystander effects through netrin-1. Cancer Res. 2012, 72, 5219–5229. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Allen, T.D.; Yang, Y.; Moore, D.R.; Huycke, M.M. Cyclooxygenase-2 generates the endogenous mutagen trans-4-hydroXy-2-nonenal in Enterococcus faecalis-infected macrophages. Cancer Prev. Res. 2013, 6, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Balish, E.; Warner, T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am. J. Pathol. 2002, 160, 2253–2257. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.C.; Tonkonogy, S.L.; Albright, C.A.; Tsang, J.; Balish, E.J.; Braun, J.; Huycke, M.M.; Sartor, R.B. Variable phenotypes of enterocolitis in IL-10 deficient mice monoassociated with two different commensal bacteria. Gastroenterology 2005, 128, 891–906. [Google Scholar] [CrossRef]
- Balamurugan, R.; Rajendiran, E.; George, S.; Samuel, G.V.; Ramakrishna, B.S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol. 2008, 23, 1298–1303. [Google Scholar] [CrossRef]
- Amarnani, R.; Rapose, A. Colon cancer and enterococcus bacteremia coaffection: A dangerous alliance. J. Infect. Public Health 2017, 10, 681–684. [Google Scholar] [CrossRef]
- Khan, Z.; Siddiqui, N.; Saif, M.W. Enterococcus faecalis infective endocarditis and colorectal carcinoma: Case of new association gaining ground. Gastroenterol. Res. 2018, 11, 238–240. [Google Scholar] [CrossRef] [Green Version]
- Cabiltes, I.; Coghill, S.; Bowe, S.J.; Athan, E. Enterococcal bacteraemia “Silent but deadly”: A population-based cohort study. Intern. Med. J. 2019, 50, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Pericàs, J.M.; Corredoira, J.; Moreno, A.; Garcia-Pais, M.J.; Falces, C.; Rabunal, R.; Mestres, C.A.; Alonso, M.P.; Marco, F.; Quintana, E.; et al. Relationship between Enterococcus faecalis infective endocarditis and colorectal neoplasm: Preliminary results from a cohort of 154 patients. Rev. Esp. Cardiol. (Engl. Ed.) 2017, 70, 451–458. [Google Scholar] [CrossRef]
- Lennard, K.S.; Goosen, R.W.; Blackburn, J.M. Bacterially-associated transcriptional remodelling in a distinct genomic subtype of colorectal cancer provides a plausible molecular basis for disease development. PLoS ONE 2016, 11, e0166282. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [PubMed] [Green Version]
- Werner, G.; Coque, T.M.; Hammerum, A.M.; Hope, R.; Hryniewicz, W.; Johnson, A.; Klare, I.; Kristinsson, K.G.; Leclercq, R.; Lester, C.H.; et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008, 13, 19046. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.M.; Merquior, V.L.C. Enterococcus . In Molecular Typing in Bacterial Infections; Humana Press Inc.: Totowa, NJ, USA, 2013; pp. 17–26. [Google Scholar]
- Mannu, L.; Paba, A.; Daga, E.; Comunian, R.; Zanetti, S.; Duprè, I.; Sechi, L.A. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 2003, 88, 291–304. [Google Scholar] [CrossRef]
- Mundy, L.M.; Sahm, D.F.; Gilmore, M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 2000, 13, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Brilliantova, A.N.; Kliasova, G.A.; Mironova, A.V.; Tishkov, V.I.; Novichkova, G.A.; Bobrynina, V.O.; Sidorenko, S.V. Spread of vancomycin-resistant Enterococcus faecium in two haematological centres in Russia. Int. J. Antimicrob. Agents 2010, 35, 177–181. [Google Scholar] [CrossRef]
- Perin, L.M.; Miranda, R.O.; Todorov, S.D.; Franco, B.D.G.D.M.; Nero, L.A. Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int. J. Food Microbiol. 2014, 185, 121–126. [Google Scholar] [CrossRef]
- van Harten, R.M.; Willems, R.J.L.; Martin, N.I.; Hendrickx, A.P.A. Multidrug-resistant enterococcal infections: New compounds, novel antimicrobial therapies? Trends Microbiol. 2017, 25, 467–479. [Google Scholar] [CrossRef]
- Landete, J.M.; Peirotén, A.; Medina, M.; Arqués, J.L.; Rodríguez-Mínguez, E. Virulence and antibiotic resistance of enterococci isolated from healthy breastfed infants. Microb. Drug Resist. 2018, 24, 63–69. [Google Scholar] [CrossRef]
- Ch’ng, J.; Chong, K.K.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94. [Google Scholar] [CrossRef]
- Araujo, T.F.; Ferreira, C.L.D.L.F. The genus Enterococcus as probiotic: Safety concerns. Braz. Arch.Biol. Technol. 2013, 56, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Kak, V.; Chow, J.W. Acquired antibiotic resistances in enterococci. In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; Gilmore, M.S., Ed.; ASM Press: Washington, DC, USA, 2002; pp. 355–383. [Google Scholar]
- Jahan, M.; Holley, R.A. Transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to Listeria monocytogenes and Listeria innocua. Lett. Appl. Microbiol. 2016, 62, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Hummel, A.; Holzapfel, W.H.; Franz, C.M. Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Syst. Appl. Microbiol. 2007, 30, 1–7. [Google Scholar] [CrossRef]
- Lebreton, F.; Valentino, M.D.; Schaufler, K.; Earl, A.M.; Cattoir, V.; Gilmore, M.S. Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J. Antimicrob. Chemother. 2018, 73, 1479–1486. [Google Scholar] [CrossRef]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus diversity, origins in nature, and gut colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 5–63. [Google Scholar]
- Franz, C.; Holzapfel, W.H. The genus Enterococcus: Biotechnological and safety issues. In Lactic Acid Bacteria. Microbiological and Functional Aspects; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 199–248. [Google Scholar]
- Wegener, H.C. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 2003, 6, 439–445. [Google Scholar] [CrossRef]
- Leong, K.W.C.; Cooley, L.A.; Anderson, T.L.; Gautam, S.S.; McEwan, B.; Wells, A.; Wilson, F.; Hughson, L.; O’Toole, R.F. Emergence of vancomycin-resistant Enterococcus faecium at an Australian hospital: A whole genome sequencing analysis. Sci. Rep. 2018, 8, 6274. [Google Scholar] [CrossRef]
- Guerrero-Ramos, E.; Molina-Gonzalez, D.; Blanco-Morán, S.; Igrejas, G.; Poeta, P.; Alonso-Calleja, C.; Capita, R. Prevalence, antimicrobial resistance, and genotypic characterization of vancomycin-resistant enterococci in meat preparations. J. Food Prot. 2016, 79, 748–756. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Butaye, P.; Witte, W. Non-human reservoirs of enterococci. In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; ASM Press: Washington, DC, USA, 2002; pp. 55–100. [Google Scholar]
- Ronconi, M.C.; Merino, L.A.; Fernandez, G. Detection of Enterococcus with high-level aminoglycoside and glycopeptide resistance in Lactuca sativa (lettuce). Enferm. Infecc. Microbiol. Clin. 2002, 20, 380–383. [Google Scholar]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Huycke, M.M.; Gilmore, M.S.; Jett, B.D.; Booth, J.L. Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastro-intestinal tract. J. Infect. Dis. 1992, 166, 1188–1191. [Google Scholar] [CrossRef]
- Jacobsen, B.L.; Skou, M.; Hammerum, A.M.; Jensen, L.B. Horizontal transfer of the satA gene encoding streptogramin A resistance between isogenic Enterococcus faecium strains in the gastrointestinal tract of gnotobiotic rats. Microb. Ecol. Health Dis. 1999, 11, 241–247. [Google Scholar] [CrossRef]
- Lund, B.; Edlund, C. Probiotic Enterococcus faecium strain is a possible recipient of the vanA gene cluster. Clinic. Infect. Dis. 2001, 32, 1384–1385. [Google Scholar] [CrossRef] [PubMed]
- Mater, D.D.; Langella, P.; Corthier, G.; Flores, M.J. Evidence of vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring human microbiota. J. Antimicrob. Chemother. 2005, 56, 975–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coburn, P.S.; Baghdayan, A.S.; Dolan, G.T.; Shankar, N. Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol. Microbiol. 2007, 63, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Topcuoglu, S.; Gursoy, T.; Ovali, F.; Serce, O.; Karatekin, G. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: Bacterial probiotics. J. Matern. Fetal Neonatal Med. 2015, 28, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yu, H.; Liu, H.; Wang, Y.; Zhou, J.; Ma, X.; Wang, Z.; Sun, C.; Qiao, S. Horizontal transfer of vanA between probiotic Enterococcus faecium and Enterococcus faecalis in fermented soybean meal and in digestive tract of growing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Gilmore, M.S. Multidrug-resistant enterococci lack CRISPR-cas. MBio 2010, 1, e00227-10. [Google Scholar] [CrossRef] [Green Version]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.-I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martínez-Carranza, M.; Stenmark, P.; et al. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 2018, 23, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoXin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, Y.; Hasani, A.; Ghotaslou, R.; Varshochi, M.; Hasani, A.; Aghazadeh, M.; Milani, M. Survey of virulence determinants among vancomycin resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical specimens of hospitalized patients of northwest of Iran. Open Microbiol. J. 2012, 6, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Cariolato, D.; Andrighetto, C.; Lombardi, A. Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 2008, 19, 886–892. [Google Scholar] [CrossRef]
- Medeiros, A.W.; Pereira, R.I.; Oliveira, D.V.; Martins, P.D.; D’azevedo, P.A.; Van Der Sand, S.; Frazzon, J.; Frazzon, A.P.G. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil. Braz. J. Microbiol. 2014, 45, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.; Oliveira, M.; Fraqueza, M.J.; Laukova, A.; Elias, M.; Tenreiro, R.; Barreto, A.S.; Semedo-Lemsaddek, T. Antibiotic resistance and virulence factors among Enterococci isolated from chouriço, a traditional Portuguese dry fermented sausage. J. Food Prot. 2011, 74, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Hasan, K.A.; Bin Asif, H.; Abbasi, A. Environmental enterococci: I prevalence of virulence, antibiotic resistance and species distribution in poultry and its related environment in karachi Pakistan. Lett. Appl. Microbiol. 2014, 58, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Ispirli, H.; Demirbas, F.; Dertli, E. Characterization of functional properties of Enterococcus spp. isolated from Turkish white cheese. LWT—Food Sci. Technol. 2017, 75, 358–365. [Google Scholar] [CrossRef]
- Yılmaz, E.S.; Aslantas, O.; Pehlivanlar, S.O.; Türkyılmaz, S.; Kürekci, C. Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. LWT—Food Sci. Technol. 2016, 66, 20–26. [Google Scholar] [CrossRef]
- Abriouel, H.; Omar, N.B.; Molinos, A.C.; Lopez, R.L.; Grande, M.J.; Martínez-Viedma, P.; Ortega, E.; Martínez Cañamero, M.; Galvez, A. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int. J. Food Microbiol. 2008, 123, 38–49. [Google Scholar] [CrossRef]
- Holmberg, A.; Rasmussen, M. Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics. Diagnostic Microbiol. Infect. Dis. 2016, 84, 19–21. [Google Scholar] [CrossRef]
- Simoes, M.; Simoes, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT—Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Chuang-Smith, O.N.; Wells, C.L.; Henry-Stanley, M.J.; Dunny, G.M. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS ONE 2010, 5, 15798. [Google Scholar] [CrossRef]
- Hufnagel, M.; Koch, S.; Creti, R.; Baldassarri, L.; Huebner, J. A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J. Infection Dis. 2004, 189, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, J.A.; Huang, W.; Nallapareddy, S.R.; Teng, F.; Murray, B.E. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect. Immunol. 2004, 72, 3658–3663. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, J.A.; Murray, B.E. Lack of correlation of gelatinase production and biofilm formation in a large collection of Enterococcus faecalis isolates. J. Clin. Microbiol. 2005, 43, 5405–5407. [Google Scholar] [CrossRef] [Green Version]
- Hammad, A.M.; Hassan, H.A.; Shimamoto, T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control 2015, 50, 815–820. [Google Scholar] [CrossRef]
- Gaspar, F.B.; Crespo, M.T.B.; Lopes, M.F.S. Proposal for a reliable enterococcal cytolysin production assay avoiding apparent incongruence between phenotype and genotype. J. Med. Microbiol. 2009, 58, 1122–1124. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, P.M.; Ravikumar, K.L.; Umapathy, B.L. Review of virulence factor of enterococcus: An emerging nosocomial pathogen. Ind. J. Med. Microbiol. 2009, 27, 301–305. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Kim, Y.J.; Hwang, H.J. Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermented soy product. LWT—Food Sci. Technol. 2008, 41, 925–933. [Google Scholar] [CrossRef]
- Ozmen Toğay, S.; Celebi Keskin, A.; Acık, L. Virulence genes, antibiotic resistance and plasmid profiles of Enterococcus faecalis and Enterococcus faecium from naturally fermented Turkish foods. J. Appl. Microbiol. 2010, 109, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Hirt, H.; Zurek, L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L) alimentary canal. Microb. Ecol. 2009, 58, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, C.; Foglia, G.; Princivalli, M.S.; Magi, G.; Guaglianone, E.; Donelli, G.; Pruzzo, C.; Biavasco, F.; Facinelli, B. Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings. J. Antimicrob. Chemother. 2007, 59, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Freitas, A.R.; Coque, T.M.; Sollid, J.E.; Lester, C.; Hammerum, A.M.; Garcia-Migura, L.; Jensen, L.B.; Francia, M.V.; Witte, W.; et al. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J. Antimicrob. Chemother. 2011, 66, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Wardal, E.; Sadowy, E.; Hryniewicz, W. Complex nature of enterococcal pheromone-responsive plasmids. Pol. J. Microbiol. 2010, 59, 79–87. [Google Scholar] [CrossRef]
- Chajecka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT—Food Sci. Technol. 2016, 69, 117–122. [Google Scholar] [CrossRef]
- Poeta, P.; Costa, D.; Saenz, Y.; Klibi, N.; Ruiz-Larrea, F.; Rodrigues, J.; Torres, C. Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J. Vet. Med. B 2005, 52, 396–402. [Google Scholar] [CrossRef]
- Jackson, C.R.; Kariyawasam, S.; Borst, L.B.; Frye, J.G.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A. Antimicrobial resistance, virulence determinants and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry. Lett. Appl. Mirobiol. 2015, 60, 111–119. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards; Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Robert, D.; Rosina, G.; Lieve, H.; Konstantinos, K.; Lindqvist, R.; et al. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 2017, 15, e04664. [Google Scholar]
- Montealegre, M.C.; Singh, K.V.; Murray, B.E. Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades. J. Infect. Dis. 2016, 213, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Bonacina, J.; Suarez, N.; Hormigo, R.; Fadda, S.; Lechner, M.; Saavedra, L. A genomic view of food-related and probiotic Enterococcus strains. DNA Res. 2017, 24, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Jung, A.; Metzner, M.; Ryll, M. Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiol. 2017, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Beukers, A.G.; Zaheer, R.; Goji, N.; Amoako, K.K.; Chaves, A.V.; Ward, M.P.; McAllister. Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol. 2017, 17, 52. [Google Scholar] [CrossRef] [Green Version]
- ACNFP. Report on Enterococcus Faecium, Strain K77D Report; MAFF Advisory Committee on Novel Foods and Processes: London, UK, 1996. [Google Scholar]
- Lauková, A. Potential applications of probiotic, bacteriocin-producing enterococci and their bacteriocins. In Lactic Acid Bacteria Microbiological and Functional Aspects, 4th ed.; Wright, A.V., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 39–61. [Google Scholar]
- EFSA. Guidance for assessing safety of Enterococcus faecium in animal feed. EFSA J. 2012, 10, 2682. [Google Scholar] [CrossRef]
- Brodmann, T.; Endo, A.; Gueimonde, M.; Vinderola, G.; Kneifel, W.; de Vos, W.M.; Salminen, S.; Gómez-Gallego, C. Safety of novel microbes for human consumption: Practical examples of assessment in the European Union. Front. Microbiol. 2017, 8, 1725. [Google Scholar] [CrossRef]
- Nami, Y.; Abdullah, N.; Haghshenas, B.; Radiah, D.; Rosli, R.; Khosroushahi, A.Y. Probiotic assessment of Enterococcus durans 6HL and Lactococcus lactis 2HL isolated from vaginal microflora. J. Med. Microbiol. 2014, 63, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Tiwari, S.K. Probiotic potential of bacteriocin-producing Enterococcus hirae strain LD3 isolated from dosa batter. Ann. Microbiol. 2015, 65, 2333–2342. [Google Scholar] [CrossRef]
- van Zyl, W.; Deane, S.; Dicks, L. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 excludes Listeria monocytogenes from the GIT, as shown by bioluminescent studies in mice. Benef. Microbes 2016, 7, 227–235. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Lactiferm R (Enterococcus faecium) as a feed additive for weaned piglets and calves. EFSA J. 2012, 10, 2574. [Google Scholar] [CrossRef]
- Laulund, S.; Wind, A.; Derkx, P.; Zuliani, V. Regulatory and safety requirements for food cultures. Microorganisms 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, A.P.; van Wamel, W.J.; Posthuma, G.; Bonten, M.J.; Willems, R.J. Five genes encoding surface-exposed LPXTG proteins are enriched in hospital-adapted Enterococcus faecium clonal complex 17 isolates. J. Bacteriol. 2007, 189, 8321–8332. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Carias, L.; Rudin, S.; Vael, C.; Goossens, H.; Konstabel, C.; Klare, I.; Nallapareddy, S.R.; Huang, W.; Murray, B.E. A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J. Infect. Dis. 2003, 187, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Werner, G.; Fleige, C.; Geringer, U.; van Schaik, W.; Klare, I.; Witte, W. IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect. Dis. 2011, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.V.; Coque, T.M.; Weinstock, G.M.; Murray, B.E. In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol. Med. Microbiol. 1998, 21, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, J.W.; Krishnan, P.; Jureen, R.; Lin, R.T. Detection of an unusual van genotype in a vancomycin-resistant Enterococcus faecium hospital isolate. J. Clin. Microbiol. 2011, 49, 4297–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, J.; Kariyama, R.; Kumon, H. Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl. Environ. Microbiol. 2002, 68, 3152–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semedo, T.; Almeida Santos, M.; Martins, P.; Silva Lopes, M.F.; Figueiredo Marques, J.J.; Tenreiro, R.; Crespo, M.T.B. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J. Clin. Microbiol. 2003, 41, 2569–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun. 2000, 68, 2579–2586. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Biological Hazards. Scientific opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- FDA. Scombrotoxin (Histamine) Formation. In Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; Office Seafood Department of Health and Human Services, Publich Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition: Washington, DC, USA, 2011; pp. 113–152. [Google Scholar]
- Hungerford, J.M.; Hollingworth, T.A.; Wekell, M.M. Automated kinetics-enhanced flow-injection method for histamine in regulatory laboratories: Rapid screening and suitability requirements. Anal. Chim. Acta 2001, 438, 123–129. [Google Scholar] [CrossRef]
- Patange, S.B.; Mukundan, M.K.; Ashok Kumar, K. A simple and rapid method for colorimetric determination of histamine in fish flesh. Food Control 2005, 16, 465–472. [Google Scholar] [CrossRef]
- Landete, J.M.; de Las Rivas, B.; Marcobal, A.; Munoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar]
- Egan, K.; Field, D.; Rea, M.C.; Ross, R.P.; Hill, C.; Cotter, P.D. Bacteriocins: Novel solutions to age old spore-related problems? Front. Microbiol. 2016, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Vignolo, G.; Saavedra, L.; Sesma, F.; Raya, R. Food bioprotection: Lactic acid bacteria as natural preservatives. In Progress in Food Preservation; Bhat, R., Alias, A.K., Paliyath, G., Eds.; John Wiley & Sons: Chichester, UK, 2012; pp. 451–483. [Google Scholar]
- Barbosa, A.A.T.; Mantovani, H.C.; Jain, S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Critic. Rev. Biotechnol. 2017, 37, 852–864. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins-a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Behrens, H.M.; Six, A.; Walker, D.; Kleanthous, C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg. Topics Life Sci. 2017, 1, 65–74. [Google Scholar]
- Lohans, C.T.; Vederas, J.C. Development of Class IIa bacteriocins as therapeutic agents. Int. J. Microbiol. 2012, 2012, 386410. [Google Scholar] [CrossRef] [Green Version]
- Ołdak, A.; Zielinska, D. Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy. Hig. Med. Dosw. 2017, 71, 328–338. [Google Scholar] [CrossRef]
- Venugopalan, V.; Shriner, K.A.; Wong-Beringer, A. Regulatory oversight and safety of probiotic use. Emerg. Infect. Dis. 2010, 16, 1661–1665. [Google Scholar] [CrossRef]
- Hillion, M.; Mijouin, L.; Leneveu, C.; Jaouen, T.; Gérault, E.; Feuilloley, M.G.J. Adaptation des staphylocoques commensaux aux peptides antimicrobiens de la peau. In Proceedings of the 9e Congrès National de la Société Française de Microbiologie, Lille, France, 7–8 February 2013. [Google Scholar]
- van den Nieuwboer, M.; Claassen, E. Dealing with the remaining controversies of probiotic safety. Benef. Microbes 2019, 10, 605–616. [Google Scholar] [CrossRef]
- Lauková, A.; Kandricakova, A.; Bunkova, L.; Pleva, P.; Scerbova, J. Sensitivity to enterocins of biogenic amine-producing faecal Enterococci from ostriches and pheasants. Probiotics Antimicrob. Proteins 2017, 9, 483–491. [Google Scholar] [CrossRef]
- Grande Burgos, M.J.; Pulido, R.P.; Del Carmen Lopez Aguayo, M.; Galvez, A.; Lucas, R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar] [CrossRef] [Green Version]
- Jalalvand, N.; Esmaeili, D.; Bashi, M.M.M.; Raiszadeh, M.; Naeimi, S. Evaluation of Physicochemical Activity of Anticancer Fusion Proteins; Enterocin A- R type pyocin-Lactocin-Ligand Against Gastric Cancer Cell Line by Real-Time RT PCR Technique. Int. J. Peptide Res. Therap. 2021, 27, 1167–1175. [Google Scholar] [CrossRef]
- Salvucci, E.; Saavedra, L.; Hebert, E.; Haro, C.; Sesma, F. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog. Dis. 2012, 9, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Fritzenwanker, M.; Kuenne, C.; Billion, A.; Hain, T.; Zimmermann, K.; Goesmann, A.; Chakraborty, T.; Domann, E. Complete genome sequence of the probiotic Enterococcus faecalis Symbioflor 1 Clone DSM 16431. Genome Announc. 2013, 1, e00165-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, M.; Zhanel, G.G.; Sparling, R.; Holley, R.A. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis. Int. J. Food Microbiol. 2015, 199, 78–85. [Google Scholar] [CrossRef] [PubMed]
- de Niederhausern, S.; Bondi, M.; Messi, P.; Iseppi, R.; Sabia, C.; Manicardi, G.; Anacarso, I. Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus. Curr. Microbiol. 2011, 62, 1363–1367. [Google Scholar] [CrossRef]
- Lepage, E.; Brinster, S.; Caron, C.; Ducroix-Crepy, C.; Rigottier-Gois, L.; Dunny, G.; Hennequet-Antier, C.; Serror, P. Comparative genomic hybridization analysis of Enterococcus faecalis: Identification of genes absent from food strains. J. Bacteriol. 2006, 188, 6858–6868. [Google Scholar] [CrossRef] [Green Version]
Commercial Product | Amount per Serving † | Marketing and Uses ¶ |
---|---|---|
E. faecalis * | ||
Bifilac | 30 million CFU per sachet or capsule | Treatment of diarrhea (traveler’s, antibiotic-associated, viral, bacterial, or protozoal); lactose intolerance; stomatitis; inflammatory bowel disease |
Bioflora | n.d. | Restoration of flora following antibiotic treatment or chemotherapy; atrophic vaginitis; mild-to-moderate bacterial vaginosis and candidiasis |
Pro-symbioflor | 1.5–4.5 × 107 CFU per 14 drops | Preparation of immune system for stomach and intestinal complaints |
Shin-Biofermin S | 2 mg per tablet | Intestinal regulation and treatment of diarrhea, constipation and meteorism |
Symbioflor1 | 1.5–4.5 × 107 CFU per 12 drops | Treatment of recurring sinusitis, bronchitis, pharyngitis; training of immune system |
ThreeLac/FiveLac | 500 million CFU | Elimination of symptoms of candidiasis; maintenance of intestinal health |
Essential Formulas O’Hara Probiotic 12 plus OMX PROFESSIONAL Formula (E. faecalis TH10) | 7.8–10 × 107 CFU per capsule | Improvement of digestive and bowel function; decrease stomach disorders; treatment of Crohn’s disease; increase nutritional absorption; boosting appetite; decrease yeast infection; enhancement of liver health, circulatory, joint, and muscle function; improvement of sleep, vitamin synthesis, and resistance to allergies; lactose intolerance |
E. faecium * | ||
BIO-THREE (E. faecium § T-110) | n.d. | Homeostasis of intestinal microflora; inhibition of sturdy pathogens; facilitation of proliferation of Bifidobacterium; reduction in cholesterol; treatment of ulcerative colitis; prevention of colon cancer |
N. American Herb & Spice Health-Bac Probiotic | n.d. | Support a healthy digestive response |
Natural Factors Probiotics: Acidophilus with E. faecium | 0.8 billion CFU per capsule | n.d. |
Commercial Name of the Formula (Manufacturer) | Microorganism(s) in the Preparation |
---|---|
Poultry | |
B.I.O. Sol (Biochem) | Enterococcus faecium |
Galvit Probiotyk (Galvit) | Enterococcus faecium |
Pigs | |
Anta Pro EF (Dr. Eckel) | Enterococcus faecium |
Biogen T (Bio-Gen) | Bifidobacterium bifidum, Lactobacillus acidophilus, Enterococcus faecium |
Cerbiopor | Lactobacillus: Lactobacillus acidophilus, Levilactobacillus brevis, Lacticaseibacillus casei, Limosilactobacillus fermentum, Lactobacillus lactis, Lactiplantibacillus plantarum; Bacillus: subtilis, megaterium, pumilus; Enterococcus faecium, Cellulomonas sp., Saccharomyces cerevisiae |
Cattle (calves) | |
Yea Sacc (Altech) | Lacticaseibacillus rhamnosus, Enterococcus faecium |
Poultry and pigs | |
Acid-Pak-4-Way (Alltech) | Lactobacillus acidophilus, Enterococcus faecium |
Probios (Chr. Hansen) | Lactobacillus: Lactobacillus acidophilus, Lacticaseibacillus casei, Lactiplantibacillus plantarum, lactis; Enterococcus faecium; Bacillus subtilis |
Poultry and calves | |
Probiomix | Bifidobacterium bifidum, Lactobacillus amylovorus, Enterococcus faecium |
UltraCruz (Santa Cruz Animal Health) | Enterococcus faecium, Lactobacillus: Lactobacillus acidophilus, Lacticaseibacillus casei, Lactiplantibacillus plantarum |
Calves and pigs | |
Cernivet LBC (Cerbios) | Enterococcus faecium |
Provita LE (Schaumann) | Lacticaseibacillus rhamnosus, Enterococcus faecium |
Poultry, pigs, and calves | |
Cylactin (DSM) | Enterococcus faecium |
Lactiferm | Enterococcus faecium |
Oralin® (Chevita GmbH) | Enterococcus faecium |
Poultry, pigs, sheep, and cattle | |
Protexin (Protexin Probiotics International Ltd.) | Lactobacillus: Lactobacillus acidophilus, Lactobacillus delbruecki subsp. Bulgaricus, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus; Bifidobacterium bifidum; Streptococcus salivarius subsp. Thermophilus; Enterococcus faecium; Aspergillus oryzae; Candida pintolepesii |
Poultry, pigs, beef, dairy, horses, and deer | |
PrimaLac (Star Labs, Inc.) | Bifidobacterium: bifidium, thermophilus; Enterococcus faecium; Lactobacillus: Lactobacillus acidophilus, Lacticaseibacillus casei |
Poultry, pigs, pets, and livestock | |
SF68® (Cerbios-Pharma SA) | Enterococcus faecium |
Symbioflor® 1 (Symbiopharm, Herborn) | Enterococcus faecalis |
Enterococcal Virulence Factors | Gene(s) | Reported Biological Effect |
---|---|---|
Virulence factors that promote colonization | ||
Aggregation substance (AS) | agg, prgB asa1 | Binding to host cells, enables cell-to-cell contact between donor and recipient strains for conjugation; facilitating binding of donor and recipient cells; to mediate adhesion of E. faecalis to eukaryotic cells and internalization; enhancement of bacterial vegetation; synergetic regulation of quorum via Cyl; protection against neutrophilic killing |
Collagen-binding protein (Ace) Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) | ace acm, fss1, fss2 and fss3 | Colonization by binding to proteins of the extracellular matrix (ECM); participation in binding type I and IV host collagen; adherence to host fibronectin, fibrinogen, and/or laminin |
Cell wall adhesin (Efa A) | efaA | Virulence factors associated with infective endocarditis |
Enterococcal surface protein (Esp) | esp | Surface adhesion, colonization, and persistence; association with biofilm formation |
Extracellular superoxide | menA, menB, cydA, and frdA | Bacterial invasion; clastogen and mutagen |
Pilus | ebp (A–C), srtA, bps (srtC), and bee locus | Adherence to host cells; enhances biofilm formation |
Virulence factors with affect tissues | ||
Cytolysin (Cyl), | cylLL, cylLS, cylM, cylB, cylA, cylI, cylR1, and cylR2 | Bactericidal properties towards Gram-negative bacteria; toxic properties (β-hemolysis) towards mammalian erythrocytes (not sheep or goat), leukocytes, macrophages; destroys neural tissues; bacteriocin; quorum regulation |
Gelatinase (GelE) | efaAfs, efaAfm, gelE, sprE, fsrA, fsrB, and fsrC | Hydrolysis of gelatin, elastin, collagen, hemoglobin, polymerized fibrin as well as other bioactive peptides, e.g., proteins bound to pheromones; cleavage of human complement C3 and C5a; clearing misfolded bacterial surface proteins and extracellular pheromones; maintaining diplococcal morphology |
Hyaluronidase (Hyl) | hylA | Playing a key role in destroying mucopolysaccharides of the connective tissue and cartilage |
Experimental Trials | Approach | References |
---|---|---|
Antibiotic susceptibility | ||
Phenotypic antibiotic susceptibility: Ampicillin | Minimal inhibitory concentrations (MICs) (mg/L or µg/mL; susceptibility testing: EUCAST/CLSI, ISO standard) | [229] |
Other Considerations | ||
Susceptibility to clinically relevant antibiotics: (vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, chloramphenicol) | Minimal inhibitory concentrations (MICs) (mg/L or µg/mL; susceptibility testing: EUCAST/CLSI, ISO standard) | [234,235] |
Detection of Virulence Markers Associated with Clinical Strains | ||
esp | Hybridization techniques | [236] |
hylEfm | PCR | [237] |
IS16 | PCR | [238] |
Alternative methods: - Hybridization to colony lysates - Southern blots | [239] | |
Other Considerations | ||
Genotypic assessment | - Multilocus sequence typing (MLST) - DNA fingerprint - PCR | |
Vancomycin operons (vanA, vanB, vanC, vanD, vanE, vanG, vanM, vanL, vanN) | [240] | |
Aggregation protein gene (agg) | ||
Surface adhesin genes (efaAfs, efaAfm) | [82] | |
Cytolysin genes (cylLL, cylLs, cylM, cylB, cylA) | ||
Extracellular metalloendopeptidasegelE | [241] | |
Phenotypic assessment | ||
Hemolytic Activity | Hemolytic activity assay on 5% sheep or horse blood Columbia agar plates | [242] |
Gelatin hydrolysis | Assay for gelatinase activity on Todd-Hewitt (TH) agar plates containing 3% gelatin | [243] |
Biogenic Amines Detection | ||
Histamine Putrescine Phenylethylamine Cadaverine | High pressure liquid chromatography (HPLC) | [244] |
Alternative methods (for Histamine) | ||
- Fluorometric methods - Immunoassays - Flow injection analysis - Colorimetric method | [245,246,247] | |
Detection of amino acid decarboxylase-positive microorganisms | - Quantitative real-time PCR histamine-producing LAB - In vitro detection method (Enzymatic or chemical analysis) | [244,245,248] |
Toxin Production | ||
Cytotoxic potential | Vero cell cytotoxicity test | [235] |
Full genome (When available) | Next Generation Sequencing | [229] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferchichi, M.; Sebei, K.; Boukerb, A.M.; Karray-Bouraoui, N.; Chevalier, S.; Feuilloley, M.G.J.; Connil, N.; Zommiti, M. Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve? Microorganisms 2021, 9, 2222. https://doi.org/10.3390/microorganisms9112222
Ferchichi M, Sebei K, Boukerb AM, Karray-Bouraoui N, Chevalier S, Feuilloley MGJ, Connil N, Zommiti M. Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve? Microorganisms. 2021; 9(11):2222. https://doi.org/10.3390/microorganisms9112222
Chicago/Turabian StyleFerchichi, Mounir, Khaled Sebei, Amine Mohamed Boukerb, Najoua Karray-Bouraoui, Sylvie Chevalier, Marc G. J. Feuilloley, Nathalie Connil, and Mohamed Zommiti. 2021. "Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve?" Microorganisms 9, no. 11: 2222. https://doi.org/10.3390/microorganisms9112222
APA StyleFerchichi, M., Sebei, K., Boukerb, A. M., Karray-Bouraoui, N., Chevalier, S., Feuilloley, M. G. J., Connil, N., & Zommiti, M. (2021). Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve? Microorganisms, 9(11), 2222. https://doi.org/10.3390/microorganisms9112222