Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Liver Cirrhosis and ACLF
2.4. Medication
2.5. Sampling and Storage
2.6. Assay
2.7. Renal Replacement Therapy
2.8. Patient Characteristics
2.9. Statistics
2.10. Pharmacometric Data Analysis
2.11. Simulations
- ▪
- The recommended standard dosing regimen which included an initial dose of 6 mg/kg/12 h of voriconazole on the first day and a maintenance dose of 4 mg/kg/12 h on each subsequent day,
- ▪
- a regimen with 50% higher doses compared to the standard dosing regimen (loading dose: 9 mg/kg/12 h, maintenance dose: 6 mg/kg/12 h), and
- ▪
- a regimen with 50% lower doses compared to the standard dosing regimen (loading dose: 3 mg/kg/12 h, maintenance dose: 2 mg/kg/12 h).
3. Results
3.1. Pharmacometric Data Analysis
3.2. Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez, J.; Acevedo, J.; Wiest, R.; Gustot, T.; Amoros, A.; Deulofeu, C.; Reverter, E.; Martinez, J.; Saliba, F.; Jalan, R.; et al. Bacterial and fungal infections in acute-on-chronic liver failure: Prevalence, characteristics and impact on prognosis. Gut 2018, 67, 1870–1880. [Google Scholar] [CrossRef] [PubMed]
- Hubener, P.; Braun, G.; Fuhrmann, V. Acute-on-chronic liver failure: A diagnostic and therapeutic challenge for intensive care. Med. Klin. Intensivmed. Notfmed. 2018, 113, 649–657. [Google Scholar]
- Moreau, R.; Jalan, R.; Gines, P.; Pavesi, M.; Angeli, P.; Cordoba, J.; Durand, F.; Gustot, T.; Saliba, F.; Domenicali, M.; et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013, 144, 1426–1437. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [CrossRef] [Green Version]
- Fuhrmann, V.; Whitehouse, T.; Wendon, J. The ten tips to manage critically ill patients with acute-on-chronic liver failure. Intensive Care Med. 2018, 44, 1932–1935. [Google Scholar] [CrossRef]
- Jalan, R.; Fernandez, J.; Wiest, R.; Schnabl, B.; Moreau, R.; Angeli, P.; Stadlbauer, V.; Gustot, T.; Bernardi, M.; Canton, R.; et al. Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013. J. Hepatol. 2014, 60, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Gravito-Soares, M.; Gravito-Soares, E.; Lopes, S.; Ribeiro, G.; Figueiredo, P. Spontaneous fungal peritonitis: A rare but severe complication of liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2017, 29, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhang, M.; Han, T.; Jiang, H.Q. Characteristics of infection and its impact on short-term outcome in patients with acute-on-chronic liver failure. Medicine 2017, 96, e8057. [Google Scholar] [CrossRef] [PubMed]
- Meersseman, W.; Vandecasteele, S.J.; Wilmer, A.; Verbeken, E.; Peetermans, W.E.; Van Wijngaerden, E. Invasive aspergillosis in critically ill patients without malignancy. Am. J. Respir. Crit. Care Med. 2004, 170, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, J.; Kluwe, F.; Mikus, G.; Michelet, R.; Kloft, C. Novel insights into the complex pharmacokinetics of voriconazole: A review of its metabolism. Drug Metab. Rev. 2019, 51, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, S.; Sun, J.; Cai, J.; Cheng, X.; Dong, H.; Wang, X.; Xing, J.; Dong, W.; Yao, H.; et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J. Antimicrob. Chemother. 2013, 69, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, V.; Schenk, P.; Jaeger, W.; Miksits, M.; Kneidinger, N.; Warszawska, J.; Holzinger, U.; Kitzberger, R.; Thalhammer, F. Pharmacokinetics of voriconazole during continuous venovenous haemodiafiltration. J. Antimicrob. Chemother. 2007, 60, 1085–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grensemann, J.; Busse, D.; Konig, C.; Roedl, K.; Jager, W.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Kloft, C.; et al. Acute-on-chronic liver failure alters meropenem pharmacokinetics in critically ill patients with continuous hemodialysis: An observational study. Ann. Intensive Care 2020, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Staufer, K.; Roedl, K.; Kivaranovic, D.; Drolz, A.; Horvatits, T.; Rasoul-Rockenschaub, S.; Zauner, C.; Trauner, M.; Fuhrmann, V. Renal replacement therapy in critically ill liver cirrhotic patients-outcome and clinical implications. Liver Int. 2017, 37, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, V.; Bauer, M.; Wilmer, A. The persistent potential of extracorporeal therapies in liver failure. Intensive Care Med. 2020, 46, 528–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drolz, A.; Horvatits, T.; Rutter, K.; Landahl, F.; Roedl, K.; Meersseman, P.; Wilmer, A.; Kluwe, J.; Lohse, A.W.; Kluge, S.; et al. Lactate Improves Prediction of Short-Term Mortality in Critically Ill Patients With Cirrhosis: A Multinational Study. Hepatology 2019, 69, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Broeker, A.; Vossen, M.G.; Thalhammer, F.; Wallis, S.C.; Lipman, J.; Roberts, J.A.; Wicha, S.G. An Integrated Dialysis Pharmacometric (IDP) Model to Evaluate the Pharmacokinetics in Patients Undergoing Renal Replacement Therapy. Pharm. Res. 2020, 37, 96. [Google Scholar] [CrossRef]
- Broeker, A.; Wicha, S.G. Assessing parameter uncertainty in small-n pharmacometric analyses: Value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique. J. Pharmacokinet. Pharmacodyn. 2020, 47, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Theuretzbacher, U.; Ihle, F.; Derendorf, H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin. Pharmacokinet. 2006, 45, 649–663. [Google Scholar] [CrossRef]
- Jin, H.; Wang, T.; Falcione, B.A.; Olsen, K.M.; Chen, K.; Tang, H.; Hui, J.; Zhai, S. Trough concentration of voriconazole and its relationship with efficacy and safety: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1772–1785. [Google Scholar] [CrossRef] [Green Version]
- Jeans, A.R.; Howard, S.J.; Al-Nakeeb, Z.; Goodwin, J.; Gregson, L.; Majithiya, J.B.; Lass-Flörl, C.; Cuenca-Estrella, M.; Arendrup, M.C.; Warn, P.A.; et al. Pharmacodynamics of voriconazole in a dynamic in vitro model of invasive pulmonary aspergillosis: Implications for in vitro susceptibility breakpoints. J. Infect. Dis. 2012, 206, 442–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.X.; Li, X.G.; Mu, J.S.; Bi, J.F.; Du, C.H.; Wang, Y.H.; Zhu, H.; Lv, P.; Zhao, Q.G. Population Pharmacokinetics of Voriconazole and Optimization of Dosage Regimens Based on Monte Carlo Simulation in Patients With Liver Cirrhosis. J. Pharm. Sci. 2019, 108, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.; Johnstone, G.; Cicconi, S.; Felton, T.; Goodwin, J.; Whalley, S.; Santoyo-Castelazo, A.; Ramos-Martin, V.; Lestner, J.; Credidio, L.; et al. Software for Dosage Individualization of Voriconazole: A Prospective Clinical Study. Antimicrob. Agents Chemother. 2019, 63, e02353-18. [Google Scholar] [CrossRef] [Green Version]
- Weiler, S.; Zoller, H.; Graziadei, I.; Vogel, W.; Bellmann-Weiler, R.; Joannidis, M.; Bellmann, R. Altered pharmacokinetics of voriconazole in a patient with liver cirrhosis. Antimicrob. Agents Chemother. 2007, 51, 3459–3460. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yan, M.; Tang, D.; Xue, L.; Zhang, T.; Dong, Y.; Zhu, L.; Wang, X.; Dong, Y. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child-Pugh class B and C cirrhosis: A multicenter study. Int. J. Infect. Dis. 2018, 72, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Yan, M.; Tang, D.; Xue, L.; Zhang, T.; Dong, Y.; Zhu, L.; Wang, X.; Dong, Y. A retrospective, multicenter study of voriconazole trough concentrations and safety in patients with Child-Pugh class C cirrhosis. J. Clin. Pharm. Ther. 2018, 43, 849–854. [Google Scholar] [CrossRef]
- Purkins, L.; Wood, N.; Greenhalgh, K.; Allen, M.J.; Oliver, S.D. Voriconazole, a novel wide-spectrum triazole: Oral pharmacokinetics and safety. Br. J. Clin. Pharmacol. 2003, 56 (Suppl. 1), 10–16. [Google Scholar] [CrossRef] [Green Version]
- Raffaeli, G.; Cavallaro, G.; Allegaert, K.; Koch, B.C.P.; Mosca, F.; Tibboel, D.; Wildschut, E.D. Sequestration of Voriconazole and Vancomycin Into Contemporary Extracorporeal Membrane Oxygenation Circuits: An in vitro Study. Front. Pediatr. 2020, 8, 468. [Google Scholar] [CrossRef]
- Spriet, I.; Annaert, P.; Meersseman, P.; Hermans, G.; Meersseman, W.; Verbesselt, R.; Willems, L. Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2009, 63, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.M.; Juffermans, N.P.; Taccone, F.S.; Coimbra Sousa, C.A.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef]
- Vanstraelen, K.; Wauters, J.; De Loor, H.; Vercammen, I.; Annaert, P.; Lagrou, K.; Spriet, I. Protein-binding characteristics of voriconazole determined by high-throughput equilibrium dialysis. J. Pharm. Sci. 2014, 103, 2565–2570. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Hafner, V.; Czock, D.; Burhenne, J.; Riedel, K.D.; Bommer, J.; Mikus, G.; Machleidt, C.; Weinreich, T.; Haefeli, W.E. Pharmacokinetics of sulfobutylether-beta-cyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob. Agents Chemother. 2010, 54, 2596–2602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiser, T.H.; Fish, D.N.; Aquilante, C.L.; Rower, J.E.; Wempe, M.F.; MacLaren, R.; Teitelbaum, I. Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit. Care 2015, 19, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VORICONAZOL EBERTH. Available online: https://www.eberth-arzneimittel.com/sortiment/voriconazol-eberth (accessed on 26 November 2020).
- Luong, M.L.; Al-Dabbagh, M.; Groll, A.H.; Racil, Z.; Nannya, Y.; Mitsani, D.; Husain, S. Utility of voriconazole therapeutic drug monitoring: A meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1786–1799. [Google Scholar] [CrossRef]
- Pascual, A.; Calandra, T.; Bolay, S.; Buclin, T.; Bille, J.; Marchetti, O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin. Infect. Dis. 2008, 46, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanstraelen, K.; Wauters, J.; Vercammen, I.; de Loor, H.; Maertens, J.; Lagrou, K.; Annaert, P.; Spriet, I. Impact of hypoalbuminemia on voriconazole pharmacokinetics in critically ill adult patients. Antimicrob. Agents Chemother. 2014, 58, 6782–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | ACLF | NLF | p |
---|---|---|---|
Number of patients | n = 6 | n = 9 | |
Age [years] | 58 (49–67) | 70 (53–73) | 0.17 |
Gender | males: 4 females: 2 | males: 9 females: 0 | 0.06 |
Weight [kg] | 73 (64–103) | 85 (76–95) | 0.33 |
Height [cm] | 175 (164–181) | 180 (173–182) | 0.39 |
APACHE II | 30 (23–40) | 25 (21–39) | 0.69 |
SOFA | 19 (15–23) | 13 (10–18) | 0.11 |
Albumin | 16.1 (11.1–19.5) | 12.0 (10.5–15.6) | 0.35 |
PT [%] | 33 (23–82) | 86 (61–104) | 0.05 |
Bilirubin [mg/dL] | 10.3 (3.5–14.2) | 1.1 (0.6–1.4) | 0.001 |
Antithrombin [%] | 24 (21–86) | 99 (50–106) | 0.07 |
Parameter | Estimate | CI95% |
---|---|---|
CLbody [L/h] | 4.70 | 2.87–7.81 |
V1 [L] | 80.6 | 62.6–104 |
Q [L/h] | 62.1 | 36.3–110 |
V2 [L] | 106 | 65.0–166 |
CLRRT [L/h] | 1.46 | 1.29–1.64 |
FADS | 0.23 | 0.13–0.33 |
ADSMAX [mg] | 69.2 | 29.3–159 |
RBCtP | 2.13 | 1.43–30 |
IIV CLbody [%CV] | 95.3 | 67.4–135 |
IIV V1 [%CV] | 45.2 | 32.6–59.7 |
IIV Q [%CV] | 76.9 | 30.8–151 |
IIV V2 [%CV] | 74.7 | 44.2–120.8 |
IIV CLRRT [%CV] | 17.7 | 12.1–25.8 |
IIV FADS [%CV] | 50.1 | 24.3–92.9 |
IOV CLbody [%CV] | 83.8 | 75.5–95.1 |
RUV pre, prop. [%CV] | 29.3 | 27.2–31.3 |
RUV post, prop [%CV] | 35.9 | 34.0–38.5 |
RUV dia, prop [%CV] | 42.9 | 40.1–46.3 |
Parameter | ACLF | NLF | p-Value |
---|---|---|---|
Number of patients | n = 6 | n = 9 | |
CLbody [L/h] | 2.95 [1.24, 12.14] | 4.83 [2.54, 31.96] | 0.181 |
V1 [L] | 88.88 [27.81] | 85.14 [42.2] | 0.85 |
Q [L/h] | 77.63 [61.89, 82.34] | 68.55 [75.79] | 0.69 |
V2 [L] | 122.59 [36.94] | 120.17 [155.62] | 0.97 |
CLRRT [L/h] | 1.34 [0.94, 1.82] | 1.01 [0.78, 1.44] | 0.14 |
Seff | 0.25 [0.06] | 0.2 [0.09] | 0.31 |
Scenario | Cmin < 0.5 mg/L (Loss of Efficacy) | Cmin 0.5–3 mg/L (Target Range) | Cmin > 3 mg/L (Increased Incidence of Hepatotoxicity) | Cmin > 4 mg/L (Increased Incidence of Neurotoxicity) |
---|---|---|---|---|
Initial dose: 6 mg/kg/12 h (2×) Maintenance dose: 4 mg/kg/12 h (Recommended dose) | 10% | 74% | 16% | 7% |
Initial dose: 9 mg/kg/12 h (2×) Maintenance dose: 6 mg/kg/12 h | 7% | 57% | 37% | 21% |
Initial dose: 3 mg/kg/12 h (2×) Maintenance dose: 2 mg/kg/12 h | 26% | 72% | 1% | 0% |
Initial dose: 6 mg/kg/12 h (2×) Maintenance dose: 4 mg/kg/12 h (Recommended dose) w/o RRT | 9% | 68% | 22% | 11% |
Initial dose: 9 mg/kg/12 h (2×) Maintenance dose: 6 mg/kg/12 h w/o RRT | 6% | 51% | 43% | 28% |
Initial dose: 3 mg/kg/12 h (2×) Maintenance dose: 2 mg/kg/12 h w/o RRT | 23% | 74% | 3% | 1% |
Scenario | Cmin < 0.5 mg/L (Loss of Efficacy) | Cmin 0.5–3 mg/L (Target Range) | Cmin > 3 mg/L (Increased Incidence of Hepatotoxicity) | Cmin > 4 mg/L (Increased Incidence of Neurotoxicity) |
---|---|---|---|---|
Initial dose: 6 mg/kg/12 h (2×) Maintenance dose: 4 mg/kg/12 h (Recommended dose) | 9% | 39% | 52% | 39% |
Initial dose: 9 mg/kg/12 h (2×) Maintenance dose: 6 mg/kg/12 h | 7% | 27% | 67% | 57% |
Initial dose: 3 mg/kg/12 h (2×) Maintenance dose: 2 mg/kg/12 h | 17% | 64% | 19% | 8% |
Initial dose: 6 mg/kg/12 h (2×) Maintenance dose: 4 mg/kg/12 h (Recommended dose) w/o RRT | 8% | 31% | 61% | 51% |
Initial dose: 9 mg/kg/12 h (2×) Maintenance dose: 6 mg/kg/12 h w/o RRT | 6% | 22% | 73% | 65% |
Initial dose: 3 mg/kg/12 h (2×) Maintenance dose: 2 mg/kg/12 h w/o RRT | 15% | 51% | 35% | 23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grensemann, J.; Pfaffendorf, C.; Wicha, S.G.; König, C.; Roedl, K.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Fuhrmann, V. Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study. Microorganisms 2021, 9, 2087. https://doi.org/10.3390/microorganisms9102087
Grensemann J, Pfaffendorf C, Wicha SG, König C, Roedl K, Jarczak D, Iwersen-Bergmann S, Manthey C, Kluge S, Fuhrmann V. Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study. Microorganisms. 2021; 9(10):2087. https://doi.org/10.3390/microorganisms9102087
Chicago/Turabian StyleGrensemann, Jörn, Christoph Pfaffendorf, Sebastian G. Wicha, Christina König, Kevin Roedl, Dominik Jarczak, Stefanie Iwersen-Bergmann, Carolin Manthey, Stefan Kluge, and Valentin Fuhrmann. 2021. "Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study" Microorganisms 9, no. 10: 2087. https://doi.org/10.3390/microorganisms9102087
APA StyleGrensemann, J., Pfaffendorf, C., Wicha, S. G., König, C., Roedl, K., Jarczak, D., Iwersen-Bergmann, S., Manthey, C., Kluge, S., & Fuhrmann, V. (2021). Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study. Microorganisms, 9(10), 2087. https://doi.org/10.3390/microorganisms9102087