The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oral Yeast Isolates
2.2. Bruker MALDI-TOF MS
2.3. Sequence Analysis of Ribosomal DNA
2.4. Statistic Analysis
3. Results
3.1. Isolation and Identification of Oral Yeast
3.2. Accuracy of Bruker MALDI-TOF MS Identification
3.3. Rapid Differentiation of Yeasts by CHROMagar Candida
4. Discussion
4.1. Commensal Oral Yeasts in the Elderly
4.2. Limitation of MALDI-TOF MS, Chromogenic Agar, and Ribosomal DNA Sequencing in Microbial Pathogenesis
4.3. Mycobiome Analysis Using Culture- and Non-Culture Methods
4.4. Using of CHROMagar Candida to Differentiate Yeast Species in the Oral Cavity
4.5. Use of MALDI-TOF MS to Analyze Oral Mycobiome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Belkum, A.; Welker, M.; Pincus, D.; Charrier, J.P.; Girard, V. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: What are the current issues? Ann. Lab. Med. 2017, 37, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Oberoi, J.K.; Goel, N.; Raveendran, R.; Khanna, S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.C.; Kuo, A.J.; Liu, K.L.; Wen, Y.H.; Chia, J.H.; Chang, P.Y.; Lee, M.H.; Wu, T.L.; Chang, S.C.; Lu, J.J.; et al. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect. 2017, 50, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassagne, C.; Normand, A.C.; L’Ollivier, C.; Ranque, S.; Piarroux, R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016, 59, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Pulcrano, G.; Iula, D.V.; Vollaro, A.; Tucci, A.; Cerullo, M.; Esposito, M.; Rossano, F.; Catania, M.R. Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. J. Microbiol. Methods 2013, 94, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203. [Google Scholar] [CrossRef]
- Sung, J.Y.; Hwang, Y.; Shin, M.H.; Park, M.S.; Lee, S.H.; Yong, D.; Lee, K. Utility of conventional culture and MALDI-TOF MS for identification of microbial communities in bronchoalveolar lavage fluid in comparison with the Gs junior next generation sequencing system. Ann. Lab. Med. 2018, 38, 110–118. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Population Ageing 2017: Highlights; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Ogawa, T.; Hirose, Y.; Honda-Ogawa, M.; Sugimoto, M.; Sasaki, S.; Kibi, M.; Kawabata, S.; Ikebe, K.; Maeda, Y. Composition of salivary microbiota in elderly subjects. Sci. Rep. 2018, 8, 414. [Google Scholar] [CrossRef] [Green Version]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S. Oral microbiota and systemic disease. Anaerobe 2013, 24, 90–93. [Google Scholar] [CrossRef]
- Anil, S.; Anand, P.S. Early childhood caries: Prevalence, risk factors, and prevention. Front. Pediatr. 2017, 5, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguera-Julian, M.; Guillen, Y.; Peterson, J.; Reznik, D.; Harris, E.V.; Joseph, S.J.; Rivera, J.; Kannanganat, S.; Amara, R.; Nguyen, M.L.; et al. Oral microbiome in HIV-associated periodontitis. Medicine 2017, 96, 5821. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zheng, L.; Qing, P.; Zhao, H.; Li, Y.; Su, L.; Zhang, Q.; Zhao, Y.; Luo, Y.; Liu, Y.; et al. Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. Front. Cell Infect. Microbiol. 2019, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in oral microbiota associated with oral cancer. Sci. Rep. 2017, 7, 11773. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Dongari-Bagtzoglou, A. Shaping the oral mycobiota: Interactions of opportunistic fungi with oral bacteria and the host. Curr. Opin. Microbiol. 2015, 26, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Underhill, D.M.; Iliev, I.D. The mycobiota: Interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 2014, 14, 405–416. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, 1000713. [Google Scholar] [CrossRef] [Green Version]
- Rank, E.L. Chromogenic agar media in the clinical, food, and environmental testing arenas, part I. Clin. Microbiol. Newsl. 2012, 34, 43–47. [Google Scholar] [CrossRef]
- Tornai-Lehoczki, J.; Peter, G.; Dlauchy, D. CHROMagar Candida medium as a practical tool for the differentiation and presumptive identification of yeast species isolated from salads. Int. J. Food Microbiol. 2003, 86, 189–200. [Google Scholar] [CrossRef]
- Scharmann, U.; Kirchhoff, L.; Chapot, V.L.S.; Dziobaka, J.; Verhasselt, H.L.; Stauf, R.; Buer, J.; Steinmann, J.; Rath, P.M. Comparison of four commercially available chromogenic media to identify Candida albicans and other medically relevant Candida species. Mycoses 2020, 63, 823–831. [Google Scholar] [CrossRef]
- Tu, M.G.; Lin, C.C.; Chiang, Y.T.; Zhou, Z.L.; Lu, J.J.; Hsieh, L.Y.; Chen, K.T.; Chen, M.C.; Lin, H.C.; Sun, P.L.; et al. Distribution of yeast species and risk factors of oral colonization among the residents at nursing homes in Taiwan. J. Dent. Oral Health 2019, 6, 1–15. [Google Scholar]
- Odds, F.C.; Bernaerts, R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 1994, 32, 1923–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.H.; Shen, M.; Lin, H.C.; Sun, P.L.; Lo, H.J.; Lu, J.J. Molecular epidemiology of invasive Candida albicans at a tertiary hospital in northern Taiwan from 2003 to 2011. Med. Mycol. 2015, 53, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Lo, H.J.; Wu, Y.M.; Chang, J.Y.; Chen, Y.Z.; Wang, S.H. DST659 genotype of Candida albicans showing positive association between biofilm formation and dominance in Taiwan. Med. Mycol. 2018, 56, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Leaw, S.N.; Chang, H.C.; Sun, H.F.; Barton, R.; Bouchara, J.P.; Chang, T.C. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J. Clin. Microbiol. 2006, 44, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Al-Sweih, N.; Khan, Z.U.; Ahmad, S.; Devarajan, L.; Khan, S.; Joseph, L.; Chandy, R. Kodamaea ohmeri as an emerging pathogen: A case report and review of the literature. Med. Mycol. 2011, 49, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Powell, H.L.; Sand, C.A.; Rennie, R.P. Evaluation of CHROMagar Candida for presumptive identification of clinically important Candida species. Diagn. Microbiol. Infect. Dis. 1998, 32, 201–204. [Google Scholar] [CrossRef]
- Tavanti, A.; Davidson, A.D.; Gow, N.A.; Maiden, M.C.; Odds, F.C. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 2005, 43, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Giammanco, G.M.; Melilli, D.; Pizzo, G. Candida pararugosa isolation from the oral cavity of an Italian denture wearer. Res. Microbiol. 2004, 155, 571–574. [Google Scholar] [CrossRef]
- Eraso, E.; Sahand, I.H.; Villar-Vidal, M.; Marcos, C.; Moragues, M.D.; Madariaga, L.; Ponton, J.; Quindos, G. Usefulness of Candida ID2 agar for the presumptive identification of Candida dubliniensis. Med. Mycol. 2006, 44, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Ghelardi, E.; Pichierri, G.; Castagna, B.; Barnini, S.; Tavanti, A.; Campa, M. Efficacy of chromogenic Candida agar for isolation and presumptive identification of pathogenic yeast species. Clin. Microbiol. Infect. 2008, 14, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihet, M.; Carrere, J.; Cimon, B.; Chabasse, D.; Delhaes, L.; Symoens, F.; Bouchara, J.P. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—A review. Med. Mycol. 2009, 47, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiyahuddin, N.M.; Lamping, E.; Rich, A.M.; Cannon, R.D. Yeast species in the oral cavities of older people: A comparison between people living in their own homes and those in rest homes. J. Fungi 2019, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Silva, R.B.; Fusco-Almeida, A.M.; Matsumoto, M.T.; Baeza, L.C.; Benaducci, T.; Mendes-Giannini, M.J. Genetic diversity and antifungal susceptibility testing of Trichosporon asahii isolated of intensive care units patients. Braz. J. Microbiol. 2008, 39, 585–592. [Google Scholar] [CrossRef]
- Ward, T.L.; Dominguez-Bello, M.G.; Heisel, T.; Al-Ghalith, G.; Knights, D.; Gale, C.A. Development of the human mycobiome over the first month of life and across body sites. mSystems 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Kishi, M.; Suda, M.; Sakata, K.; Shimoda, H.; Miura, H.; Ogawa, A.; Kobayashi, S. Prevalence of Candida albicans and non-albicans on the tongue dorsa of elderly people living in a post-disaster area: A cross-sectional survey. BMC Oral Health 2017, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Calderone, R.; Suzuki, S.; Cannon, R.; Cho, T.; Boyd, D.; Calera, J.; Chibana, H.; Herman, D.; Holmes, A.; Jeng, H.W.; et al. Candida albicans: Adherence, signaling and virulence. Med. Mycol. 2000, 38, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Odds, F.C. Candida and Candidosis: A Review and Bibliography; Bailliere Tindall: London, UK, 1988. [Google Scholar]
- Yang, Y.; Leaw, S.; Wang, A.; Chen, H.; Cheng, W.; Lo, H. Characterization of yeasts colonizing in healthy individuals. Med. Mycol. 2011, 49, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Gonsalves, W.C.; Wrightson, A.S.; Henry, R.G. Common oral conditions in older persons. Am. Fam. Phys. 2008, 78, 845–852. [Google Scholar]
- Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Domingue, J.C.; Sears, C.L. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin. Immunol. 2017, 32, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Normand, A.C.; Becker, P.; Gabriel, F.; Cassagne, C.; Accoceberry, I.; Gari-Toussaint, M.; Hasseine, L.; De Geyter, D.; Pierard, D.; Surmont, I.; et al. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017, 55, 2661–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortelmaier, C.; Panda, S.; Robertson, I.; Krell, M.; Christodoulou, M.; Reichardt, N.; Mulder, I. Identification performance of MALDI-ToF-MS upon mono-and bi-microbial cultures is cell number and culture proportion dependent. Anal. Bioanal. Chem. 2019, 411, 7027–7038. [Google Scholar] [CrossRef] [Green Version]
- Lasch, P.; Schneider, A.; Blumenscheit, C.; Doellinger, J. Identification of microorganisms by liquid chromatography-mass spectrometry (LC-MS(1)) and in silico peptide mass libraries. Mol. Cell Proteom. 2020, 19, 2125–2138. [Google Scholar] [CrossRef]
- Boulund, F.; Karlsson, R.; Gonzales-Siles, L.; Johnning, A.; Karami, N.; Al-Bayati, O.; Ahren, C.; Moore, E.R.B.; Kristiansson, E. Typing and characterization of bacteria using bottom-up tandem mass spectrometry proteomics. Mol. Cell Proteom. 2017, 16, 1052–1063. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, L.; Olsowski, M.; Rath, P.M.; Steinmann, J. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence 2019, 10, 984–998. [Google Scholar] [CrossRef] [Green Version]
- Diaz, P.I.; Hong, B.Y.; Dupuy, A.K.; Strausbaugh, L.D. Mining the oral mycobiome: Methods, components, and meaning. Virulence 2017, 8, 313–323. [Google Scholar] [CrossRef]
- Agwu, E.; Ihongbe, J.C.; McManus, B.A.; Moran, G.P.; Coleman, D.C.; Sullivan, D.J. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda. Med. Mycol. 2012, 50, 276–280. [Google Scholar] [CrossRef]
- Colombo, A.L.; Padovan, A.C.; Chaves, G.M. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin. Microbiol. Rev. 2011, 24, 682–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urubschurov, V.; Janczyk, P. Biodiversity of yeasts in the gastrointestinal ecosystem with emphasis on its importance for the host. In The Dynamical Processes of Biodiversity-Case Studies of Evolution and Spatial Distribution; IntechOpen: London, UK, 2011. [Google Scholar]
Yeast Isolates | Numbers | Percent |
---|---|---|
Candida | 250 | 78.1% |
Candida albicans | 129 | 40.3% |
C. glabrata | 51 | 15.9% |
C. parapsilosis | 34 | 10.6% |
C. tropicalis | 22 | 6.9% |
C. pararugosa | 6 | 1.9% |
other Candida | 8 | 2.5% |
Non-Candida | 70 | 21.9% |
Trichosporon asahii | 18 | 5.6% |
Trichosporon/Cutaneotrichosporon | 10 | 3.1% |
Saccharomyces cerevisiae | 7 | 2.2% |
Meyerozyma guilliermondii | 6 | 1.9% |
Exophiala dermatitidis | 5 | 1.6% |
Magnusiomyces capitatus | 5 | 1.6% |
others | 19 | 5.9% |
MALDI-TOF MS | Isolate Number | Species |
---|---|---|
BioTyper Score ≥ 2.0 | 302 | C. albicans, C. dubliniensis, C. glabrata, C. intermedia, C. krusei, C. metapsilosis, C. orthopsilosis, C. parapsilosis, C. pararugosa, C. tropicalis, Cl. lusitaniae, Cr. neoformans, Cu. mucoides, Cy. jadinii, E. dermatitidis, K. marxianus, Lo. elongisporus, Ma. capitatus, Me. guilliermondii, P. manshurica, P. norvegensis, R. mucilaginosa, R. toruloides, S. cerevisiae, T. asahii, T. faecale |
2.0 > BioTyper Score between ≥ 1.8 | 8 | |
Agree with ITS sequencing results | ||
Agree with morphology on CHROMagar | 5 | C. orthopsilosis, E. dermatitidis, S. cerevisiae, T. faecale |
Disagree with morphology on CHROMagar | 1 | Pichia manshurica |
Disagree with ITS sequencing results | ||
Agree with morphology on CHROMagar | 2 | Me. guilliermondii var. membranifaciens (ITS: Kodamaea ohmeri) |
Disagree with morphology on CHROMagar | 0 | |
BioTyper Score < 1.8 | 4 | |
Agree with ITS sequencing results | ||
Agree with morphology on CHROMagar | 1 | Cu. jirovecii |
No CHROMagar morphology information available | 2 | La. fermentati |
Disagree with ITS sequencing results | ||
No CHROMagar morphology information available | 1 | C. fermentati (teleomorph Meyerozyma caribbica) |
Candida Species | Isolates (Total 320) | Morphology | Colony Color | Frequency of Regular Type |
---|---|---|---|---|
Candida albicans | 129 (40.3%) | | Light green | 100% (129/129) |
Candida glabrata | 51 (15.9%) | | Purple | 100.0% (51/51) |
Candida parapsilosis | 34 (10.6%) | | White (regular) Purple (few) | 94.1% (32/34) |
Candida tropicalis | 22 (6.9%) | | Metallic blue (regular) Dark green (few) | 90.9% (20/22) |
Candida guilliermondii | 6 (1.9%) | | Light purple | 100% (6/6) |
Candida pararugosa | 6 (1.9%) | | Purple (regular) Pale pink (few) | 66.7% (4/6) |
Yeast Species | Isolates (Total 320) | Morphology | Colony Color | Frequency of Regular Type |
---|---|---|---|---|
Trichosporon asahii | 18 (5.6%) | | Light blue | 100% (18/18) |
Cutaneotrichosporon mucoides | 6 (1.9%) | | Light purple | 100% (6/6) |
Saccharomyces cerevisiae | 7 (2.2%) | | Purple | 100% (7/7) |
Exophiala dermatitidis | 5 (1.6%) | | Greenish brown | 100% (5/5) |
Magnusiomyces capitatus | 5 (1.6%) | | Pale pink | 100% (5/5) |
Color Group | Isolate Number | Final ID | Regular Color | Color-Matched | % In Total (311) | % In Color Group |
---|---|---|---|---|---|---|
Green | 130 | Candida albicans | green | 129 | 41.5% | 99.2% |
Candida dubliniensis | dark green | 1 | 0.3% | 0.8% | ||
Purple/Pink | 90 | Candida glabrata | purple | 51 | 16.4% | 56.7% |
Saccharomyces cerevisiae | purple | 7 | 2.3% | 7.8% | ||
Cutaneotrichosporon mucoides | light purple | 6 | 1.9% | 6.7% | ||
Magnusiomyces capitatus | pale pink | 5 | 1.6% | 5.6% | ||
Candida pararugosa | very light purple | 4 | 1.3% | 4.4% | ||
Meyerozyma guilliermondii | light purple | 4 | 1.3% | 4.4% | ||
Pichia kudriavzevii | purple with white border | 4 | 1.3% | 4.4% | ||
Pichia manshurica | pale pink | 2 | 0.6% | 2.2% | ||
Candida ethanolica | pale pink with white border | 1 | 0.3% | 1.1% | ||
Candida fermentati | light purple | 1 | 0.3% | 1.1% | ||
Candida intermedia | dark purple | 1 | 0.3% | 1.1% | ||
Candida metapsilosis | light purple | 1 | 0.3% | 1.1% | ||
Clavispora lusitaniae | light purple | 1 | 0.3% | 1.1% | ||
Cyberlindnera jadinii | light purple | 1 | 0.3% | 1.1% | ||
Kluyveromyces marxianus | light purple | 1 | 0.3% | 1.1% | ||
Blue | 42 | Candida tropicalis | metallic blue | 20 | 6.4% | 47.6% |
Trichosporon asahii | blue | 18 | 5.8% | 42.9% | ||
Trichosporon faecale | blue | 2 | 0.6% | 4.8% | ||
Cutaneotrichosporon jirovecii | blue | 1 | 0.3% | 2.4% | ||
Lodderomyces elongisporus | metallic blue | 1 | 0.3% | 2.4% | ||
White | 38 | Candida parapsilosis | white | 32 | 10.3% | 84.2% |
Candida orthopsilosis | white | 3 | 1.0% | 7.9% | ||
Pichia norvegensis | white | 2 | 0.6% | 5.3% | ||
Cryptococcus neoformans | milk white | 1 | 0.3% | 2.6% | ||
Gray | 7 | Exophiala dermatitidis | olivaceous-gray | 5 | 1.6% | 71.4% |
Fereydounia khargensis | olivaceous-gray | 2 | 0.6% | 28.6% | ||
Orange | 4 | Lachancea fermentati | red-brown | 2 | 0.6% | 50.0% |
Rhodotorula mucilaginosa | orange | 1 | 0.3% | 25.0% | ||
Rhodotorula toruloides | orange | 1 | 0.3% | 25.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.-J.; Lo, H.-J.; Lee, C.-H.; Chen, M.-J.; Lin, C.-C.; Chen, Y.-Z.; Tsai, M.-H.; Wang, S.-H. The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents. Microorganisms 2021, 9, 142. https://doi.org/10.3390/microorganisms9010142
Lu J-J, Lo H-J, Lee C-H, Chen M-J, Lin C-C, Chen Y-Z, Tsai M-H, Wang S-H. The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents. Microorganisms. 2021; 9(1):142. https://doi.org/10.3390/microorganisms9010142
Chicago/Turabian StyleLu, Jang-Jih, Hsiu-Jung Lo, Chih-Hua Lee, Mei-Jun Chen, Chih-Chao Lin, Yin-Zhi Chen, Ming-Horng Tsai, and Shao-Hung Wang. 2021. "The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents" Microorganisms 9, no. 1: 142. https://doi.org/10.3390/microorganisms9010142
APA StyleLu, J.-J., Lo, H.-J., Lee, C.-H., Chen, M.-J., Lin, C.-C., Chen, Y.-Z., Tsai, M.-H., & Wang, S.-H. (2021). The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents. Microorganisms, 9(1), 142. https://doi.org/10.3390/microorganisms9010142