Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Bacterial Isolation and Identification
2.3. Cultivation and Extraction
2.4. Isolation of Pentaminomycins C–E
2.4.1. Pentaminomycin C (1)
2.4.2. Pentaminomycin D (2)
2.4.3. Pentaminomycin E (3)
2.5. Marfey’s Analysis of Pentaminomycins D and E (2 and 3)
2.6. Genome Analysis and the Biosynthetic Pathway
2.7. Autophagic Flux Assay
2.8. Cytotoxicity Assays
3. Results and Discussion
3.1. Structural Elucidation
3.2. Biosynthetic Pathway
3.3. Evaluation of the Bioactivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pettit, R.K. Small-molecule elicitation of microbial secondary metabolites. Microb. Biotechnol. 2011, 4, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 2000, 5, 294–300. [Google Scholar] [CrossRef]
- Beemelmanns, C.; Guo, H.; Rischer, M.; Poulsen, M. Natural products from microbes associated with insects. Beilstein J. Org. Chem. 2016, 12, 314–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.-C.; Poulsen, M.; Currie, C.R.; Clardy, J. Dentigerumycin: A bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 2009, 5, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Ramadhar, T.R.; Beemelmanns, C.; Cao, S.; Poulsen, M.; Currie, C.R.; Clardy, J. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chem. Sci. 2014, 5, 4333–4338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.-H.; Ban, Y.H.; Byun, W.S.; Kim, D.; Jang, Y.-J.; An, J.S.; Shin, B.; Lee, S.K.; Shin, J.; Yoon, Y.J.; et al. Camporidines A and B: Antimetastatic and anti-inflammatory polyketide alkaloids from a gut Bacterium of Camponotus kiusiuensis. J. Nat. Prod. 2019, 82, 903–910. [Google Scholar] [CrossRef]
- Du, Y.E.; Byun, W.S.; Lee, S.B.; Hwang, S.; Shin, Y.-H.; Shin, B.; Jang, Y.-J.; Hong, S.; Shin, J.; Lee, S.K.; et al. Formicins, N-acetylcysteamine-bearing indenone thioesters from a wood ant-associated bacterium. Org. Lett. 2020, 22, 5337–5341. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Bae, S.; Sim, J.; Hur, J.; Jo, S.-I.; Shin, J.; Suh, Y.-G.; Oh, K.-B.; Oh, D.-C. Nicrophorusamides A and B, antibacterial chlorinated cyclic peptides from a gut bacterium of the carrion beetle Nicrophorus concolor. J. Nat. Prod. 2017, 80, 2962–2968. [Google Scholar] [CrossRef]
- Park, S.-H.; Moon, K.; Bang, H.-S.; Kim, S.-H.; Kim, D.-G.; Oh, K.-B.; Shin, J.; Oh, D.-C. Tripartilactam, a cyclobutane-bearing tricyclic lactam from a Streptomyces sp. in a dung beetle’s brood ball. Org. Lett. 2012, 14, 1258–1261. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, E.; Lee, J.; Shin, J.; Yoon, Y.J.; Oh, D.-C. Structure revision and the biosynthetic pathway of tripartilactam. J. Nat. Prod. 2020, 83, 578–583. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kwon, S.H.; Park, S.-H.; Lee, J.K.; Bang, H.-S.; Nam, S.-J.; Kwon, H.C.; Shin, J.; Oh, D.-C. Tripartin, a histone demethylase inhibitor from a bacterium associated with a dung beetle larva. Org. Lett. 2013, 15, 1834–1837. [Google Scholar] [CrossRef] [PubMed]
- Um, S.; Park, S.H.; Kim, J.; Park, H.J.; Ko, K.; Bang, H.-S.; Lee, S.K.; Shin, J.; Oh, D.-C. Coprisamides A and B, new branched cyclic peptides from a gut bacterium of the dung beetle Copris tripartitus. Org. Lett. 2015, 17, 1272–1275. [Google Scholar] [CrossRef]
- Um, S.; Bach, D.-H.; Shin, B.; Ahn, C.-H.; Kim, S.-H.; Bang, H.-S.; Oh, K.-B.; Lee, S.K.; Shin, J.; Oh, D.-C. Naphthoquinone–oxindole alkaloids, coprisidins A and B, from a gut-associated bacterium in the dung beetle, Copris tripartitus. Org. Lett. 2016, 18, 5792–5795. [Google Scholar] [CrossRef]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- Huang, X.; Roemer, E.; Sattler, I.; Moellmann, U.; Christner, A.; Grabley, S. Lyidamycins A-D: Cyclodepsipeptides with antimycobacterial properties. Angew. Chem. Int. Ed. 2006, 45, 3067–3072. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Shin, D.; Kim, T.H.; An, J.S.; Jo, S.-I.; Jang, J.; Hong, S.; Shin, J.; Oh, D.-C. Structural revision of lydiamycin A by reinvestigation of the stereochemistry. Org. Lett. 2020, 22, 3855–3859. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-P.; Hwang, G.J.; Kwon, M.C.; Ryoo, I.-J.; Jang, M.; Takahashi, S.; Ko, S.-K.; Osada, H.; Jang, J.-H.; Ahn, J.S. Pentaminomycins A and B, hydroxyarginine-containing cyclic pentapeptides from Streptomyces sp. RK88-1441. J. Nat. Prod. 2018, 81, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Kaweewan, I.; Hemmi, H.; Komaki, H.; Kodani, S. Isolation and structure determination of a new antibacterial peptide pentaminomycin C from Streptomyces cacaoi subsp. cacaoi. J. Antibiot. 2020, 73, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.H.; Yun, Y.; Park, S.; Jeon, J.H.; Lee, J.; Lee, J.H.; Yang, S.-A.; Kim, N.-K.; Jung, C.H.; Kwon, Y.T.; et al. Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc. Natl. Acad. Sci. USA 2020, 117, 19190–19200. [Google Scholar] [CrossRef]
- Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: Combination of Marfey’s method with mass spectrometry and its practical application. Anal. Chem. 1997, 69, 5146–5151. [Google Scholar] [CrossRef]
- Kuranaga, T.; Matsuda, K.; Sano, A.; Kobayashi, M.; Ninomiya, A.; Takata, K.; Matsunaga, S.; Wakimoto, T. Total synthesis of the nonribosomal peptide surugamide B and identification of a new offloading cyclase family. Angew. Chem. Int. Ed. 2018, 57, 9447–9451. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Kobayashi, M.; Kuranaga, T.; Takada, K.; Ikeda, H.; Matsunaga, S.; Wakimoto, T. SurE is a trans-acting thioesterase cyclizing two distinct non-ribosomal peptides. Org. Biomol. Chem. 2019, 17, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Anstee, M.R.; LaMarco, K.; Matthew, J.; Huang, L.H.T.; Brasseur, M.M. Inhibition of bacterial RNA polymerases. Peptide metabolites from the cultures of Streptomyces sp. J. Nat. Prod. 1997, 60, 858–861. [Google Scholar] [CrossRef]
- Song, Y.; Li, Q.; Liu, X.; Chen, Y.; Zhang, Y.; Sun, A.; Zhang, W.; Zhang, J.; Ju, J. Cyclic hexapeptides from the deep South China Sea-derived Streptomyces scopuliridis SCSIO ZJ46 active against pathogenic Gram-positive bacteria. J. Nat. Prod. 2014, 77, 1937–1941. [Google Scholar] [CrossRef]
- Fazal, A.; Webb, M.E.; Seipke, R.F. The desotamide family of antibiotics. Antibiotics 2020, 9, 452. [Google Scholar] [CrossRef]
- Takada, K.; Ninomiya, A.; Naruse, M.; Sun, Y.; Miyazaki, M.; Nogi, Y.; Okada, S.; Matsunaga, S. Surugamides A–E, cyclic octapeptides with four d-Amino acid residues, from a marine Streptomyces sp.: LC–MS-aided inspection of partial hydrolysates for the distinction of d- and l-amino acid residues in the sequence. J. Org. Chem. 2013, 78, 6746–6750. [Google Scholar] [CrossRef]
- Son, S.; Hong, Y.-S.; Jang, M.; Heo, K.T.; Lee, B.; Jang, J.-P.; Kim, J.-W.; Ryoo, I.-J.; Kim, W.-G.; Ko, S.-K.; et al. Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces species. J. Nat. Prod. 2017, 80, 3025–3031. [Google Scholar] [CrossRef]
- Mudalungu, C.M.; von Törne, W.J.; Voigt, K.; Rückert, C.; Schmitz, S.; Sekurova, O.N.; Zotchev, S.B.; Süssmuth, R.D. Noursamycins, chlorinated cyclohexapeptides identified from molecular networking of Streptomyces noursei NTR-SR4. J. Nat. Prod. 2019, 82, 1478–1486. [Google Scholar] [CrossRef]
- Kaweewan, I.; Komaki, H.; Hemmi, H.; Kodani, S. Isolation and structure determination of new antibacterial peptide curacomycin based on genome mining. Asian J. Org. Chem. 2017, 6, 1838–1844. [Google Scholar] [CrossRef]
- Magarvey, N.A.; Haltli, B.; He, M.; Greenstein, M.; Hucul, J.A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant Gram-positive pathogens. Antimicrob. Agents Chemother. 2006, 50, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Zhai, R.; Mori, T.; Kobayashi, M.; Sano, A.; Abe, I.; Wakimoto, T. Heterochiral coupling in non-ribosomal peptide macrolactamization. Nat. Catal. 2020, 3, 507–515. [Google Scholar] [CrossRef]
- Goffin, C.; Ghuysen, J.M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: Presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev. 2002, 66, 702–738. [Google Scholar] [CrossRef] [Green Version]
- Kojiri, K.; Ihara, M.; Nakajima, S.; Kawamura, K.; Funaishi, K.; Yano, M.; Suda, H. Endothelin-binding inhibitors, BE-18257A and BE-18257B. J. Antibiot. 1991, 44, 1342–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwanski, E.R.; Last, R.L. Tryptophan biosynthesis and metabolism: Biochemical and molecular genetics. Plant. Cell 1995, 7, 921–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challis, G.L.; Ravel, J.; Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 2000, 7, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Peraro, L.; Zou, Z.; Makwana, K.M.; Cummings, A.E.; Ball, H.L.; Yu, H.; Lin, Y.-S.; Levine, B.; Kritzer, J.A. Diversity-oriented stapling yields intrinsically cell-penetrant inducers of autophagy. J. Am. Chem. Soc. 2017, 139, 7792–7802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Li, M.-D.; Cao, P.-P.; Zhang, C.-F.; Huang, F.; Xu, X.-H.; Liu, B.-L.; Zhang, M. Astin B, a cyclic pentapeptide from Aster tataricus, induces apoptosis and autophagy in human hepatic L-02 cells. Chem. Biol. Interact. 2014, 223, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Park, S.; Lee, J.H.; Mun, J.Y.; Choi, W.H.; Yun, Y.; Lee, J.; Kim, J.H.; Kang, M.-J.; Lee, M.J. Dual function of USP14 deubiquitinase in cellular proteasomal activity and autophagic flux. Cell Rep. 2018, 24, 732–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.H.; De Poot, S.A.; Lee, J.H.; Kim, J.H.; Han, D.H.; Kim, Y.K.; Finley, D.; Lee, M.J. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat. Commun. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
Pentaminomycin C (1) | Pentaminomycin D (2) | Pentaminomycin E (3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Position | δC, type | δH, mult (J in Hz) | Position | δC, type | δH, mult (J in Hz) | Position | δC, type | δH, mult (J in Hz) | |||
l-Leu | 1 | 172.2, C | l-Val | 1 | 171.4, C | l-Phe | 1 | 170.6, C | |||
2 | 50.5, CH | 4.40, ddd (15.0,9.0,7.0) | 2 | 57.5, CH | 4.12, dd (7.5,7.5) | 2 | 52.8, CH | 4.67, dt (9.0,7.5) | |||
3 | 41.1, CH2 | 1.34, m | 3 | 30.7, CH | 1.77, m | 3 | 38.1, CH2 | 2.84, dd (13.5,7.0) 2.78, dd (13.5,7.5) | |||
4 | 24.2, CH | 1.43, m | 4 | 19.0, CH3 | 0.83, d (7.0) | 1′ | 137.1, C | ||||
5 | 22.7, CH3 | 0.85, d (6.5) | 5 | 18.3, CH3 | 0.76, d (7.0) | 2′ | 129.1, CH | 7.18, m | |||
6 | 22.0, CH3 | 0.82, d (6.5) | NH | 7.50, m | 3′ | 128.0, CH | 7.22, m | ||||
NH | 7.55, d (9.0) | 4′ | 126.2, C | 7.17, m | |||||||
NH | 7.69, d (9.0) | ||||||||||
d-Val | 1 | 171.3, C | d-Val | 1 | 171.4, C | d-Val | 1 | 171.2, C | |||
2 | 59.9, CH | 3.70, dd (10.0,7.5) | 2 | 60.2, CH | 3.70, dd (10.0,7.5) | 2 | 59.9, CH | 3.70, dd (10.0,7.5) | |||
3 | 28.5, CH | 1.65, m | 3 | 28.1, CH | 1.64, m | 3 | 28.5, CH | 1.65, m | |||
4 | 19.0, CH3 | 0.75, d (6.5) | 4 | 19.2, CH3 | 0.77, d (7.0) | 4 | 19.0, CH3 | 0.75, d (6.5) | |||
5 | 18.5, CH3 | 0.34, d (6.5) | 5 | 18.5, CH3 | 0.31, d (7.0) | 5 | 18.5, CH3 | 0.34, d (6.5) | |||
NH | 8.41, d (7.5) | NH | 8.45, d (7.5) | NH | 8.41, d (7.5) | ||||||
l-Trp | 1 | 171.7, C | l-Trp | 1 | 171.7, C | l-Trp | 1 | 171.6, C | |||
2 | 55.3, CH | 4.29, ddd (11.0,8.0,3.5) | 2 | 55.3, CH | 4.28, ddd (11.5,8.0,3.0) | 2 | 55.3, CH | 4.27, ddd (11.5,8.0,3.5) | |||
3 | 26.9, CH2 | 3.18, dd (14.5,3.0) 2.80, dd (14.5,12.0) | 3 | 26.9, CH2 | 3.19, dd (14.5,3.0) 2.91, dd (14.5,11.5) | 3 | 26.9, CH2 | 3.17, dd (14.5,3.0) 2.90, dd (14.5,11.5) | |||
2-NH | 8.59, d (8.0) | 2-NH | 8.63, d (8.0) | 2-NH | 8.58, d (8.0) | ||||||
1′(NH) | 10.78, br s | 1′(NH) | 10.78, br s | 1′(NH) | 10.76, br s | ||||||
2′ | 123.9, CH | 7.17, m | 2′ | 123.9, CH | 7.17, m | 2′ | 123.8, CH | 7.16, m | |||
3′ | 110.2, C | 3′ | 110.2, C | 3′ | 110.2, C | ||||||
3′a | 126.8, C | 3′a | 126.8, C | 3′a | 126.8, C | ||||||
4′ | 117.9, CH | 7.51, d (8.0) | 4′ | 117.8, CH | 7.51, m | 4′ | 117.8, CH | 7.50, d (8.0) | |||
5′ | 118.3, CH | 6.98, t (7.5) | 5′ | 118.2, CH | 6.98, dd (7.5,7.5) | 5′ | 118.2, CH | 6.97, dd (7.5,7.5) | |||
6′ | 120.8, CH | 7.05, t (7.5) | 6′ | 120.8, CH | 7.04, dd (7.5,7.5) | 6′ | 120.8, CH | 7.04, dd (7.5,7.5) | |||
7′ | 111.3, CH | 7.31, d (8.0) | 7′ | 111.3, CH | 7.30, d (8.0) | 7′ | 111.3, CH | 7.30, d (8.0) | |||
7′a | 136.1, C | 7′a | 136.1, C | 7′a | 136.1, C | ||||||
N5-OH- l-Arg | 1 | 170.4, C | N5-OH- l-Arg | 1 | 170.4, C | N5-OH- l-Arg | 1 | 170.4, C | |||
2 | 52.8, CH | 4.16, dt (7.0,7.0) | 2 | 52.9, CH | 4.16, dt (8.0,7.0) | 2 | 53.0, CH | 4.16, dt (7.0,7.0) | |||
3 | 28.1, CH2 | 1.53, m | 3 | 28.2, CH2 | 1.53, m | 3 | 28.2, CH2 | 1.52, m | |||
4 | 22.1, CH2 | 1.33, m, 1.18, m | 4 | 22.0, CH2 | 1.33, m, 1.15, m | 4 | 22.1, CH2 | 1.34, m, 1.17, m | |||
5 | 50.4, CH2 | 3.43, m | 5 | 50.5, CH2 | 3.42, m | 5 | 50.5, CH2 | 3.42, m | |||
N5-OH | 10.49, br s | N5-OH | 10.55, br s | N5-OH | 10.47, s | ||||||
6 | 157.3, C | 6 | 157.4, C | 6 | 157.3, C | ||||||
6-NH(3H) | 7.45, br s | 6-NH(3H) | 7.50, br s | 6-NH(3H) | 7.43, br s | ||||||
NH | 7.29, d (7.5) | NH | 7.23, m | NH | 7.26, d (7.5) | ||||||
d-Phe | 1 | 170.6, C | d-Phe | 1 | 170.7, C | d-Phe | 1 | 170.6, C | |||
2 | 53.7, CH | 4.46, ddd (9.0,9.0,6.0) | 2 | 53.5, CH | 4.52, ddd (9.5,8.5,6.0) | 2 | 53.5, CH | 4.47, ddd (9.0,9.0,5.5) | |||
3 | 34.2, CH2 | 2.96, dd (14.0,5.5) 2.80, dd (14.0,9.5) | 3 | 33.9, CH2 | 2.98, dd (14.0,5.0) 2.79, dd (14.0,10.0) | 3 | 34.0, CH2 | 2.93, dd (14.0,5.5) 2.76, dd (14.0,9.5) | |||
1′ | 137.9, C | 1′ | 138.0, C | 1′ | 137.9, C | ||||||
2′, 6′ | 129.0, CH | 7.24, m | 2′, 6′ | 129.0, CH | 7.24, m | 2′, 6′ | 128.9, CH | 7.20, m | |||
3′, 5′ | 128.0, CH | 7.23, m | 3′, 5′ | 128.0, CH | 7.23, m | 3′, 5′ | 128.0, CH | 7.22, m | |||
4′ | 126.2, CH | 7.17, m | 4′ | 126.2, CH | 7.17, m | 4′ | 126.2, CH | 7.17, m | |||
NH | 8.85, d (8.0) | NH | 8.85, d (8.0) | NH | 8.89, d (8.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Le, L.T.H.L.; Jo, S.-I.; Shin, J.; Lee, M.J.; Oh, D.-C. Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms 2020, 8, 1390. https://doi.org/10.3390/microorganisms8091390
Hwang S, Le LTHL, Jo S-I, Shin J, Lee MJ, Oh D-C. Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms. 2020; 8(9):1390. https://doi.org/10.3390/microorganisms8091390
Chicago/Turabian StyleHwang, Sunghoon, Ly Thi Huong Luu Le, Shin-Il Jo, Jongheon Shin, Min Jae Lee, and Dong-Chan Oh. 2020. "Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium" Microorganisms 8, no. 9: 1390. https://doi.org/10.3390/microorganisms8091390
APA StyleHwang, S., Le, L. T. H. L., Jo, S.-I., Shin, J., Lee, M. J., & Oh, D.-C. (2020). Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms, 8(9), 1390. https://doi.org/10.3390/microorganisms8091390