Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Culture Conditions
2.2. DNA Isolation
2.3. Cloning and Expression of Recombinant Coxiella burnetii Com1 Protein (CBU_1910)
2.4. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting
2.5. Field Sera from Sheep, Goats and Cattle
2.6. Indirect Enzyme-Linked Immunosorbent Assay (ELISA) Coated with Recombinant Com1 Protein (Com1-ELISA)
2.7. Statistical Analyses
3. Results
3.1. Cloning and Expression of Com1
3.2. Serum Samples
3.3. Recombinant Com1-ELISA Tested with Field Sera from Sheep
3.4. Recombinant Com1-ELISA Tested with Field Sera from Goats
3.5. Recombinant Com1-ELISA Tested with Field Sera from Cattle
3.6. Recombinant Com1-ELISA with Q Fever True Positive Sera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, M.; Afonso, A.; Neubauer, H.; Needham, H.; Thiery, R.; Rodolakis, A.; Roest, H.; Stark, K.; Stegeman, J.; Vellema, P.; et al. Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro Surveill. 2013, 18, 20407. [Google Scholar] [CrossRef]
- Van den Brom, R.; van Engelen, E.; Roest, H.I.; van der Hoek, W.; Vellema, P. Coxiella burnetii infections in sheep or goats: An opinionated review. Vet. Microbiol. 2015, 181, 119–129. [Google Scholar] [CrossRef]
- Stoker, M.G.; Marmion, B.P. The spread of Q fever from animals to man; the natural history of a rickettsial disease. Bull. World Health Organ. 1955, 13, 781–806. [Google Scholar]
- Bernard, H.; Brockmann, S.O.; Kleinkauf, N.; Klinc, C.; Wagner-Wiening, C.; Stark, K.; Jansen, A. High seroprevalence of Coxiella burnetii antibodies in veterinarians associated with cattle obstetrics, Bavaria, 2009. Vector Borne Zoonotic 2012, 12, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Künzer, K. Q-Fieber als Berufsrisiko: Eine Seroprävalenzstudie. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 4 December 2017. [Google Scholar]
- Guatteo, R.; Beaudeau, F.; Joly, A.; Seegers, H. Coxiella burnetii shedding by dairy cows. Vet. Res. 2007, 38, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Asamoah, J.K.K.; Jin, Z.; Sun, G.Q.; Li, M.Y. A Deterministic Model for Q Fever Transmission Dynamics within Dairy Cattle Herds: Using Sensitivity Analysis and Optimal Controls. Comput. Math. Methods Med. 2020, 2020, 6820608. [Google Scholar] [CrossRef]
- Roest, H.J.; van Gelderen, B.; Dinkla, A.; Frangoulidis, D.; van Zijderveld, F.; Rebel, J.; van Keulen, L. Q fever in pregnant goats: Pathogenesis and excretion of Coxiella burnetii. PLoS ONE 2012, 7, e48949. [Google Scholar] [CrossRef] [Green Version]
- Groten, T.; Kuenzer, K.; Moog, U.; Hermann, B.; Maier, K.; Boden, K. Who is at risk of occupational Q fever: New insights from a multi-profession cross-sectional study. BMJ Open 2020, 10, e030088. [Google Scholar] [CrossRef] [Green Version]
- Eldin, C.; Raoult, D. Moving from Q fever to C. burnetii infection. Epidemiol. Infect. 2015, 144, 1163–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, A.L.; Bhengsri, S.; Million, M.; Edouard, S.; Thamthitiwat, S.; Clarke, K.; Kersh, G.J.; Gregory, C.J.; Raoult, D.; Parola, P. Acute Q fever case detection among acute febrile illness patients, Thailand, 2002–2005. Am. J. Trop. Med. Hyg. 2018, 98, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gürtler, L.; Bauerfeind, U.; Blumel, J.; Burger, R.; Drosten, C.; Groner, A.; Heiden, M.; Hildebrandt, M.; Jansen, B.; Offergeld, R.; et al. Coxiella burnetii—Pathogenic agent of Q (Query) fever. Transfus. Med. Hemother. 2014, 41, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimmer, B.; Ter Schegget, R.; Wegdam, M.; Zuchner, L.; de Bruin, A.; Schneeberger, P.M.; Veenstra, T.; Vellema, P.; van der Hoek, W. The use of a geographic information system to identify a dairy goat farm as the most likely source of an urban Q-fever outbreak. BMC Infect. Dis. 2010, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Hogema, B.M.; Slot, E.; Molier, M.; Schneeberger, P.M.; Hermans, M.H.; van Hannen, E.J.; van der Hoek, W.; Cuijpers, H.T.; Zaaijer, H.L. Coxiella burnetii infection among blood donors during the 2009 Q-fever outbreak in The Netherlands. Transfusion 2012, 52, 144–150. [Google Scholar] [CrossRef]
- Kampschreur, L.M.; Delsing, C.E.; Groenwold, R.H.; Wegdam-Blans, M.C.; Bleeker-Rovers, C.P.; de Jager-Leclercq, M.G.; Hoepelman, A.I.; van Kasteren, M.E.; Buijs, J.; Renders, N.H.; et al. Chronic Q fever in the Netherlands 5 years after the start of the Q fever epidemic: Results from the Dutch chronic Q fever database. J. Clin. Microbiol. 2014, 52, 1637–1643. [Google Scholar] [CrossRef] [Green Version]
- Wittenbrink, M.M.; Gefaller, S.; Failing, K.; Bisping, W. The effect of herd and animal factors on the detection of complement-binding antibodies against Coxiella burnetii in cattle. Berl. Munch. Tierarztl. Wochenschr. 1994, 107, 185–191. [Google Scholar]
- Hilbert, A.; Schmoock, G.; Lenzko, H.; Moog, U.; Diller, R.; Fröhlich, A.; Hoffmann, L.; Horner, S.; Elschner, M.; Tomaso, H.; et al. Prevalence of Coxiella burnetii in clinically healthy German sheep flocks. BMC Res. Notes 2012, 5, 152. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, A.; Blaha, I.; Frohlich, A.; Hensler, E.; Reith, P.; Henning, K.; Conraths, F.J.; Miller, T. Aspects seroepidemiological studies on Q fever in unvaccinated dairy cattle herds. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 149–157. [Google Scholar]
- Friedrich-Loeffler-Institute. Meldepflichtige Tierkrankheiten. In Tiergesundheitsjahresbericht 2018; Friedrich-Loeffler-Institute: Greifswald, Germany, 2019; p. 32. [Google Scholar]
- Runge, M.; Binder, A.; Schotte, U.; Ganter, M. Investigations concerning the prevalence of Coxiella burnetii and Chlamydia abortus in sheep in correlation with management systems and abortion rate in Lower Saxony in 2004. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 138–143. [Google Scholar]
- van Engelen, E.; Schotten, N.; Schimmer, B.; Hautvast, J.L.; van Schaik, G.; van Duijnhoven, Y.T. Prevalence and risk factors for Coxiella burnetii (Q fever) in Dutch dairy cattle herds based on bulk tank milk testing. Prev. Vet. Med. 2014, 117, 103–109. [Google Scholar] [CrossRef]
- Schimmer, B.; de Lange, M.M.; Hautvast, J.L.; Vellema, P.; van Duynhoven, Y.T. Coxiella burnetii seroprevalence and risk factors on commercial sheep farms in The Netherlands. Vet. Rec. Open 2014, 175, 17. [Google Scholar] [CrossRef] [PubMed]
- Agger, J.F.; Paul, S. Increasing prevalence of Coxiella burnetii seropositive Danish dairy cattle herds. Acta Vet. Scand. 2014, 56, 46. [Google Scholar] [CrossRef] [Green Version]
- Szymanska-Czerwinska, M.; Jodelko, A.; Niemczuk, K. Occurrence of Coxiella burnetii in Polish dairy cattle herds based on serological and PCR tests. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101377. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, F.; Vitale, N.; Ballardini, M.; Borromeo, V.; Luzzago, C.; Chiavacci, L.; Mandola, M.L. Q fever seroprevalence and risk factors in sheep and goats in northwest Italy. Prev. Vet. Med. 2016, 130, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Mertens, K.; Cutler, S.J.; Santos, A.S. Critical Aspects for Detection of Coxiella burnetii. Vector Borne Zoonotic 2017, 17, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Toft, N.; Agerholm, J.S.; Christoffersen, A.B.; Agger, J.F. Bayesian estimation of sensitivity and specificity of Coxiella burnetii antibody ELISA tests in bovine blood and milk. Prev. Vet. Med. 2013, 109, 258–263. [Google Scholar] [CrossRef]
- Horigan, M.W.; Bell, M.M.; Pollard, T.R.; Sayers, A.R.; Pritchard, G.C. Q fever diagnosis in domestic ruminants: Comparison between complement fixation and commercial enzyme-linked immunosorbent assays. J. Vet. Diagn. Investig. 2011, 23, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Hogerwerf, L.; Koop, G.; Klinkenberg, D.; Roest, H.I.; Vellema, P.; Nielen, M. Test and cull of high risk Coxiella burnetii infected pregnant dairy goats is not feasible due to poor test performance. Vet. J. 2014, 200, 343–345. [Google Scholar] [CrossRef]
- Wood, C.; Muleme, M.; Tan, T.; Bosward, K.; Gibson, J.; Alawneh, J.; McGowan, M.; Barnes, T.S.; Stenos, J.; Perkins, N.; et al. Validation of an indirect immunofluorescence assay (IFA) for the detection of IgG antibodies against Coxiella burnetii in bovine serum. Prev. Vet. Med. 2019, 169, 104698. [Google Scholar] [CrossRef]
- Slaba, K.; Skultety, L.; Toman, R. Efficiency of various serological techniques for diagnosing Coxiella burnetii infection. Acta Virol. 2005, 49, 123–127. [Google Scholar]
- Kantso, B.; Svendsen, C.B.; Jorgensen, C.S.; Krogfelt, K.A. Comparison of two commercially available ELISA antibody test kits for detection of human antibodies against Coxiella burnetii. Scand. J. Infect. Dis. 2012, 44, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Meekelenkamp, J.C.; Schneeberger, P.M.; Wever, P.C.; Leenders, A.C. Comparison of ELISA and indirect immunofluorescent antibody assay detecting Coxiella burnetii IgM phase II for the diagnosis of acute Q fever. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Medic, S.; Kaluski, D.N.; Seguljev, Z.; Obrenovic, J.; Rudan, P.; Lazarevic, M.; Kocic, J.J.; Sajenkovic, D.; Pusic, I.; Bugarski, D.; et al. Q fever outbreak in the village of Nocaj, Srem County, Vojvodina Province, Serbia, January to February 2012. Euro Surveill. 2012, 17, 1–4. [Google Scholar]
- Herremans, T.; Hogema, B.M.; Nabuurs, M.; Peeters, M.; Wegdam-Blans, M.; Schneeberger, P.; Nijhuis, C.; Notermans, D.W.; Galama, J.; Horrevorts, A.; et al. Comparison of the performance of IFA, CFA, and ELISA assays for the serodiagnosis of acute Q fever by quality assessment. Diagn. Microbiol. Infect. Dis. 2013, 75, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Stephen, S.; Ambroise, S.; Pradeep, J.; Gunasekaran, D.; Sangeetha, B.; Sarangapani, K. Unreliability of three commercial Coxiella burnetii phase II IgM ELISA kits for the seroscreening of acute Q fever in human cases. Indian J. Med. Res. 2017, 146, 386–391. [Google Scholar] [CrossRef]
- La Scola, B.; Raoult, D. Serological cross-reactions between Bartonella quintana, Bartonella henselae, and Coxiella burnetii. J. Clin. Microbiol. 1996, 34, 2270–2274. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; Raoult, D. Serological cross-reactions between Coxiella burnetii and Legionella micdadei. J. Clin. Immunol. 1997, 4, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Lukacova, M.; Melnicakova, J.; Kazar, J. Cross-reactivity between Coxiella burnetii and chlamydiae. Folia Microbiol. 1999, 44, 579–584. [Google Scholar] [CrossRef]
- Graham, J.V.; Baden, L.; Tsiodras, S.; Karchmer, A.W. Q fever endocarditis associated with extensive serological cross-reactivity. Clin. Infect. Dis. 2000, 30, 609–610. [Google Scholar] [CrossRef]
- Edouard, S.; Million, M.; Casalta, J.P.; Collart, F.; Amphoux, B.; Raoult, D. Low antibodies titer and serological cross-reaction between Coxiella burnetii and Legionella pneumophila challenge the diagnosis of mediastinitis, an emerging Q fever clinical entity. Infection 2017, 45, 911–915. [Google Scholar] [CrossRef]
- Klemmer, J. Q Fever in Egypt: Epidemiological Survey of Coxiella burnetii-Specific Antibodies in Cattle, Buffaloes, Sheep, Goats and Camels. Ph.D. Thesis, Ludwig-Maximilians-Universität München, München, Germany, 25 February 2019. [Google Scholar]
- Meredith, A.L.; Cleaveland, S.C.; Denwood, M.J.; Brown, J.K.; Shaw, D.J. Coxiella burnetii (Q-Fever) seroprevalence in prey and predators in the United Kingdom: Evaluation of infection in wild rodents, foxes and domestic cats using a modified ELISA. Transbound. Emerg. Dis. 2015, 62, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PrioCHECK™ Ruminant Q Fever Ab Plate Kit. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0007464_100020257_ELISACOXLS2_ELISACOXLS5_UG_EN.pdf (accessed on 1 July 2020).
- Gerlach, C.; Skultety, L.; Henning, K.; Neubauer, H.; Mertens, K. Coxiella burnetii immunogenic proteins as a basis for new Q fever diagnostic and vaccine development. Acta Virol. 2017, 61, 377–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skultety, L.; Hajduch, M.; Flores-Ramirez, G.; Miernyk, J.A.; Ciampor, F.; Toman, R.; Sekeyova, Z. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J. Proteom. 2011, 74, 1974–1984. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Wang, X.; Wen, B.; Graves, S.; Stenos, J. Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiol. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekeyova, Z.; Kowalczewska, M.; Decloquement, P.; Pelletier, N.; Spitalska, E.; Raoult, D. Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 287–295. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, X.; Graves, S.; Stenos, J.; Wen, B. Protein array of Coxiella burnetii probed with Q fever sera. Sci. China Life Sci. 2013, 56, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Xiong, X.; Duan, C.; Jiao, J.; Gong, W.; Wen, B. Recombinant protein YbgF induces protective immunity against Rickettsia heilongjiangensis infection in C3H/HeN mice. Vaccine 2013, 31, 5643–5650. [Google Scholar] [CrossRef]
- Hendrix, L.R.; Mallavia, L.P.; Samuel, J.E. Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1. Infect. Immun. 1993, 61, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Xiong, X.; Qi, Y.; Gong, W.; Duan, C.; Yang, X.; Wen, B. Serological characterization of surface-exposed proteins of Coxiella burnetii. Microbiology 2014, 160, 2718–2731. [Google Scholar] [CrossRef]
- Beare, P.A.; Chen, C.; Bouman, T.; Pablo, J.; Unal, B.; Cockrell, D.C.; Brown, W.C.; Barbian, K.D.; Porcella, S.F.; Samuel, J.E.; et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin. Vaccine Immunol. 2008, 15, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Vranakis, I.; Mathioudaki, E.; Kokkini, S.; Psaroulaki, A. Com1 as a promising protein for the differential diagnosis of the two forms of Q fever. Pathogens 2019, 8, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.R.; Sambrook, J. Molecular Cloning—A Laboratory Manual, 4th ed.; John Inglis: Cold Spring Harbor, NY, USA, 2012; Volume 1. [Google Scholar]
- Neuhoff, V.; Stamm, R.; Eibl, H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 1985, 6, 427–448. [Google Scholar] [CrossRef]
- Vida, S. A computer program for non-parametric receiver operating characteristic analysis. Comput. Methods Programs Biomed. 1993, 40, 95–101. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Assessing the fit of the model. In Applied Logistic Regression, 3rd ed.; Balding, D.J., Cressie, N.A.C., Fitzmaurice, G.M., Goldstein, H., Johnstone, I.M., Molenberghs, G., Scott, D.W., Smith, A.F.M., Tsay, R.S., Weisberg, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 143–202. [Google Scholar]
- Deringer, J.R.; Chen, C.; Samuel, J.E.; Brown, W.C. Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry. Microbiology 2011, 157, 526–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xiong, X.; Wu, D.; Wang, X.; Wen, B. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs) pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs. BMC Immunol. 2011, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukacova, M.; Gajdosova, E.; Skultety, L.; Kovacova, E.; Kazar, J. Characterization and protective effect of a 29 kDa protein isolated from Coxiella burnetii by detergent Empigen BB. Eur. J. Epidemiol. 1994, 10, 227–230. [Google Scholar] [CrossRef]
- Sekeyova, Z.; Kowalczewska, M.; Vincentelli, R.; Decloquement, P.; Flores-Ramirez, G.; Skultety, L.; Raoult, D. Characterization of antigens for Q fever serodiagnostics. Acta Virol. 2010, 54, 173–180. [Google Scholar] [CrossRef]
- Jameson-Lee, M.; Garduno, R.A.; Hoffman, P.S. DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol. Microbiol. 2011, 80, 835–852. [Google Scholar] [CrossRef] [Green Version]
Strain | Genotype, Characteristics | Origin/Source | |
---|---|---|---|
Coxiella burnetii | Nine Mile Phase II RSA 439 | strain collection FLI | |
Escherichia coli TOP10 | F– mcrA D(mrr-hsdRMS-mcrBC) f80lacZDM15 DlacX74 recA1 araD139 D(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG | Invitrogen | |
Escherichia coli BL21(DE3) | F– ompT hsdSB (rB–mB–) gal dcm l(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) | Invitrogen | |
Vector | Function | Selection marker | |
pCR™8/GW/TOPO™ | cloning vector, spnR | spectinomycin | Invitrogen |
pET300/NT-DEST | expression vector, bla | ampicillin | Invitrogen |
Sera from Sheep (Number of Locations) | Sera from Goats (Number of Locations) | Sera from Cattle (Number of Locations) | |
---|---|---|---|
Positive for C. burnetii in commercial ELISA | 65 (6) | 20 (3) | 118 (8) |
Q fever true positive | 62 (4) | 11 (2) | 43 (3) |
Positive for other bacteria (tested for by respective NRL) | 0 | 0 | 4 (Chl. psittaci) (1) 7 (M. avium ssp. paratuberculosis) (1) 12 (Parachlamydia spp.) (1) |
Suspicious for C. burnetii in commercial ELISA | 2 (2) | 2 (2) | 2 (2) |
Negative for C. burnetii in commercial ELISA | 48 (10) | 82 (9) | 77 (13) |
From healthy herds | 31 (6) | 68 (6) | 27 (2) |
From serological positive herds | 4 (2) | 2 (1) | 17 (2) |
Positive for other bacteria (tested for by respective NRL) | 4 (Chl. spp.) (1) | 10 (M. avium ssp. paratuberculosis) (1) 1 (Brucella spp.) (1) | 2 (Chl. pecorum) (1) 13 (Chl. psittaci) (3) 3 (M. avium ssp. paratuberculosis) (1) 13 (Parachlamydia spp.) (3) 2 (Brucella spp.) (1) |
Total tested | 115 (13) | 104 (11) | 197 (16) |
Excluded from analysis because of lowest/highest density in recombinant Com1-ELISA | 2 (2) | 2 (2) | 2 (2) |
Total in analysis for immunodominance | 111 (13) | 100 (11) | 193 (16) |
Sheep Sera | Results Commercial ELISA | |||
---|---|---|---|---|
Results recombinant Com1-ELISA | Positive | Negative | Total | |
Positive | 54 | 15 | 69 | |
Negative | 10 | 32 | 42 | |
Total | 64 | 47 | 111 |
Goat Sera | Results with Commercial ELISA | |||
---|---|---|---|---|
Results with recombinant Com1-ELISA | Positive | Negative | Total | |
Positive | 17 | 19 | 36 | |
Negative | 2 | 62 | 64 | |
Total | 19 | 81 | 100 |
Cattle Sera | Results with Commercial ELISA | |||
---|---|---|---|---|
Results with recombinant Com1-ELISA | Positive | Negative | Total | |
Positive | 83 | 24 | 107 | |
Negative | 34 | 52 | 86 | |
Total | 117 | 76 | 193 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stellfeld, M.; Gerlach, C.; Richter, I.-G.; Miethe, P.; Fahlbusch, D.; Polley, B.; Sting, R.; Pfeffer, M.; Neubauer, H.; Mertens-Scholz, K. Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle. Microorganisms 2020, 8, 1235. https://doi.org/10.3390/microorganisms8081235
Stellfeld M, Gerlach C, Richter I-G, Miethe P, Fahlbusch D, Polley B, Sting R, Pfeffer M, Neubauer H, Mertens-Scholz K. Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle. Microorganisms. 2020; 8(8):1235. https://doi.org/10.3390/microorganisms8081235
Chicago/Turabian StyleStellfeld, Mareike, Claudia Gerlach, Ina-Gabriele Richter, Peter Miethe, Dominika Fahlbusch, Birgitta Polley, Reinhard Sting, Martin Pfeffer, Heinrich Neubauer, and Katja Mertens-Scholz. 2020. "Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle" Microorganisms 8, no. 8: 1235. https://doi.org/10.3390/microorganisms8081235
APA StyleStellfeld, M., Gerlach, C., Richter, I.-G., Miethe, P., Fahlbusch, D., Polley, B., Sting, R., Pfeffer, M., Neubauer, H., & Mertens-Scholz, K. (2020). Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle. Microorganisms, 8(8), 1235. https://doi.org/10.3390/microorganisms8081235