Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Isolation and Characterization of Fungi
2.3. Molecular Identification and Phylogenetic Analyses
2.4. Symbiotic Seed Germination
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valadares, R.; Perotto, S.; Santos, E.; Lambais, M. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 2014, 24, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, J.D.; Cameron, D.D. Nitrogen transport in the orchid mycorrhizal symbiosis-further evidence for a mutualistic association. New Phytol. 2016, 213, 10–12. [Google Scholar] [CrossRef]
- Fochi, V.; Chitarra, W.; Kohler, A.; Voyron, S.; Singan, V.; Lindquist, E.; Barry, K.; Girlanda, M.; Grigoriev, I.; Martin, F. Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 2017, 213, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Merckx, V.S. Mycoheterotrophy: An introduction. In Mycoheterotrophy: The Biology of Plants Living on Fungi; Merckx, V., Ed.; Springer: New York, NY, USA, 2013; pp. 1–17. [Google Scholar]
- Roberts, D.L.; Dixon, K.W. Orchids. Curr. Biol. 2008, 18, R325–R329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearnaley, J.; Perotto, S.; Selosse, M.A. Structure and development of orchid mycorrhizas. Mol. Mycorrhizal Symbiosis 2016, 63–86. [Google Scholar]
- Lallemand, F.; Figura, T.; Damesin, C.; Fresneau, C.; Griveau, C.; Fontaine, N.; Zeller, B.; Selosse, M.-A. Mixotrophic orchids do not use photosynthates for perennial underground organs. New Phytol. 2019, 221, 12–17. [Google Scholar] [CrossRef]
- Herrera, H.; García-Romera, I.; Meneses, C.; Pereira, G.; Arriagada, C. Orchid Mycorrhizal Interactions on the Pacific Side of the Andes from Chile. A Review. J. Soil Sci. Plant. Nutr. 2019, 19, 187–202. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, K.; Cheng, S.; Nie, Q.; Zhou, S.-x.; Chen, Q.; Zhou, J.; Zhen, X.; ting Li, X.; wen Zhen, T. Fusarium oxysporum KB-3 from Bletilla striata: An orchid mycorrhizal fungus. Mycorrhiza 2019, 29, 531–540. [Google Scholar] [CrossRef]
- Ogura-Tsujita, Y.; Gebauer, G.; Hashimoto, T.; Umata, H.; Yukawa, T. Evidence for novel and specialized mycorrhizal parasitism: The orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2008, 276, 761–767. [Google Scholar] [CrossRef] [Green Version]
- McCormick, M.K.; Whigham, D.F.; Sloan, D.; O’Malley, K.; Hodkinson, B. Orchid–fungus fidelity: A marriage meant to last? Ecology 2006, 87, 903–911. [Google Scholar] [CrossRef]
- Cowden, C.C.; Shefferson, R.P. Diversity of root-associated fungi of mature Habenaria radiata and Epipactis thunbergii colonizing manmade wetlands in Hiroshima Prefecture, Japan. Mycoscience 2013, 54, 327–334. [Google Scholar] [CrossRef]
- Bidartondo, M.I.; Burghardt, B.; Gebauer, G.; Bruns, T.D.; Read, D.J. Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Kuga, Y.; Sakamoto, N.; Yurimoto, H. Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol. 2014, 202, 594–605. [Google Scholar] [CrossRef]
- Novoa, P.; Espejo, J.; Cisternas, M.; Rubio, M.; Dominguez, E. Guía de Campo de las Orquídeas Chilenas, 2nd ed.; Corporación Chilena de la Madera (CORMA): Santiago, Chile, 2015; Available online: https://www.corma.cl/wp-content/uploads/2018/10/guia-de-campo-orquideas-2015-web.pdf (accessed on 19 December 2019).
- Matus, F.; Rumpel, C.; Neculman, R.; Panichini, M.; Mora, M. Soil carbon storage and stabilisation in andic soils: A review. Catena 2014, 120, 102–110. [Google Scholar] [CrossRef]
- Matus, F.; Stock, S.; Eschenbach, W.; Dyckmans, J.; Merino, C.; Nájera, F.; Köster, M.; Kuzyakov, Y.; Dippold, M.A. Ferrous Wheel Hypothesis: Abiotic nitrate incorporation into dissolved organic matter. Geochim. Cosmochim. Ac. 2019, 245, 514–524. [Google Scholar] [CrossRef]
- Atala, C.; Pereira, G.; Romero, C.; Muñoz-Tapia, L.; Vargas, R.; Suz, L.M. Orchidiod fungi of the form-genus Rhizoctonia associated with the roots of Chloraea cuneata Lindl. From Araucanía, Chile. Gayana Bot. 2015, 72, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Herrera, H.; Valadares, R.; Contreras, D.; Bashan, Y.; Arriagada, C. Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 2017, 27, 175–188. [Google Scholar] [CrossRef]
- Mujica, M.I.; Saez, N.; Cisternas, M.; Manzano, M.; Armesto, J.J.; Pérez, F. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Ann. Bot. 2016, 118, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Claro, A.; Mujica, M.I.; Cisternas, M.; Armesto, J.J.; Perez, F. Low mycorrhizal diversity in the endangered and rare orchids Bipinnula volckmannii and B. apinnula of Central Chile. Symbiosis 2019, 80, 145–154. [Google Scholar] [CrossRef]
- Steinfort, U.; Verdugo, G.; Besoain, X.; Cisternas, M.A. Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora 2010, 205, 811–817. [Google Scholar] [CrossRef]
- Valadares, R.B.; Pereira, M.C.; Otero, J.T.; Cardoso, E.J. Narrow fungal mycorrhizal diversity in a population of the orchid Coppensia doniana. Biotropica 2012, 44, 114–122. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Larkin, M.; Blackshields, G.; Brown, N.; Chenna, R.; McGettigan, P.; McWilliam, H. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, R.; van Staden, J. Fruit harvesting time and corresponding morphological changes of seed integuments influence in vitro seed germination of Dendrobium nobile Lindl. Plant. Growth Regul. 2010, 60, 237–246. [Google Scholar] [CrossRef]
- Jurado, V.; Porca, E.; Cuezva, S.; Fernandez-Cortes, A.; Sanchez-Moral, S.; Sáiz-Jiménez, C. Fungal outbreak in a show cave. Sci. Total Environ. 2010, 408, 3632–3638. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.; Sharma, J.; Taylor, D.L.; Yadon, V.L. A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol. Ecol. 2013, 22, 2341–2354. [Google Scholar] [CrossRef]
- Waterman, R.J.; Bidartondo, M.; Stofberg, J.; Combs, J.K.; Gebauer, G.; Savolainen, V.; Barraclough, T.G.; Pauw, A. The effects of above-and belowground mutualisms on orchid speciation and coexistence. Am. Nat. 2011, 177, E54–E68. [Google Scholar] [CrossRef] [Green Version]
- Martos, F.; Munoz, F.; Pailler, T.; Kottke, I.; Gonneau, C.; Selosse, M.A. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol. Ecol. 2012, 21, 5098–5109. [Google Scholar] [CrossRef]
- Fracchia, S.; Aranda-Rickert, A.; Flachsland, E.; Terada, G.; Sede, S. Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 2014, 24, 627–634. [Google Scholar] [CrossRef]
- Ogura-Tsujita, Y.; Yokoyama, J.; Miyoshi, K.; Yukawa, T. Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am. J. Bot. 2012, 99, 1158–1176. [Google Scholar] [CrossRef] [PubMed]
- Griffin, E.A.; Harrison, J.G.; McCormick, M.K.; Burghardt, K.T.; Parker, J.D. Tree Diversity Reduces Fungal Endophyte Richness and Diversity in a Large-Scale Temperate Forest Experiment. Diversity 2019, 11, 234. [Google Scholar] [CrossRef] [Green Version]
- Fracchia, S.; Aranda-Rickert, A.; Rothen, C.; Sede, S. Associated fungi, symbiotic germination and in vitro seedling development of the rare Andean terrestrial orchid Chloraea Rioja. Flora 2016, 224, 106–111. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Cherdyntseva, T.A.; Botina, S.G.; Netrusov, A.I. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 2007, 162, 69–76. [Google Scholar] [CrossRef]
- Khan, A.L.; Shinwari, Z.K.; Kim, Y.-H.; Waqas, M.; Hamayun, M.; Kamran, M.; Lee, I.-J. Role of endophyte Chaetomium globosum LK4 in growth of Capsicum annuum by producion of gibberellins and indole acetic acid. Pak. J. Bot. 2012, 44, 1601–1607. [Google Scholar]
- Fernando, A.A.; Currah, R.S. A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can. J. Bot. 1996, 74, 1071–1078. [Google Scholar] [CrossRef]
- Wang, X.; Yam, T.W.; Meng, Q.; Zhu, J.; Zhang, P.; Wu, H.; Wang, J.; Zhao, Y.; Song, X. The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant. Cell Tissue Organ. Cult. 2016, 126, 523–531. [Google Scholar] [CrossRef]
- Herrera, H.; Novotná, A.; Ortiz, J.; Soto, J.; Arriagada, C. Isolation and identification of plant growth-promoting bacteria from rhizomes of Arachnitis uniflora, a fully mycoheterotrophic plant in southern Chile. Appl. Soil. Ecol. 2020, 149, 103512. [Google Scholar] [CrossRef]
- Herrera, H.; Sanhueza, T.; Novotná, A.; Charles, T.C.; Arriagada, C. Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from southern Chile. Diversity 2020, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Fracchia, F.; Vanesa, S.; Eduardo, F.; Graciela, T. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza 2014, 24, 35–43. [Google Scholar]
- Zimmerman, E.; Peterson, L. Effect of a dark septate fungal endophyte on seed germination and protocorm development in a terrestrial orchid. Symbiosis 2007, 43, 45–52. [Google Scholar]
- Pereira, G.; Albornoz, V.; Romero, C.; Lara, S.; Sánchez-Olate, M.; Ríos, D.; Atala, C. Asymbiotic germination in three Chloraea species (Orchidaceae) from Chile. Gayana Bot. 2017, 74, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Cuba-Díaz, M.; Silva, R. In vitro culture of Chloraea gavilu Lindl., an endemic terrestrial orchid from Chile. Plant Biosyst. 2018, 152, 612–620. [Google Scholar] [CrossRef]
- Herrera, H.; Valadares, R.; Oliveira, G.; Fuentes, A.; Almonacid, L.; do Nascimento, S.V.; Bashan, Y.; Arriagada, C. Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Mycorrhiza 2018, 28, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Jacquemyn, H.; Duffy, K.J.; Selosse, M.-A. Biogeography of orchid mycorrhizas. In Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Springer: Cham, Switzerland, 2017; pp. 159–177. [Google Scholar]
- Pereira, G.; Suz, L.M.; Albornoz, V.; Romero, C.; García, L.; Leiva, V.; Atala, C. Hongos micorrícicos asociados a Codonorchis lessonii (Brongn.) Lindl., una orquídea terrestre de Chile. Gayana Bot. 2018, 75, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.-Y.; Zhang, W.-L.; Selosse, M.-A.; Gao, J.-Y. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 2019, 29, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Oja, J.; Kohout, P.; Tedersoo, L.; Kull, T.; Kõljalg, U. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 2015, 2015. 205, 1608–1618. [Google Scholar] [CrossRef]
- Ercole, E.; Adamo, M.; Rodda, M.; Gebauer, G.; Girlanda, M.; Perotto, S. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis Morio. New Phytol. 2015, 205, 1308–1319. [Google Scholar] [CrossRef]
- McCormick, M.K.; Whigham, D.F.; Canchani-Viruet, A. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytol. 2018, 219, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Location | Sample Site | Number of Root Samples |
---|---|---|---|
Chloraea alpina | Icalma (38°46′36.4″ S 71°09′44.5″ W) | Grassland | 4 |
Chloraea barbata | Imperial (38°43′31.5″ S 72°59′45.0″ W) Cholchol (38°36′40.9″ S 72°49′16.0″ W) Malalche (38°34′53.0″ S 72°56′01.8″ W) | Grassland Grassland Grassland | 4 4 4 |
Chloraea collicensis | Imperial (38°43′31.5″ S 72°59′45.0″ W) Cholchol (38°36′40.9″ S 72°49′16.0″ W) Malalche (38°34′53.0″ S 72°56′01.8″ W) | Grassland Grassland Grassland | 4 4 4 |
Chloraea crispa | Melipeuco (38°50′12.2″ S 71°39′36.8″ W) Lautaro (38°35′15.1″ S 72°26′52.1″ W) | Wayside Rock | 4 4 |
Chloraea gavilu | Malalche (38°34′01.7″ S 72°56′57.3″ W) | Understory | 4 |
Chloraea grandiflora | Las raices (38°27′34.7″ S 71°30′09.1″ W) | Understory | 2 |
Chloraea incisa | Malalche (38°34′01.1″ S 72°57′21.7″ W) | Understory | 1 |
Chloraea longipetala | Blanco sur (38°30′40.5″ S 71°51′01.5″ W) Lumaco (38°10′06.2″ S 72°51′42.2″ W) | Wayside Wayside | 2 1 |
Chloraea magellanica | Las raices (38°27′34.7″ S 71°30′09.1″ W) Galletue (38°37′05.8″ S 71°26′02.4″ W) | Grassland Understory | 3 3 |
Chloraea philippi | Malalche (38°34′05.5″ S 72°57′17.2″ W) | Understory | 2 |
Codonorchis lessonii | Melipeuco (38°45′02.8″ S 71°36′09.8″ W) Las Raíces (38°27′33.5″ S 71°30′35.4″ W) | Understory Understory | 2 2 |
Gavilea araucana | Malalche (38°33′38.5″ S 72°56′19.5″ W) Carahue (38°41′32.2″ S 73°10′23.8″ W) Lumaco (38°10′06.2″ S 72°51′42.2″ W) | Understory Wayside Wayside | 2 1 4 |
Gavilea lutea | Las Raíces (38°27′32.6″ S 71°30′26.3″ W) Melipeuco (38°45′02.8″ S 71°36′09.8″ W) | Understory Understory | 3 2 |
Isolate | Number of Strains | Isolation Frequency | Growth Rate (m day−1) | Color |
---|---|---|---|---|
FO1 | 6 | 0.08 | 7.5 ± 2.2 | White/cream |
FO2 | 17 | 0.24 | 6.2 ± 1.5 | White |
FO3 | 11 | 0.15 | 6.8 ± 3.0 | White |
FO4 | 6 | 0.08 | 5.3 ± 0.4 | White |
FO5 | 8 | 0.11 | 6.0 ± 1.4 | White |
FO6 | 13 | 0.18 | 5.7 ± 0.6 | White |
FO7 | 4 | 0.06 | 3.5 ± 0.2 | Light brown |
FO8 | 5 | 0.07 | 2.8 ± 0.1 | Light brown |
FO9 | 2 | 0.03 | 4.1 ± 0.4 | Light brown |
Fungal Isolate | GenBank Accession Number | Isolation Source | Close Relatives (Accession Number) | Identity (%) | Source | Reference |
---|---|---|---|---|---|---|
FO1 | MK792996 | Gavilea araucana, Chloraea gavilu | Ceratobasidium sp. FN812725 | 99 | Air | Jurado et al. [28] |
FO2 | MK792998 | G. araucana, Chloraea longipetala, Chloraea barbata, Chloraea collicensis | Uncultured Ceratobasidiaceae JQ972130 | 100 | Orchid root | Pandey et al. [29] |
FO3 | MK792999 | Chloraea philippi, Chloraea crispa, C. barbata | Uncultured Ceratobasidiaceae JQ972130 | 100 | Orchid root | Pandey et al. [29] |
FO4 | MK793000 | Chloraea collicensis | Uncultured Ceratobasidiaceae JQ972129 | 100 | Orchid root | Pandey et al. [29] |
FO5 | MK793001 | C. crispa, C. longipetala | Uncultured Ceratobasidiaceae JQ972130 | 100 | Orchid root | Pandey et al. [29] |
FO6 | MK793002 | C. philippi, G. araucana, Chloraea incisa | Uncultured Ceratobasidiaceae FJ788720 | 97 | Orchid mycorrhizal root section | Waterman et al. [30] |
FO7 | MK793003 | C. collicensis | Uncultured Tulasnellaceae JF691471 | 99 | Orchid root | Martos et al. [31] |
FO8 | MK793004 | Gavilea lutea, Chloraea alpina, Codonorchis lessonii | Tulasnella sp. KP278150 | 98 | Chloraea gavilu | Herrera et al. [19] |
FO9 | MK793005 | Chloraea grandiflora, Chloraea magellanica | Tulasnella sp. KJ713701 | 100 | Gavilea australis | Fracchia et al. [32] |
Orchid Species | Control | OTU1 Ceratobasidium sp. | OTU2 Ceratobasidium sp. | OTU3 Ceratobasidium sp. | OTU4 Tulasnella sp. |
---|---|---|---|---|---|
Chloraea alpine | 0 | 0.02 ± 0.0 c | 0.07 ± 0.0 d | 0 | 1.76 ± 0.2 a |
Chloraea magellanica | 0 | 0 | 0.05 ± 0.0 d | 0 | 0.07 ± 0.0 cd |
Chloraea grandiflora | 0 | 0.03 ± 0.0 c | 0.05 ± 0.0 d | 0.02 ± 0.0 d | 0 |
Gavilea lutea | 0 | 0 | 0 | 0 | 1.27 ± 0.3 b |
Codonorchis lessonii | 0 | 0 | 0 | 0 | 0 |
Gavilea araucana | 0 | 0 | 0 | 0 | 0 |
Chloraea longipetala | 0 | 0.05 ± 0.0 c | 0.12 ± 0.0 c | 1.83 ± 0.3 c | 0 |
Chloraea barbata | 0 | 1.67 ± 0.3 a | 1.96 ± 0.0 b | 2.71 ± 0.2 b | 0.26 ± 0.1 c |
Chloraea collicensis | 0 | 1.72 ± 0.2 a | 1.84 ± 0.2 b | 3.08 ± 0.2 a | 0.07 ± 0.0 cd |
Chloraea crispa | 0.04 ± 0.0 ns | 1.97 ± 0.4 a | 2.39 ± 0.2 a | 3.26 ± 0.1 a | 1.17 ± 0.2 b |
Chloraea incisa | 0.0 | 0 | 0 | 0 | 0 |
Chloraea philippi | 0.05 ± 0.0 ns | 0.54 ± 0.0 b | 0.28 ± 0.1 c | 0.04 ± 0.0 d | 0.03 ± 0.0 d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, H.; Sanhueza, T.; Martiarena, R.; Valadares, R.; Fuentes, A.; Arriagada, C. Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile. Microorganisms 2020, 8, 1120. https://doi.org/10.3390/microorganisms8081120
Herrera H, Sanhueza T, Martiarena R, Valadares R, Fuentes A, Arriagada C. Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile. Microorganisms. 2020; 8(8):1120. https://doi.org/10.3390/microorganisms8081120
Chicago/Turabian StyleHerrera, Hector, Tedy Sanhueza, Rodolfo Martiarena, Rafael Valadares, Alejandra Fuentes, and Cesar Arriagada. 2020. "Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile" Microorganisms 8, no. 8: 1120. https://doi.org/10.3390/microorganisms8081120
APA StyleHerrera, H., Sanhueza, T., Martiarena, R., Valadares, R., Fuentes, A., & Arriagada, C. (2020). Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile. Microorganisms, 8(8), 1120. https://doi.org/10.3390/microorganisms8081120