Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequences Retrieval
2.2. Sequence Alignment and Phylogenetic Analysis
2.3. Identification of Conserved Features
2.4. Construction of Network
2.5. GST Structure Prediction and Molecular Docking
3. Results and Discussion
- I.
- Presence of catalytically essential residues such as serine, tyrosine, and cysteine at the N- terminus [28]. The three catalytic residues present in the N-terminus of GST are broadly found in all types along with the GST specific motifs that contribute a polar functional group to the glutathione (G) binding site [30]. Changes in these signature residues result in functional variation, such as differences in catalytic properties, selective dimer formation, and substrate bindings.
- II.
- Presence of the hydrophobic “lock and key” motif, the SNAIL/TRAIL motifs at the N-terminal end and presence of catalytic signature residue in C-terminal domain [23].
- III.
- Difference in the organization and composition of the active site [31].
3.1. Cyanobacteria Contain Many Diverse Members of GSTs
3.2. Cyanobacteria Type Discrimination Based on Conserved Features
3.3. Evolutionary Divergence of Cyanobacterial GST
3.4. Classification of GST Based on N-Terminal End, the G-Site
3.5. Structural Comparison of Cyanobacterial GST G-Site
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiktelius, E.; Stenberg, G. Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem. J. 2007, 406, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerina, D.M.; Bend, J.R. Glutathione S-transferases. In Biological Reactive Intermediates; Springer: New York, NY, USA, 1977. [Google Scholar]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, A. Glutathione transferases: A structural perspective. Drug Metab. Rev. 2011, 43, 138–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossjohn, J.; McKinstry, W.J.; Oakley, A.J.; Verger, D.; Flanagan, J.; Chelvanayagam, G.; Parker, M.W. Human theta class glutathione transferase: The crystal structure reveals a sulfate-binding pocket within a buried active site. Structure 1998, 6, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Sherratt, P.J.; Hayes, J.D. Glutathione S-transferases. In Enzyme Systems That Metabolise Drugs and Other Xenobiotics; John Wiley and Sons: Hoboken, NJ, USA, 2001; pp. 319–352. [Google Scholar]
- Frova, C. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng. 2006, 23, 149–169. [Google Scholar] [CrossRef]
- Sheehan, D.; Meade, G.; Foley, V.; Dowd, C. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef]
- Blanchette, B.; Feng, X.; Singh, B.R. Marine glutathione S-transferases. Mar. Biotechnol. 2007, 9, 513–542. [Google Scholar] [CrossRef]
- Allocati, N.; Federici, L.; Masulli, M.; Di Ilio, C. Glutathione transferases in bacteria. Febs J. 2009, 276, 58–75. [Google Scholar] [CrossRef]
- Pandey, T.; Shukla, R.; Shukla, H.; Sonkar, A.; Tripathi, T.; Singh, A.K. A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of synechocystis PCC 6803. Int. J. Biol. Macromol. 2017, 94, 378–385. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome. Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, D.P.; Lapthorn, A.; Edwards, R. Plant glutathione transferases. Genome Biol. 2002, 3, 3004.1–3004.10. [Google Scholar] [CrossRef] [Green Version]
- Cameron, J.C.; Pakrasi, H.B. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant. Physiol. 2010, 154, 1672–1685. [Google Scholar] [CrossRef] [Green Version]
- Shylajanaciyar, M.; Dineshbabu, G.; Rajalakshmi, R.; Subramanian, G.; Prabaharan, D.; Uma, L. Analysis and elucidation of phosphoenolpyruvate carboxylase in cyanobacteria. Protein J. 2015, 34, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Kerfeld, C.A. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 1053–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, A.P.; Lakshmanan, K.; Mohandass, S.; Varadharaj, S.; Thilagar, S.; Kareem, K.A.A.; Prabaharan, D.; Gopalakrishnan, S.; Lakshmanan, U. Cyanobacterial knowledge base (CKB), a compendium of cyanobacterial genomes and proteomes. PLoS ONE 2015, 10, e0136262. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree v1. 3.1: Tree Figure Drawing Tool. 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 21 December 2016).
- Skopelitou, K.; Dhavala, P.; Papageorgiou, A.C.; Labrou, N.E. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE 2012, 7, e34263. [Google Scholar] [CrossRef] [Green Version]
- Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme function initiative-enzyme similarity tool (EFI-EST): A web tool for generating protein sequence similarity networks. BBA Proteins Proteom. 2015, 8, 1019–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 11, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuhrmann, J.; Rurainski, A.; Lenhof, H.P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand receptor docking. J. Comput. Chem. 2010, 31, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Vasconcelos, V.; Antunes, A. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evol. Biol. 2010, 10, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, T.; Singh, S.K.; Chhetri, G.; Tripathi, T.; Singh, A.K. Characterization of a highly pH stable chi-class glutathione S-transferase from synechocystis PCC 6803. PLoS ONE 2015, 10, e0126811. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.L.; Bammler, T.K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 1999, 49, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, H.J.; Babbitt, P.C. Glutathione transferases are structural and functional outliers in the thioredoxin fold. Biochemistry 2009, 46, 11108–11116. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kaushik, M.S.; Srivastava, M.; Mishra, A.K. Phylogenetic analysis of heterocystous cyanobacteria (subsections IV and V) using highly iterated palindromes as molecular markers. Physiol. Mol. Biol. Plants 2014, 20, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Board, P.G.; Coggan, M.; Chelvanayagam, G.; Easteal, S.; Jermiin, L.S.; Schulte, G.K.; Danley, D.E.; Hoth, L.R.; Griffor, M.C.; Kamath, A.V.; et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J. Biol. Chem. 2000, 32, 24798–24806. [Google Scholar] [CrossRef] [Green Version]
- Dirr, H.; Reinemer, P.; Huber, R. X-ray crystal structures of cytosolic glutathione S-transferases. Eur. J. Biochem. 1994, 3, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Caccuri, A.M.; Antonini, G.; Nicotra, M.; Battistoni, A.; Bello, M.L.; Board, P.G.; Parker, M.W.; Ricci, G. Catalytic mechanism and role of hydroxyl residues in the active site of theta class glutathione S-transferases. Investigation of Ser-9 and Tyr-113 in a glutathione S-transferase from the Australian sheep blowfly, Lucilia cuprina. J. Biol. Chem. 1997, 47, 29681–29686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Lee, G.S.; Gong, G.H. Functional studies of cysteine residues in human glutathione S-transferase P1-1 by site-directed mutagenesis. Bull. Korean Chem. Soc. 2001, 1, 77–83. [Google Scholar]
Orders | Chi | cyGSTX1 | cyGSTX2 | cyGSTX3 | cyGSTX4 | cyGSTX5 | cyGSTX6 | cyGSTX7 | cyGSTX8 | cyGSTX9 | cyGSTX10 | cyGSTX11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pleurocapsales | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✕ | ✓ | ✕ | ✕ |
Chroococcales | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ |
Oscillatoriales | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ |
Nostocales | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ | ✕ | ✓ | ✕ | ✓ | ✓ |
Stigonematales | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
Orders | Chi | cyGSTX1 | cyGSTX2 | cyGSTX3 | cyGSTX4 | cyGSTX5 | cyGSTX6 | cyGSTX7 | cyGSTX8 | cyGSTX9 | cyGSTX10 | cyGSTX11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pleurocapsales | ✕ | ✕ | ✕ | ✕ | STEIA | SDDI(IL) | SAEII | ✕ | ✕ | SL(ED)I(IM) | ✕ | ✕ |
Chroococcales | SGAIL | SGAIL | SLAIL | SNA(IV)L | ST(EDA)IA | SD(DRV)II | SAEII | S(ST)AI(AC) | ✕ | ✕ | ✕ | ✕ |
Oscillatoriales | SGAIL | SGAIL | S(FL)AIL | SNA(IM)(LM) | ST(AE)IA | ✕ | SA(DE)II | SSAIA | ✕ | ✕ | ✕ | ✕ |
Nostocales | SGAIL | SGAIL | SLAI(LM) | SNAIL | ST(EA)IA | SDDII | ✕ | ✕ | SAI(IV)N | ✕ | SA(IV)IN | SKDIL |
Stigonematales | SGAIL | SGAIL | SLAIL | SNAIL | STEIA | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
Motif architecture for each GST class | SGAIL | SGAIL | S(FL)AI(LM) | SNA(IVM)(LM) | ST(EDA)IA | SD(DRV)I(IL) | SA(DE)II | S(ST)AI(AC) | SAI(IV)N | SL(ED)I(IM) | SA(IV)IN | SKDIL |
Chroococcales | Pleurocapsales | Oscillatoriales | Nostocales | Stigonematales | |
---|---|---|---|---|---|
Chroococcales | 0.0619 | 0.0655 | 0.0577 | 0.0609 | |
Pleurocapsales | 1.4035 | 0.0681 | 0.0598 | 0.0637 | |
Oscillatoriales | 1.3594 | 1.4166 | 0.0634 | 0.0664 | |
Nostocales | 1.3054 | 1.3361 | 1.3376 | 0.0582 | |
Stigonematales | 1.2731 | 1.3103 | 1.2907 | 1.1904 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ShylajaNaciyar, M.; Karthick, L.; Prakasam, P.A.; Deviram, G.; Uma, L.; Prabaharan, D.; Saha, S.K. Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms 2020, 8, 712. https://doi.org/10.3390/microorganisms8050712
ShylajaNaciyar M, Karthick L, Prakasam PA, Deviram G, Uma L, Prabaharan D, Saha SK. Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms. 2020; 8(5):712. https://doi.org/10.3390/microorganisms8050712
Chicago/Turabian StyleShylajaNaciyar, Mohandass, Lakshmanan Karthick, Peter Arul Prakasam, Garlapati Deviram, Lakshmanan Uma, Dharmar Prabaharan, and Sushanta Kumar Saha. 2020. "Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions" Microorganisms 8, no. 5: 712. https://doi.org/10.3390/microorganisms8050712
APA StyleShylajaNaciyar, M., Karthick, L., Prakasam, P. A., Deviram, G., Uma, L., Prabaharan, D., & Saha, S. K. (2020). Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms, 8(5), 712. https://doi.org/10.3390/microorganisms8050712