Biology and Pathogenesis of Staphylococcus Infection
Acknowledgments
Conflicts of Interest
References
- Wu, K.; Conly, J.; McClure, J.-A.; Kurwa, H.A.; Zhang, K. Arginine Catabolic Mobile Element in Evolution and Pathogenicity of the Community-Associated Methicillin-Resistant Staphylococcus aureus Strain USA300. Microorganisms 2020, 8, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.S.; Pinto, B.L.S.; Monteiro, J.M.; Ferreira, R.M.; Ribeiro, P.C.S.; Bando, S.Y.; Marques, S.G.; Silva, L.C.N.; Neto, W.R.N.; Ferreira, G.F.; et al. Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. Microorganisms 2019, 7, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, J.; Rutten, V.P.M.G.; Lam, T.J.G.M.; Van Kessel, K.P.M.; Spaninks, M.P.; Stegeman, J.A.; Benedictus, L.; Koop, G. Activation of a Bovine Mammary Epithelial Cell Line by Ruminant-Associated Staphylococcus aureus is Lineage Dependent. Microorganisms 2019, 7, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, W.T.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Han, S.J.; Kwon, J.; Park, S.C. Staphylococcus xylosus Infection in Rainbow Trout (Oncorhynchus mykiss) As a Primary Pathogenic Cause of Eye Protrusion and Mortality. Microorganisms 2019, 7, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrbovská, V.; Sedláček, I.; Zeman, M.; Švec, P.; Kovařovic, V.; Šedo, O.; Laichmanová, M.; Doškař, J.; Pantůček, R. Characterization of Staphylococcus intermedius Group Isolates Associated with Animals from Antarctica and Emended Description of Staphylococcus delphini. Microorganisms 2020, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavecchia, A.; Chiara, M.; De Virgilio, C.; Manzari, C.; Monno, R.; De Carlo, A.; Pazzani, C.; Horner, D.; Pesole, G.; Placido, A. Staphylococcus arlettae Genomics: Novel Insights on Candidate Antibiotic Resistance and Virulence Genes in an Emerging Opportunistic Pathogen. Microorganisms 2019, 7, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łubowska, N.; Grygorcewicz, B.; Kosznik-Kwaśnicka, K.; Zauszkiewicz-Pawlak, A.; Węgrzyn, A.; Dołęgowska, B.; Piechowicz, L. Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019, 7, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.J.; Huang, Y.-C.; Chuang, T.-H.; Herr, D.R.; Hsieh, M.-F.; Huang, C.-J.; Huang, C.-M. Cysteine-Capped Hydrogels Incorporating Copper as Effective Antimicrobial Materials against Methicillin-Resistant Staphylococcus aureus. Microorganisms 2020, 8, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermassen, A.; Talon, R.; Andant, C.; Provot, C.; Desvaux, M.; Leroy, S. Cell-Wall Hydrolases as Antimicrobials against Staphylococcus Species: Focus on Sle1. Microorganisms 2019, 7, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.V.; Bertelloni, F.; Najar, B.; Nardoni, S.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Essential Oils against Staphylococcus and Malassezia Strains Isolated from Canine Dermatitis. Microorganisms 2020, 8, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiltunen, A.K.; Savijoki, K.; Nyman, T.A.; Miettinen, I.; Ihalainen, P.; Peltonen, J.; Fallarero, A. Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms 2019, 7, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savijoki, K.; Miettinen, I.; Nyman, T.A.; Kortesoja, M.; Hanski, L.; Varmanen, P.; Fallarero, A. Growth Mode and Physiological State of Cells Prior to Biofilm Formation Affect Immune Evasion and Persistence of Staphylococcus aureus. Microorganisms 2020, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Reigada, I.; Pérez-Tanoira, R.; Patel, J.Z.; Savijoki, K.; Yli-Kauhaluoma, J.; Kinnari, T.J.; Fallarero, A. Strategies to Prevent Biofilm Infections on Biomaterials: Effect of Novel Naturally-Derived Biofilm Inhibitors on a Competitive Colonization Model of Titanium by Staphylococcus aureus and SaOS-2 Cells. Microorganisms 2020, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Balraadjsing, P.P.; de Jong, E.C.; van Wamel, W.J.B.; Zaat, S.A.J. Dendritic Cells Internalize Staphylococcus aureus More Efficiently than Staphylococcus epidermidis, but Do Not Differ in Induction of Antigen-Specific T Cell Proliferation. Microorganisms 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V. Biology and Pathogenesis of Staphylococcus Infection. Microorganisms 2020, 8, 383. https://doi.org/10.3390/microorganisms8030383
Ebani VV. Biology and Pathogenesis of Staphylococcus Infection. Microorganisms. 2020; 8(3):383. https://doi.org/10.3390/microorganisms8030383
Chicago/Turabian StyleEbani, Valentina Virginia. 2020. "Biology and Pathogenesis of Staphylococcus Infection" Microorganisms 8, no. 3: 383. https://doi.org/10.3390/microorganisms8030383
APA StyleEbani, V. V. (2020). Biology and Pathogenesis of Staphylococcus Infection. Microorganisms, 8(3), 383. https://doi.org/10.3390/microorganisms8030383