Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and Growth Conditions
2.2. Maize and Cotton Cultivars Selected for This Study
2.3. Plate Confrontation Assay
2.4. Full-Growth Season Pot Experiments under Field Conditions
2.5. Molecular Diagnosis
2.6. Statistical Analyses
3. Results
3.1. Plate Confrontation assay
3.2. Full-Growth Season Pot Experiments under Field Conditions
3.3. The Co-Influence of M. maydis and M. phaseolina on Maize Plants
3.4. The Co-Influence of M. maydis and M. phaseolina on Cotton Plants
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samra, A.S.; Sabet, K.A.; Hingorani, M.K. Late wilt disease of maize caused by Cephalosporium maydis. Phytopathology 1963, 53, 402–406. [Google Scholar]
- Gams, W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent Ascomycetes. Studies Mycol. 2000, 45, 187–200. [Google Scholar]
- Fayzalla, E.; Sadik, E.; Elwakil, M.; Gomah, A. Soil solarization for controlling Cephalosporium maydis, the cause of late wilt disease of maize in Egypt. Egypt J. Phytopathology 1994, 22, 171–178. [Google Scholar]
- Degani, O.; Cernica, G. Diagnosis and control of Harpophora maydis, the cause of late wilt in maize. Adv. Microbiol. 2014, 4, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Drori, R.; Sharon, A.; Goldberg, D.; Rabinovitz, O.; Levy, M.; Degani, O. Molecular diagnosis for Harpophora maydis, the cause of maize late wilt in israel. Phytopathol. Mediterr. 2013, 52, 16–29. [Google Scholar]
- Degani, O.; Dor, S.; Movshowitz, D.; Fraidman, E.; Rabinowitz, O.; Graph, S. Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field. PLoS ONE 2018, 13, e0208353. [Google Scholar] [CrossRef]
- Galal, O.A.; Aboulila, A.A.; Motawei, A.; Galal, A. Biochemical and molecular diversity and their relationship to late wilt disease resistance in yellow maize inbred lines. Cytology 2019, 2, 47. [Google Scholar]
- Degani, O.; Drori, R.; Goldblat, Y. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize. Physiol. Mol. Biol. Plants 2015, 21, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Sahab, A.F.; Osman, A.R.; Soleman, N.K.; Mikhail, M.S. Studies on root-rot of lupin in Egypt and its control. Egypt. J. Phytopathol. 1985, 17, 23–35. [Google Scholar]
- Dor, S.; Degani, O. Uncovering the host range for maize pathogen Magnaporthiopsis maydis. Plants 2019, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, M.K.; Hooda, K.S.; Sharma, S.S.; Singh, V. Post flowering stalk rot complex of maize-present status and future prospects. Maydica 2014, 59, 226–242. [Google Scholar]
- Sabet, K.; Samra, A.; Mansour, I. Interaction between Fusarium oxysporum f. Vasinfectum and Cephalosporium maydis on cotton and maize. Ann. Appl. Biol. 1966, 58, 93–101. [Google Scholar] [CrossRef]
- Manici, L.; Caputo, F.; Cerato, C. Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis. 1995, 79, 834–838. [Google Scholar] [CrossRef]
- Kaur, S.; Dhillon, G.S.; Brar, S.K.; Vallad, G.E.; Chand, R.; Chauhan, V.B. Emerging phytopathogen Macrophomina phaseolina: Biology, economic importance and current diagnostic trends. Crit. Rev. Microbiol. 2012, 38, 136–151. [Google Scholar] [CrossRef]
- Babu, B.K.; Saikia, R.; Arora, D.K. Molecular characterization and diagnosis of Macrophomina phaseolina: A charcoal rot fungus. In Molecular Identification of Fungi; Springer: Berlin/Heidelberg, Germany, 2010; pp. 179–193. [Google Scholar]
- Tej, R.; Rodríguez-Mallol, C.; Rodríguez-Arcos, R.; Karray-Bouraoui, N.; Molinero-Ruiz, L. Inhibitory effect of Lycium europaeum extracts on phytopathogenic soil-borne fungi and the reduction of late wilt in maize. Eur. J. Plant Pathol. 2018, 152, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Rahim, M.F.; Fahmy, G.M.; Fahmy, Z.M. Alterations in transpiration and stem vascular tissues of two maize cultivars under conditions of water stress and late wilt disease. Plant Pathol. 1998, 47, 216–223. [Google Scholar] [CrossRef]
- Goudarzi, S.; Banihashemi, Z.; Maftoun, M. Effect of salt and water stress on root infection by Macrophomina phaseolina and ion composition in shoot in sorghum. Iran Journal Plant Path 2011, 47, 69–83. [Google Scholar]
- Cohen, R.; Elkabetz, M.; Edelstein, M. Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Prot. 2016, 85, 46–51. [Google Scholar] [CrossRef]
- Degani, O.; Movshowitz, D.; Dor, S.; Meerson, A.; Goldblat, Y.; Rabinovitz, O. Evaluating azoxystrobin seed coating against maize late wilt disease using a sensitive qPCR-based method. Plant Dis. 2019, 103, 238–248. [Google Scholar] [CrossRef] [Green Version]
- El-Gremi, S.M.A.; Belal, E.B.A.; Ghazy, N.A. Cephalosporium maydis as affected by maize root exudates and role of the fungal metabolites in pathogenesis. J. Agric. Sci. Mansoura Univ. 2007, 32, 7605–7615. [Google Scholar]
- Bruehl, G.W. Soilborne Plant Pathogens; Macmillan Publishing Company: New York, NY, USA, 1987. [Google Scholar]
- Stephens, A.E.; Srivastava, D.S.; Myers, J. Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc. Biol. Sci. 2013, 280, 20122756. [Google Scholar] [CrossRef] [Green Version]
- Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- El Hadrami, A.; Wally, O.; Adam, L.; Daayf, F. PCR-based determination of colonization patterns during potato tuber infection by single and multiple pathogens. Eur. J. Plant Pathol. 2007, 117, 201–218. [Google Scholar] [CrossRef]
- Le May, C.; Potage, G.; Andrivon, D.; Tivoli, B.; Outreman, Y. Plant disease complex: Antagonism and synergism between pathogens of the Ascochyta blight complex on pea. J. Phytopathol. 2009, 157, 715–721. [Google Scholar] [CrossRef]
- Moya-Elizondo, E.A.; Jacobsen, B.J.; Hogg, A.C.; Dyer, A.T. Population dynamics between Fusarium pseudograminearum and Bipolaris sorokiniana in wheat stems using real-time qPCR. Plant Dis. 2011, 95, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Nolan, S.; Cooke, B.; Monahan, F. Studies on the interaction between Septoria tritici and Stagonospora nodorum in wheat. Eur. J. Plant Pathol. 1999, 105, 917–925. [Google Scholar] [CrossRef]
- Round, P.; Wheeler, B.J. Interactions of Puccinia hordei and Erysiphe graminis on seedling barley. Applied Biol. 1978, 89, 21–35. [Google Scholar] [CrossRef]
- Degani, O.; Goldblat, Y. Ambient stresses regulate the development of the maize late wilt causing agent, Harpophora maydis. Agric. Sci. 2014, 5, 571–582. [Google Scholar]
- Babu, B.K.; Saxena, A.K.; Srivastava, A.K.; Arora, D.K. Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. J. Mycol. 2007, 99, 797–803. [Google Scholar] [CrossRef]
- Cohen, R. Macrophomina phaseolina, a multi-host soil fungus: On similarities and differences in the interactions with cucurbitaceae and gossypium hirsutum (cotton) plants. In Proceedings of the 5th conference of the Israel Society of Crop and Vegetable Sciences, Beit-Dagan, Israel, 5 –6 March 2018; Robert, H. Smith Faculty of Agriculture, Food and Environment, Rehovot, the Hebrew University of Jerusalem, Ministry of Agriculture and Rural Development: Beit-Dagan, Israel. [Google Scholar]
- Degani, O.; Weinberg, T.; Graph, S. Chemical control of maize late wilt in the field. Phytoparasitica 2014, 42, 559–570. [Google Scholar] [CrossRef]
- Zeller, K.A.; Abou-Serie, M.I.; El-Assuity, E.M.; Fahmy, Z.M.; Bekheet, F.M.; Leslie, J.F. Relative competitiveness and virulence of four clonal lineages of Cephalosporium maydis from Egypt toward greenhouse-grown maize. Plant Dis. 2002, 86, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Iowa State University Extension: Ames, IA, USA, 2011. [Google Scholar]
- Degani, O.; Dor, S.; Movshovitz, D.; Rabinovitz, O. Methods for studying Magnaporthiopsis maydis, the maize late wilt causal agent. Agronomy 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Weller, S.; Elphinstone, J.; Smith, N.; Boonham, N.; Stead, D. Detection of ralstonia solanacearumstrains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 2000, 66, 2853–2858. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, N.C. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Larena, I.; Salazar, O.; González, V.; Julián, M.a.C.; Rubio, V. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for Ascomycetes. J. Biotechnol. 1999, 75, 187–194. [Google Scholar] [CrossRef]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus liberibacter species associated with Citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef]
- Su, G.; Suh, S.-O.; Schneider, R.; Russin, J.J. Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 2001, 91, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Troth, E.E.G.; Johnston, J.A.; Dyer, A.T. Competition between Fusarium pseudograminearum and Cochliobolus sativus observed in field and greenhouse studies. Phytopathology 2017, 108, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.; Leslie, J.; Schwenk, F.J. Variable chlorate resistance in Macrophomina phaseolina from corn, soybean, and soil. Biology 1986, 76, 646–649. [Google Scholar]
- Warren, H.L. Potential disease problems: Late wilt of maize. Phytopathology 1983, 73, 782. [Google Scholar]
- Ortiz-Bustos, C.M.; Testi, L.; García-Carneros, A.B.; Molinero-Ruiz, L. Geographic distribution and aggressiveness of Harpophora maydis in the Iberian peninsula, and thermal detection of maize late wilt. Eur. J. Plant Pathol. 2016, 144, 383–397. [Google Scholar] [CrossRef]
- Loganathan, M.; Rai, A.; Ramesh, R.; Sharma, B.; Rai, R.; Rai, M. Vascular wilt diseases-a menace in vegetable crops. Veg. Sci. 2009, 36, 1–13. [Google Scholar]
- Ortiz-Bustos, C.; López-Bernal, A.; Testi, L.; MolineroRuiz, L. Environmental and irrigation conditions can mask the effect of Magnaporthiopsis maydis on growth and productivity of maize. Plant Pathol. 2019, 68, 1555–1564. [Google Scholar] [CrossRef]
- Samra, A.S.; Sabet, K.A.; Abdel-Rahim, M.F. Effect of Soil Conditions and Cultural Practices on Infection with Stalk Rots; U.A.R. Ministry of Agric. Government Printing Offices: Cairo, Egypt, 1966; pp. 117–164.
- Singh, S.D.; Siradhana, B.S. Date of sowing in relation to late wilt disease of maize. Indian Phytopathol. 1988, 41, 489–491. [Google Scholar]
Year | Irrigation Regime | Maize | Cotton | ||
---|---|---|---|---|---|
Age (DAS) 2 | Irrigation (L per pot/2 day) | Age (DAS) | Irrigation (L per pot/2 day) | ||
2018 | Normal 1 | 0–6 3 | 5.4 | 0–28 3 | 5 |
7–82 | 2.7 | 29–154 | 2.5 | ||
2019 | Normal 1 | 0–48 | 4 | 0–162 | 4.8 |
49–79 | 6 | ||||
Drought pressure | 0–48 | 2 | 0–162 | 4 | |
49–79 | 4 |
2018 | 2019 | |||
---|---|---|---|---|
Environmental Condition | Maize 24/05-14/08 | Cotton 02/05-03/10 | Maize 21/05-08/08 | Cotton 21/05-30/10 |
Temperature (°C) | 27.1 ± 5.2 | 26.8 ± 5.4 | 27.3 ± 5.7 | 26.5 ± 5.7 |
Humidity (%) | 60.4 ± 18.0 | 59.9 ± 19.1 | 57.2 ± 19.6 | 60.5 ± 19.7 |
Soil temp. top 5 cm (°C) | 28.9 ± 7.4 | 31.7 ± 8.9 | 33.8 ± 12.1 | 32.1 ± 19.7 |
Radiation (W/m2) | 328.9 | 302.4 | 355.6 | 289.5 |
Precipitation (mm) | 9.9 | 31.4 | 0.5 | 53.8 |
Evaporation (mm) | 724.2 | 1257.04 | 669.6 | 1201.6 |
Pairs | Primer | Sequence | Uses | Amplification | References |
---|---|---|---|---|---|
Pair 1 | A200a-for A200a-rev | 5′-CCGACGCCTAAAATACAGGA-3′ 5′-GGGCTTTTTAGGGCCTTTTT-3′ | Target gene | 200 bp M. maydis species-specific fragment | [5] |
Pair 2 | MpKFI MpKRI | 5′-CCGCCAGAGGACTATCAAAC-3′ 5′- CGTCCGAAGCGAGGTGTATT-3′ | Target gene | 300–400 bp M. phaseolina species-specific fragment | [31] |
Pair 3 | ITS1 ITS4 | 5′- TCCGTAGGTGAACCTGCGG -3′ 5′- TCCTCCGCTTATTGATATGC -3′ | Target gene | Target region for the identification of fungi species | [39] |
Pair 4 | COX-F COX-R | 5′-GTATGCCACGTCGCATTCCAGA-3′ 5′-CAACTACGGATATATAAGRRCCRR AACTG-3′ | Control | Cytochrome c oxidase (COX) gene product | [37,40] |
Growth Parameter | M. maydis | M. phaseolina | M. maydis +M. phaseolina | Control 2 |
---|---|---|---|---|
Emergence (%) | 64 ± 9.3 | 72 ± 5.3 | 70 ± 6.8 | 76 ± 5.8 |
Height (cm) | 22.0 ± 1.65 | 21.4 ± 1.34 | 21.5 ± 1.41 | 19.9 ± 1.20 |
Root weight (g) | 3.7 ± 0.80 | 3.5 ± 0.53 | 4.0 ± 0.36 | 3.0 ± 0.52 |
Shoot weight (g) | 26.4 ± 4.6 | 24.3 ± 4.2 | 24.5 ± 3.7 | 18.4 ± 2.6 |
Growth Parameter | M. maydis | M. phaseolina | M. maydis +M. phaseolina | Control 3 |
---|---|---|---|---|
Height (cm) | 85.4 ± 4.9 | 94.9 ± 5.0 | 111.7 ± 5.4 2 | 109.2 ± 3.8 |
Root weight (g) | 40.5 ± 8.3 | 82.9 ± 32.1 | 59.0 ± 9.1 2 | 54.9 ± 10.6 |
Shoot weight (g) | 174.5 ± 22.6 | 214.2 ± 34.9 | 245.1 ± 13.0 2 | 201.5 ± 24.6 |
Cob weight (g) | 91.4 ± 16.0 | 112.7 ± 16.0 | 170.7 ± 22.9 2 | 125.1 ± 16.6 |
Treatment | Healthy | Mild Symptoms | Symptoms | Wilted |
---|---|---|---|---|
M. maydis | 20% | 30% | 10% | 40% |
M. phaseolina | 50% | 30% | 10% | 10% |
M. maydis + M. phaseolina | 30% | 10% | 20% | 40% |
Control 1 | 70% | 30% | 0% | 0% |
Days after Sowing | Growth Parameter | M. maydis | M. phaseolina | M. maydis + M. phaseolina | Control |
---|---|---|---|---|---|
57 | Height (cm) | 46.7 ± 3.0 | 53.6 ± 1.2 | 48.3 ± 2.1 | 50.0 ± 1.6 |
Root weight (kg) | 12.0 ± 1.3 | 11.5 ± 1.2 | 8.5 ± 0.9 | 10.8 ± 1.1 | |
Shoot weight (kg) | 74.1 ± 11.2 | 72.1 ± 7.5 | 54.0 ± 7.4 | 62.8 ± 4.6 | |
Number of leaves | 20.6 ± 2.7 | 21.6 ± 1.3 | 17.6 ± 1.1 | 18.7 ± 1.1 | |
154 | Height (cm) | 116.4 ± 3.7 | 105.3 ± 4.1 | 117.2 ± 4.61 | 108.9 ± 6.8 |
Root weight (kg) | 0.14 ± 0.02 | 0.10 ± 0.01 | 0.15 ± 0.021 | 0.14 ± 0.02 | |
Shoot weight (kg) | 0.50 ± 0.06 | 0.39 ± 0.07 | 0.62 ± 0.12 | 0.39 ± 0.09 | |
Average crop weight (kg) | 0.25 ± 0.03 | 0.19 ± 0.03 | 0.23 ± 0.04 | 0.19 ± 0.03 | |
Number of seeds | 15.1 ± 0.59 | 15.4 ± 0.42 | 14.7 ± 0.99 | 13.7 ± 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degani, O.; Dor, S.; Abraham, D.; Cohen, R. Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton. Microorganisms 2020, 8, 249. https://doi.org/10.3390/microorganisms8020249
Degani O, Dor S, Abraham D, Cohen R. Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton. Microorganisms. 2020; 8(2):249. https://doi.org/10.3390/microorganisms8020249
Chicago/Turabian StyleDegani, Ofir, Shlomit Dor, Dekel Abraham, and Roni Cohen. 2020. "Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton" Microorganisms 8, no. 2: 249. https://doi.org/10.3390/microorganisms8020249
APA StyleDegani, O., Dor, S., Abraham, D., & Cohen, R. (2020). Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton. Microorganisms, 8(2), 249. https://doi.org/10.3390/microorganisms8020249