Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time
Abstract
:1. Introduction
2. Probiotics: A bit of History
3. Sources of Probiotic Strains
4. Selection Criteria and Requirements for Probiotic Strains
5. Mechanism of Action of Probiotics
6. Probiotics: A Continuous Source of Health Benefits
7. Urogenital Tract Health Care
8. Probiotics Application in Skincare and Cosmetics
9. Angiogenic Activity of Probiotics
10. Fecal Microbiota Transplantation
11. Human Gut Microbiota: “A Second Brain”
12. Probiotics: Do These Microbes Confer any Benefits for Generally Healthy People?
13. Current Challenges in Lactic Acid Bacteria Application as Probiotics
14. Safety of Probiotics
15. Regulation of Probiotics Safety around the Globe
16. General Discussion: Probiotics and a Glance on Tomorrow
17. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Selhub, E.M.; Logan, A.C.; Bested, A.C. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 2014, 33, 2. [Google Scholar] [CrossRef] [Green Version]
- Borresen, E.C.; Henderson, A.J.; Kumar, A.; Weir, T.L.; Ryan, E.P. Fermented foods: Patented approaches and formulations for nutritional supplementation and health promotion. Recent Pat. Food Nutr. Agric. 2012, 4, 134–140. [Google Scholar] [CrossRef]
- Gómez-Gallego, C.; Salminen, S. Novel probiotics and prebiotics: How can they help in human gut microbiota dysbiosis? Appl. Food Biotechnol. 2016, 3, 72–81. [Google Scholar]
- FAO/WHO. Guidelines for Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food London, ON, Canada, 30 April and 1 May 2002; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Cammarota, G.; Ianiro, G.; Bibbo, S.; Gasbarrini, A. Gut microbiota modulation: Probiotics, antibiotics or fecal microbiota transplantation? Intern. Emerg. Med. 2014, 9, 365–373. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Metchnikoff, E. The Prolongation of Life: Optimistic Studies; William Heinemann: London, UK, 1907; pp. 161–183. [Google Scholar]
- Tissier, H. Traitement des infections intestinales par la méthode de la flore bactérienne de l’intestin. C. R. Soc. Biol. 1906, 60, 359–361. [Google Scholar]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Garg, R. Probiotics. Ind. J. Med. Microbiol. 2009, 27, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Guarner, F.; Schaafsma, G.J. Probiotics. Int. J. Food Microbiol. 1998, 39, 237–238. [Google Scholar] [CrossRef]
- Guarner, F.; Khan, A.G.; Garisch, J.; Eliakim, R.; Gangl, A.; Thomson, A.; Krabshuis, J.; Lemair, T.; Kaufmann, P.; de Paula, J.A.; et al. World Gastroenterology Organisation Global Guidelines: Probiotics and prebiotics. J. Clin. Gastroenterol. 2012, 46, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS ONE 2012, 7, e34938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floch, M.H.; Walker, W.A.; Sanders, M.E.; Nieuwdorp, M.; Kim, A.S.; Brenner, D.A.; Qamar, A.A.; Miloh, T.A.; Guarino, A.; Guslandi, M.; et al. Recommendations for probiotic use–2015 update: Proceedings and consensus opinion. J. Clin. Gastroenterol. 2015, 49, S69–S73. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Im, S.H. Probiotics as an Immune Modulator. J. Nutr. Sci. Vitam. 2015, 61, S103–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savaiano, D.A.; Ritter, A.J.; Klaenhammer, T.R.; James, G.M.; Longcore, A.T.; Chandler, J.R.; Walker, W.A.; Foyt, H.L. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): A randomized, double-blind clinical trial. Nutr. J. 2013, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silanikove, N.; Leitner, G.; Merin, U. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015, 7, 7312–7331. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, H. Probiotics for lactose intolerance and irritable bowel syndrome. Br. J. Community Nurs. 2015, 20, S12–S14. [Google Scholar] [CrossRef]
- Thomas, L.V.; Ockhuizen, T.; Suzuki, K. Exploring the influence of the gut microbiota and probiotics on health: A symposium report. Br. J. Nutr. 2014, 112 (Suppl. S1), S1–S18. [Google Scholar] [CrossRef] [Green Version]
- Bokhorst, V.V.; Van, H.; Bron, P.A.; Kleerebezem, M. Improving the digestive tract robustness of probiotic Lactobacilli. In Probiotics and Prebiotics: Current Research and Future Trends; Caister Academic Press: Norfolk, UK, 2015; pp. 195–204. [Google Scholar]
- Gomez-Guzman, M.; Toral, M.; Romero, M.; Jimenez, R.; Galindo, P.; Sánchez, M.; Zarzuelo, M.J.; Olivares, M.; Gálvez, J.; Duarte, J. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol. Nutr. Food Res. 2015, 59, 2326–2336. [Google Scholar] [CrossRef]
- Kemgang, T.S.; Kapila, S.; Shanmugam, V.P.; Kapila, R. Cross-talk between probiotic lactobacilli and host immune system. J. Appl. Microbiol. 2014, 117, 303–319. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, S.Y.; Han, K.J.; Eom, S.J.; Paik, H.D. Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-Food Sci. Technol. 2014, 58, 130–134. [Google Scholar] [CrossRef]
- Lakritz, J.R.; Poutahidis, T.; Levkovich, T.; Varian, B.J.; Ibrahim, Y.M.; Chatzigiagkos, A.; Mirabal, S.; Alm, E.J.; Erdman, S.E. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int. J. Cancer 2014, 135, 529–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, J.A.; Bergin, S.W.; Cooper, J.R.; Olsen, C.H. Comparative probiotic strain efficacy in the prevention of eczema in infants and children: A systematic review and meta-analysis. Mil. Med. 2014, 179, 580–592. [Google Scholar] [CrossRef] [Green Version]
- Mardini, H.E.; Grigorian, A.Y. Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: A meta-analysis. Inflamm. Bowel Dis. 2014, 20, 1562–1567. [Google Scholar] [PubMed]
- Aazmi, S.; The, L.K.; Ramasamy, K.; Rahman, T.; Salleh, M.Z. Comparison of the anti-obesity and hypocholesterolaemic effects of single Lactobacillus casei strain Shirota and probiotic cocktail. Int. J. Food Sci. Technol. 2015, 50, 1589–1597. [Google Scholar] [CrossRef]
- Cheng, M.C.; Tsai, T.Y.; Pan, T.M. Anti-obesity activity of the water extract of Lactobacillus paracasei subsp. paracasei NTU 101 fermented soy milk products. Food Funct. 2015, 6, 3522–3530. [Google Scholar]
- Zelaya, H.; Tsukida, K.; Chiba, E.; Marranzino, G.; Alvarez, S.; Kitazawa, H.; Agüero, G.; Villena, J. Immunobiotic Lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions. Int. Immunopharmacol. 2014, 19, 161–173. [Google Scholar] [CrossRef]
- Parker, R. Probiotic guideline for necrotizing enterocolitis prevention in very low-birth-weight neonates. Adv. Neonatal Care 2014, 14, 88–95. [Google Scholar] [CrossRef]
- Slyepchenko, A.; Carvalho, A.F.; Cha, D.S.; Kasper, S.; McIntyre, R.S. Gut emotions—Mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders. CNS Neurol. Disord.-Drug Targets 2014, 13, 1770–1786. [Google Scholar] [CrossRef]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef]
- Steenbergen, L.; Sellaro, R.; Hemert, S.; Bosch, J.A.; Colzato, L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). The European Union Summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J. 2013, 3129, 1–250. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013b update). EFSA J. 2013, 15, 1–108. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017 update). EFSA J. 2017, 15, 1–177. [Google Scholar]
- Galdeano, C.M.; Perdigón, G. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J. Appl. Microbiol. 2004, 97, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Kosin, B.; Rakshit, S.K. Criteria for production of probiotics. Food Technol. Biotechnol. 2006, 44, 371–379. [Google Scholar]
- Lee, Y.K. Selection and maintenance of probiotic microorganisms. In Handbook of Probiotics and Prebiotics; Lee, Y.K., Salminen, S., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 177–187. [Google Scholar]
- Saarela, M.; Mogensen, G.; Fondén, R.; Mättö, J.; Mattila-Sandholm, T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 2000, 84, 197–215. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef] [Green Version]
- Schachtsiek, M.; Hammes, W.P.; Hertel, C. Characterization of Lactobacillus coryniformis DSM 20001T surface protein CPF mediating coaggregation with and aggregation among pathogens. Appl. Environ. Microbiol. 2004, 70, 7078–7085. [Google Scholar] [CrossRef] [Green Version]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Cremonini, F.; di Caro, S.; Nista, E.C.; Bartolozzi, F.; Capelli, G.; Gasbarrini, G.; Gasbarrini, A. Meta-analysis: The effect of probiotic administration on antibiotic associated diarrhea. Aliment. Pharmacol. Ther. 2002, 16, 1461–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, B.C.; Supina, A.L.; Vohra, S. Probiotics for pediatric antibiotic-associated diarrhea: A meta-analysis of randomized placebo-controlled trials. CMAJ 2006, 175, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Schoster, A.; Kokotovic, B.; Permin, A.; Pedersen, P.D.; Dal Bello, F.; Guardabassi, L. In Vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe 2013, 20, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Jimmy Saint-Cyr, M.; Haddad, N.; Taminiau, B.; Poezevara, T.; Quesne, S.; Amelot, M.; Daube, G.; Chemaly, M.; Dousset, X.; Guyard-Nicodème, M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 2017, 247, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Adams, M.; La Ragione, R.M.; WoodWard, M.J. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet. Microbiol. 2017, 199, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Chingwaru, W.; Vidmar, J. Potential of Zimbabwean commercial probiotic products and strains of Lactobacillus plantarum as prophylaxis and therapy against diarrhea caused by Escherichia coli in children. Asian Pac. J. Trop. Med. 2017, 10, 57–63. [Google Scholar] [CrossRef]
- Hussain, S.A.; Patil, G.R.; Reddi, S.; Yadav, V.; Pothuraju, R.; Singh, R.R.B.; Kapila, S. Aloe vera (Aloe barbadensis Miller) supplemented probiotic lassi prevents Shigella infiltration from epithelial barrier into systemic blood flow in mice model. Microb. Pathog. 2017, 102, 143–147. [Google Scholar] [CrossRef]
- Sikorska, H.; Smoragiewicz, W. Role of probiotics in the prevention and treatment of methicillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents 2013, 42, 475–481. [Google Scholar] [CrossRef]
- De Montijo-Prieto, S.; Moreno, E.; Bergillos-Meca, T.; Lasserrot, A.; Ruiz-López, M.; Ruiz-Bravo, A.; Jimenez-Valera, M. A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res. Microbiol. 2015, 166, 626–632. [Google Scholar] [CrossRef]
- Zommiti, M.; Almohammed, H.; Ferchichi, M. Purification and Characterization of a Novel Anti-Campylobacter Bacteriocin Produced by Lactobacillus curvatus DN317. Probiotics Antimicrob. Proteins 2016, 8, 191–201. [Google Scholar] [CrossRef]
- Zommiti, M.; Connil, N.; Ben Hamida, J.; Ferchichi, M. Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca. Probiotics Antimicrob. Proteins 2017, 9, 415–424. [Google Scholar] [CrossRef]
- Zommiti, M.; Cambronel, M.; Maillot, O.; Barreau, M.; Sebei, K.; Feuilloley, M.; Ferchichi, M.; Connil, N. Evaluation of Probiotic Properties and Safety of Enterococcus faecium Isolated from Artisanal Tunisian Meat “Dried Ossban”. Front. Microbiol. 2018, 9, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zommiti, M.; Bouffartigues, E.; Maillot, O.; Barreau, M.; Szunerits, S.; Sebei, K.; Feuilloley, M.; Connil, N.; Ferchichi, M. In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated from Artisanal Tunisian Meat “Dried Ossban”. Front. Microbiol. 2018, 9, 2607. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, P.K.; Velampati, R.H.P.; Tipparaju, S.L. Probiotics: A novel approach in improving the values of human life. Int. J. Pharm. Pharm. Sci. 2014, 6, 41–43. [Google Scholar]
- Vandenbergh, P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 1993, 12, 221–238. [Google Scholar] [CrossRef]
- Guillot, J.F. Probiotic feed additives. J. Vet. Pharmacol. Ther. 2003, 26, 52–55. [Google Scholar]
- Isolauri, E.; Sutas, Y.; Kankaanpaa, P.; Arvilommi, H.; Salminen, S. Probiotics: Effects on immunity. Am. J. Clin. Nutr. 2001, 73, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Brandao, R.L.; Castro, I.M.; Bambirra, E.A.; Amaral, S.C.; Fietto, L.G.; Tropia, M.J.M. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1998, 64, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Agerholm-Larsen, L.; Raben, A.; Haulrik, N.; Hansen, A.S.; Manders, M.; Astrup, A. Effect of 8 weentake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 2000, 54, 288–297. [Google Scholar] [CrossRef]
- Kadooka, Y.; Sato, M.; Imaizumi, K.; Ogawa, A.; Ikuyama, K.; Akai, Y.; Okano, M.; Kagoshima, M.; Tsuchida, T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010, 64, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Larsen, N.; Vogensen, F.K.; Gøbel, R.J.; Michaelsen, K.F.; Forssten, S.D.; Lahtinen, S.J.; Jakobsen, M. Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin. Nutr. 2013, 32, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Kadooka, Y.; Sato, M.; Ogawa, A.; Miyoshi, M.; Uenishi, H.; Ogawa, H.; Ikuyama, K.; Kagoshima, M.; Tsuchida, T. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br. J. Nutr. 2013, 110, 1696–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharafedtinov, K.K.; Plotnikova, O.A.; Alexeeva, R.I.; Sentsova, T.B.; Songisepp, E.; Stsepetova, J.; Smidt, I.; Mikelsaar, M. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—A randomized double-blind placebo-controlled pilot study. Nutr. J. 2013, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Zarrati, M.; Salehi, E.; Mofid, V.; Hossein Zadeh-Attar, M.J.; Nourijelyani, K.; Bidad, K.; Shidfar, F. Relationship between probiotic consumption and IL-10 and IL-17 secreted by PBMCs in overweight and obese people. Iran. J. Allergy Asthma Immunol. 2013, 12, 404–406. [Google Scholar] [PubMed]
- Zarrati, M.; Shidfar, F.; Nourijelyani, K.; Mofid, V.; Zadeh-Attar, M.J.H.; Bidad, K.; Najafi, F.; Gheflati, Z.; Chamari, M.; Salehi, E. Lactobacillus acidophilus La5, Bifidobacterium BB12, and Lactobacillus casei DN001 modulate gene expression of subset specific transcription factors and cytokines in peripheral blood mononuclear cells of obese and overweight people. BioFactors 2013, 39, 633–643. [Google Scholar] [CrossRef]
- Zarrati, M.; Salehi, E.; Nourijelyani, K.; Mofid, V.; Zadeh, M.J.; Najafi, F.; Ghaflati, Z.; Bidad, K.; Chamari, M.; Karimi, M.; et al. Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet. J. Am. Coll. Nutr. 2014, 33, 417–425. [Google Scholar] [CrossRef]
- Rajkumar, H.; Mahmood, N.; Kumar, M.; Varikuti, S.R.; Challa, H.R.; Myakala, S.P. Effect of probiotic (VSL#3) and W-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediat. Inflamm. 2014, 2014, 348959. [Google Scholar]
- Brahe, L.K.; Le Chatelier, E.; Prifti, E.; Pons, N.; Kennedy, S.; Blædel, T.; Håkansson, J.; Dalsgaard, T.K.; Hansen, T.; Pedersen, O. Dietary modulation of the gut microbiota—A randomised controlled trial in obese postmenopausal women. Br. J. Nutr. 2015, 114, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Ivey, K.L.; Hodgson, J.M.; Kerr, D.A.; Thompson, P.L.; Stojceski, B.; Prince, R.L. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V.; Akbarian-Moghari, A. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J. Dairy Sci. 2011, 94, 3288–3294. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012, 28, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Amaretti, A.; Leonardi, A.; Boschetti, E.; Danesi, F.; Matteuzzi, D.; Roncaglia, L.; Raimondi, S.; Rossi, M. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl. Microbiol. Biotechnol. 2013, 97, 8273–8281. [Google Scholar] [CrossRef]
- Mohamadshahi, M.; Veissi, M.; Haidari, F.; Javid, A.Z.; Mohammadi, F.; Shirbeigi, E. Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: A randomized controlled clinical trial. J. Res. Med. Sci. 2014, 19, 531–536. [Google Scholar] [PubMed]
- Hariri, M.; Salehi, R.; Feizi, A.; Mirlohi, M.; Ghiasvand, R.; Habibi, N. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: Effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 2015, 10, 52. [Google Scholar] [CrossRef]
- Tonucci, L.B.; Olbrich Dos Santos, K.M.; Licursi de Oliveira, L.; Rocha Ribeiro, S.M.; Martino, H.S.D. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clin. Nutr. 2015, 36, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Hashiguchi, M.; Shiga, T.; Tamura, H.O.; Mochizuki, M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE 2015, 10, e0139795. [Google Scholar] [CrossRef]
- Sun, J.; Buys, N. Effects of probiotics consumption on lowering lipids and CVD risk factors: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. 2015, 47, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.L.; Martoni, C.J.; Prakash, S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: A randomized controlled trial. Eur. J. Clin. Nutr. 2012, 66, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C.; Chang, C.K.; Chan, S.C.; Shieh, J.S.; Chiu, C.K.; Duh, P.D. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol. Asian Pac. J. Trop. Biomed. 2014, 4, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Le, B.; Yang, S.H. Isolation of Weissella strains as potent probiotics to improve antioxidant activity of salted squid by fermentation. J. Appl. Biol. Chem. 2018, 61, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, A.; Szajewska, H. Systematic review of randomised controlled trials: Probiotics for functional constipation. World J. Gastroenterol. 2010, 16, 69–75. [Google Scholar] [PubMed]
- Dimidi, E.; Christodoulides, S.; Fragkos, K.C.; Scott, S.M.; Whelan, K. The effect of probiotics on functional constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Eskesen, D.; Jespersen, L.; Michelsen, B.; Whorwell, P.; Müller-Lissner, S.; Morberg, C.M. Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12(R), on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: A randomised, double-blind, placebo-controlled, parallel-group trial. Br. J. Nutr. 2015, 114, 1638–1646. [Google Scholar] [CrossRef] [Green Version]
- Kotowska, M.; Albrecht, P.; Szajewska, H. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea in children: A randomized double-blind placebo-controlled trial. Aliment. Pharmacol. Ther. 2005, 21, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Niv, E.; Naftali, T.; Hallak, R.; Vaisman, N. The efficacy of Lactobacillus reuteri ATCC 55730 in the treatment of patients with irritable bowel syndrome–A double blind, placebo-controlled, randomized study. Clin. Nutr. 2005, 24, 925–931. [Google Scholar] [CrossRef]
- Sood, A.; Midha, V.; Makharia, G.K.; Ahuja, V.; Singal, D.; Goswami, P.; Tandon, R.K. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. Hepatol. 2009, 7, 1202–1209. [Google Scholar] [PubMed]
- Behnsen, J.; Deriu, E.; Sassone-Corsi, M.; Raffatellu, M. Probiotics: Properties, examples, and specific applications. Cold Spring Harb. Perspect. Med. 2013, 3, a010074. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, L.; Chang, Z.; Wang, S.; Wen, B.; Yin, P.; Liu, D.; Chen, B.; Zhang, J. Genome sequence of the bacterium Bifidobacterium longum strain CMCC P0001, a probiotic strain used for treating gastrointestinal disease. Genome Announc. 2013, 1, e00716-13. [Google Scholar] [CrossRef] [Green Version]
- AlFaleh, K.; Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid. Based Child Health 2014, 9, CD005496. [Google Scholar] [CrossRef]
- Goldenberg, J.Z.; Lytvyn, L.; Steurich, J.; Parkin, P.; Mahant, S.; Johnston, B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2015, CD004827. [Google Scholar] [CrossRef]
- Szajewska, H.; Skorka, A.; Ruszczynski, M.; Gieruszczak-Białek, D. Meta-analysis: Lactobacillus GG for treating acute gastroenteritis in children–updated analysis of randomised controlled trials. Aliment. Pharmacol. Ther. 2013, 38, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Raksha Rao, K.; Vipin, A.V.; Hariprasad, P.; Anu Appaiah, K.A.; Venkateswaran, G. Biological detoxification of aflatoxin B1 by bacillus licheniformis CFR1. Food Control. 2017, 71, 234–241. [Google Scholar] [CrossRef]
- Ianiro, G.; Rizzatti, G.; Plomer, M.; Lopetuso, L.; Scaldaferri, F.; Franceschi, F.; Cammarota, G.; Gasbarrini, A. Bacillus clausii for the treatment of acute diarrhea in children: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 1074. [Google Scholar] [CrossRef] [Green Version]
- Sung, V.; D’Amico, F.; Cabana, M.D.; Chau, K.; Koren, G.; Savino, F.; Szajewska, H.; Deshpande, G.; Dupont, C.; Indrio, F.; et al. Lactobacillus reuteri to treat infant colic: A meta-analysis. Pediatrics 2018, 141, e20171811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudha, M.R.; Jayanthi, N.; Pandey, D.C.; Verma, A.K. Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: A double blind placebo controlled study. Benef. Microb. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Clancy, S.M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 2003, 103, 582–587. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Scientific Opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1763. [Google Scholar]
- Roškar, I.; Švigelj, K.; Štempelj, M.; Volfand, J.; Štabuc, B.; Malovrh, Š.; Rogelj, I. Effects of a probiotic product containing Bifidobacterium animalis subsp. animalis IM386 and Lactobacillus plantarum MP2026 in lactose intolerant individuals: Randomized, placebo-controlled clinical trial. J. Funct. Foods 2017, 35, 1–8. [Google Scholar]
- Peng, Y.; Li, A.; Yu, L.; Qin, G. The role of probiotics in prevention and treatment for patients with allergic rhinitis: A systematic review. Am. J. Rhinol. Allergy 2015, 29, 292–298. [Google Scholar] [CrossRef]
- Guvenc, I.A.; Muluk, N.B.; Mutlu, F.S.; Eski, E.; Altintoprak, N.; Oktemer, T.; Cingi, C. Do probiotics have a role in the treatment of allergic rhinitis?: A comprehensive systematic review and meta analysis. Am. J. Rhinol. Allergy 2016, 30, 157–175. [Google Scholar] [CrossRef]
- Khalesi, S.; Sun, J.; Buys, N.; Jayasinghe, R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014, 64, 897–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendijani, F.; Akbari, V. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Weston, S.; Halbert, A.; Richmond, P.; Prescott, S.L. Effects of probiotics on atopic dermatitis: A randomized controlled trial. Arch. Dis. Child. 2005, 90, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Gøbel, R.J.; Larsen, N.; Mølgaard, C.; Jakobsen, M.; Michaelsen, K.F. Probiotics to young children with atopic dermatitis: A randomized placebo-controlled trial. Int. J. Prob. Preb. 2010, 5, 53–60. [Google Scholar]
- Wickens, K.; Stanley, T.V.; Mitchell, E.A.; Barthow, C.; Fitzharris, P.; Purdie, G.; Siebers, R.; Black, P.N.; Crane, J. Early supplementation with Lactobacillus rhamnosus HN001 reduces eczema prevalence to 6 years: Does it also reduce atopic sensitization? Clin. Exp. Allergy 2013, 43, 1048–1057. [Google Scholar] [CrossRef]
- Österlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus supplementation for diarrhea related to chemotherapy of colorectal cancer: A randomized study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Chitapanarux, I.; Chitapanarux, T.; Traisathit, P.; Kudumpee, S.; Tharavichitkul, E.; Lorvidhaya, V. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat. Oncol. 2010, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Qin, H.; Yang, Z.; Xia, Y.; Liu, W.; Yang, J.; Jiang, Y.; Zhang, H.; Wang, Y.; Zheng, Q. Randomized clinical trial: The effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery—A double-blind study. Aliment. Pharmcol. Ther. 2011, 33, 50–63. [Google Scholar] [CrossRef]
- Shida, K.; Nomoto, K. Probiotics as efficient immunopotentiators: Translational role in cancer prevention. Indian J. Med. Res. 2013, 138, 808–814. [Google Scholar]
- Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Santarmaki, V.; Aindelis, G.; Tompoulidou, E.; Lamprianidou, E.E.; Saxami, G.; Ypsilantis, P.; Lampri, E.S.; Simopoulos, C.; et al. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells. PLoS ONE 2016, 11, e0147960. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Shah, N.P. Probiotics—From Metchnikoff to bioactives. Int. Dairy J. 2008, 18, 714–728. [Google Scholar] [CrossRef]
- Tarrah, A.; Da Silva Duarte, V.; de Castilhos, J.; Pakroo, S.; Junior, W.; Luchese, R.; Guerra, A.F.; Rossi, R.C.; Ziegler, D.R.; Corich, V.; et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. J. Funct. Foods 2019, 54, 489–497. [Google Scholar] [CrossRef]
- Marcone, V.; Rocca, G.; Lichtner, M.; Calzolari, E. Long-term vaginal administration of Lactobacillus rhamnosus as a complementary approach to management of bacterial vaginosis. Int. J. Gynecol. Obstet. 2010, 110, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Ehrström, S.; Daroczy, K.; Rylander, E.; Samuelsson, C.; Johannesson, U.; Anzén, B.; Påhlson, C. Lactic acid bacteria colonization and clinical outcome after probiotic supplementation in conventionally treated bacterial vaginosis and vulvovaginal candidiasis. Microbes Infect. 2010, 12, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Karadja, E.; De Seta, F. Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: A double blind, placebo controlled, randomised clinical trial. Benef. Microbes 2018, 10, 19–26. [Google Scholar] [CrossRef]
- Cohen, C.; Wierzbicki, M.R.; French, A.L. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.-F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Cremon, C.; Barbaro, M.R.; Ventura, M.; Barbara, G. Pre- and probiotic overview. Curr. Opin. Pharmacol. 2018, 43, 87–92. [Google Scholar] [CrossRef]
- Cenit, M.; Olivares, M.; Codoñer-Franch, P.; Sanz, Y. Intestinal microbiota and celiac disease: Cause, consequence or co-evolution? Nutrients 2015, 7, 6900–6923. [Google Scholar] [CrossRef] [Green Version]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Leiva-Gea, I.; Sánchez-Alcoholado, L.; Martín-Tejedor, B.; CastellanoCastillo, D.; Moreno-Indias, I.; Urda-Cardona, A.; Tinahones, F.J.; Fernández-García, J.C.; Queipo-Ortuño, M.I. Gut microbiota differs in composition and functionality between children with Type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care 2018, 41, 2385–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, T.S.B.; Raes, J.; Bork, P. The human gut microbiome: From association to modulation. Cell 2018, 172, 1198–1215. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Li, S.; Gan, R.Y.; Zhao, C.N.; Meng, X.; Li, H.B. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit. Rev. Food Sci. Nutr. 2019, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.L.; Kim, S.M.; McCabe, L.R.; Weaver, C.M. Intestinal microbiota and bone health: The role of prebiotics, probiotics, and diet. In Bone Toxicology; Springer: Cham, Switzerland, 2017; pp. 417–443. [Google Scholar]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Somboonpanyakul, P. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum. Process. Biochem. 2018, 70, 9–19. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Shokryazdan, P.; Faseleh Jahromi, M.; Liang, J.B.; Ho, Y.W. Probiotics: From Isolation to Application. J. Am. Coll. Nutr. 2017, 36, 666–676. [Google Scholar] [CrossRef]
- Lebeer, S.; Bron, P.A.; Marco, M.L.; Van Pijkeren, J.P.; O’Connell Motherway, M.; Hill, C.; Pot, B.; Ross, S.; Klaenhammer, T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.K.; Sarker, M.; Wan, D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res. Int. 2018, 2018, 8063647. [Google Scholar] [CrossRef] [Green Version]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef]
- Cortés-Zavaleta, O.; López-Malo, A.; Hernández-Mendoza, A.; García, H.S. Antifungal activity of Lactobacilli and its relationship with 3-phenyllactic acid production. Int. J. Food Microbiol. 2014, 173, 30–35. [Google Scholar] [CrossRef]
- Roy, A.; Chaudhuri, J.; Sarkar, D.; Ghosh, P.; Chakraborty, S. Role of enteric supplementation of probiotics on late-onset sepsis by Candida species in preterm low birth weight neonates: A randomized, double blind, placebo-controlled trial. N. Am. J. Med. Sci. 2014, 6, 50–57. [Google Scholar] [PubMed] [Green Version]
- Vilela, S.F.; Barbosa, J.O.; Rossoni, R.D.; Santos, J.D.; Prata, M.C.; Anbinder, A.L.; Jorge, A.O.; Junqueira, J.C. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 2015, 6, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cats, A.; Kuipers, E.J.; Bosschaert, M.A.; Pot, R.G.; Vandenbroucke-Grauls, C.M.; Kusters, J.G. Effect of frequent consumption of Lactobacillus casei—Containing milk drink in Helicobacter pylori-colonized subjects. Aliment. Pharmacol. Ther. 2003, 17, 429–435. [Google Scholar] [CrossRef]
- Kaur, B.; Garg, N.; Sachdev, A.; Kumar, B. Effect of the oral intake of probiotic Pediococcus acidilactici BA28 on Helicobacter pylori causing peptic ulcer in C57BL/6 mice models. Appl. Biochem. Biotechnol. 2014, 172, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wan, C.; Xie, Q.; Huang, R.; Tao, X.; Shah, N.P.; Wei, H. Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY 2013 against such infection. J. Dairy Sci. 2016, 99, 970–981. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Huang, Y.; Wang, L.; Malfertheiner, P. Systematic review and meta-analysis: Multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United Eur. Gastroenterol. J. 2016, 4, 546–561. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Navarro, K.; Sanhueza, E.; Pineda, S.; Pastene, E.; Quezada, M.; Henriquez, K.; Karlyshev, A.; Villena, J.; Gonzalez, C. Characterization of Lactobacillus fermentum UCO-979C, a probiotic strain with a potent anti-Helicobacter pylori activity. Electron. J. Biotechnol. 2017, 25, 75–83. [Google Scholar] [CrossRef]
- Campana, R.; van Hemert, S.; Baffone, W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 2017, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Krzyściak, W.; Kościelniak, D.; Papież, M.; Vyhouskaya, P.; ZagórskaŚwieży, K.; Kołodziej, I.; Bystrowska, B.; Jurczak, A. Effect of a lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients 2017, 9, 1242. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Varela, L.; Gueimonde, M.; Ruas-Madiedo, P. Probiotics for prevention and treatment of Clostridium difficile infection. In Updates on Clostridium Difficile in Europe; Springer: Cham, Switzerland, 2018; pp. 161–176. [Google Scholar]
- Waigankar, S.S.; Patel, V. Role of probiotics in urogenital healthcare. J. Mid-Life Health 2011, 2, 5–10. [Google Scholar] [CrossRef]
- Hanson, L.; Vusse, L.V.; Jerme, M.; Abad, C.L.; Safdar, N. Probiotics for treatment and prevention of urogenital infections in women: A systematic review. J. Midwifery Womens Health 2016, 61, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.A.; Robinette, A.; Montgomery, M.; Almonte, A.; CuUvin, S.; Lonks, J.R.; Chapin, K.C.; Kojic, E.M.; Hardy, E.J. Extra genital infections caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A review of the literature. Infect. Dis. Obstet. Gynecol. 2016, 5758387, 17. [Google Scholar]
- Huang, M.C.J.; Tang, J. Probiotics in personal care products. Microbiol. Discov. 2015, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Marini, A.; Krutmann, J. Pre- and probiotics for human skin. In Handbook of Diet, Nutrition and the Skin; Victor., R.P., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 318–331. [Google Scholar]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Ingen-Housz-Oro, S.; Del Giudice, P.; Chosidow, O. Common skin bacterial infections. In Antibiotic and Antifungal Therapies in Dermatology; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–20. [Google Scholar]
- Olaniyi, R.; Pozzi, C.; Grimaldi, L.; Bagnoli, F. Staphylococcus aureus-associated skin and soft tissue infections: Anatomical localization, epidemiology, therapy and potential prophylaxis. In Staphylococcus aureus; Bagnoli, F., Rappuoli, R., Grandi, G., Eds.; Springer: Cham, Switzerland, 2016; pp. 199–227. [Google Scholar]
- Kober, M.M.; Bowe, W.P. The effect of probiotics on immune regulation, acne, and photoaging. Int. J. Women’s Dermatol. 2015, 1, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinque, B.; Palumbo, P.; La Torre, C.; Melchiorre, E.; Corridoni, D.; Miconi, G.; Di Marzio, L.; Cifone, M.G.; Giuliani, M. Probiotics in aging skin. In Textbook of Aging Skin; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1315–1327. [Google Scholar]
- Ouwehand, A.C.; Lahtinen, S.; Tiihonen, K. The potential of probiotics and prebiotics for skin health. In Textbook of Aging Skin; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1299–1313. [Google Scholar]
- Meng, X.; Li, S.; Li, Y.; Gan, R.Y.; Li, H.B. Gut Microbiota’s Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018, 10, 1457. [Google Scholar] [CrossRef] [Green Version]
- Lew, L.C.; Liong, M.T. Bioactives from probiotics for dermal health: Functions and benefits. J. Appl. Microbiol. 2013, 114, 1241–1253. [Google Scholar] [CrossRef]
- Kwon, J.E.; Lim, J.; Bang, I.; Kim, I.; Kim, D.; Kang, S.C. Fermentation product with new equol-producing Lactobacillus paracasei as a probiotic like product candidate for prevention of skin and intestinal disorder. J. Sci. Food Agric. 2019, 99, 4200–4210. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis. Annu. Rev. Med. 2006, 57, 1–18. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286. [Google Scholar] [CrossRef]
- Chen, X.; Yang, G.; Song, J.H.; Xu, H.; Li, D.; Goldsmith, J.; Zeng, H.; Parsons-Wingerter, P.A.; Reinecker, H.-C.; Kelly, C.P. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, L.; Bouter, K.; De Vos, W.; Borody, T.; Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013, 145, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Lo Vecchio, A.; Cohen, M.B. Fecal microbiota transplantation for Clostridium difficile infection: Benefits and barriers. Curr. Opin. Gastroenterol. 2014, 30, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Aroniadis, O.C.; Brandt, L.J. Fecal microbiota transplantation: Past, present and future. Curr. Opin. Gastroenterol. 2013, 29, 79–84. [Google Scholar] [CrossRef]
- Khoruts, A.; Weingarden, A.R. Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunol. Lett. 2014, 162, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1700-year-old fecal microbiota transplantation? Am. J. Gastroenterol. 2012, 107, 1755. [Google Scholar] [CrossRef]
- Eiseman, B.; Silen, W.; Bascom, G.S.; Kauvar, A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958, 44, 854–859. [Google Scholar]
- Cammarota, G.; Ianiro, G.; Gasbarrini, A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: A systematic review. J. Clin. Gastroenterol. 2014, 48, 693–702. [Google Scholar] [CrossRef]
- Cammarota, G.; Masucci, L.; Ianiro, G.; Bibo, S.; Dinoi, G.; Costamagna, G.; Sanguinetti, M.; Gasbarrini, A. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 2015, 41, 835–843. [Google Scholar] [CrossRef]
- Drekonja, D.; Reich, J.; Gezahegn, S.; Greer, N.; Shaukat, A.; MacDonald, R.; Rutks, I.; Timothy, J.W. Fecal microbiota transplantation for Clostridium difficile infection: A systematic review. Ann. Intern. Med. 2015, 162, 630–638. [Google Scholar] [CrossRef]
- Lee, C.H.; Steiner, T.; Petrof, E.O.; Smieja, M.; Roscoe, D.; Nematallah, A.; Weese, J.S.; Collins, S.; Moayeddi, P.; Crowther, M.; et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: A randomized clinical trial. JAMA 2016, 315, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Smieja, M.; Roscoe, D.; Nematallah, A.; Weese, J.S.; Collins, S.; Paul, M.; Crowther, M.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varier, R.U.; Biltaji, E.; Smith, K.J.; Roberts, M.S.; Jensen, M.K.; LaFleur, J.; Nelson, R.E. Cost-effectiveness analysis of fecal microbiota transplantation for recurrent C. difficile infection. Infect. Control. Hosp. Epidemiol. 2015, 36, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Waye, A.; Atkins, K.; Kao, D. Cost averted with timely fecal microbiota transplantantion in the management of recurrent Clostridium difficile infection in Alberta, Canada. J. Clin. Gastroenterol. 2016, 50, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Veereman, G.; van der Werff Ten Bosch, J.; Goossens, A.; Pierard, D.; Samsom, J.N.; Escher, J.C. Fecal microbial transplantation in a one-year-old girl with early onset colitis-caution advised. J. Ped. Gastroenterol. Nutr. 2014. [Epub ahead of print]. [Google Scholar] [CrossRef]
- Biliński, J.; Grzesiowski, P.; Muszyński, J.; Wróblewska, M.; Mądry, K.; Robak, K.; Dzieciątkowski, T.; Wiktor-Jedrzejczak, W.; Basak, G.W. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: Preliminary report performed in an immunocompromised host. Arch. Immunol. Et Ther. Exp. 2016, 64, 255–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, D.T. Curbing our enthusiasm for fecal transplantation in ulcerative colitis. Am. J. Gastroenterol. 2013, 108, 1631–1633. [Google Scholar] [CrossRef]
- Quera, R.; Espinoza, R.; Estay, C.; Rivera, D. Bacteremia as an adverse event of fecal microbiota transplantation in a patient with Crohn’s disease and recurrent Clostridium difficile infection. J. Crohn’s Colitis 2014, 8, 252–253. [Google Scholar] [CrossRef]
- Vrieze, A.; de Groot, P.F.; Kootte, R.S.; Knaapen, M.; van Nood, E.; Nieuwdorp, M. Fecal transplant: A safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract. Res. Clin. Gastroenterol. 2013, 27, 127–137. [Google Scholar] [CrossRef]
- Human Microbiome Project, C. A framework for human microbiome research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nat. Cell Biol. 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, S.; Gras-Leguen, C.; Le Vacon, F.; Potel, G.; De La Cochetiere, M.F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 2013, 21, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Lozupone, C.A.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Hollister, E.; Gao, C.; Versalovic, J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014, 146, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Keeney, K.M.; Yurist-Doutsch, S.; Arrieta, M.C.; Finlay, B.B. Effects of antibiotics on human microbiota and subsequent disease. Ann. Rev. Microbiol. 2014, 68, 217–235. [Google Scholar] [CrossRef]
- Lagier, J.C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasquez-Manoff, M. Gut microbiome: The peacekeepers. Nature 2015, 518, S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.C.; Amaral, G.R.; Campeão, M.; Edwards, R.A.; Polz, M.F.; Dutilh, B.E.; Ussery, D.W.; Sawabe, T.; Swings, J.; Thompson, F.L. Microbial taxonomy in the post-genomic era: Rebuilding from scratch? Arch. Microbiol. 2015, 197, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.; Wang, S.; Mora, J.R.; et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149, 1578–1593. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with neuro-developmental disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef] [Green Version]
- Maurice, C.F.; Haiser, H.J.; Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013, 152, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Hao, Q.; Dong, B.R.; Wu, T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015, 2, CD006895. [Google Scholar] [CrossRef]
- King, S.; Glanville, J.; Sanders, M.E.; Fitzgerald, A.; Varley, D. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: A systematic review and meta-analysis. Br. J. Nutr. 2014, 112, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, M.J.; Gao, Q.; Yang, J.F.; Yang, L.; Pang, X.L.; Jiang, X.J. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018, 97, e9679. [Google Scholar] [CrossRef] [PubMed]
- Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Hungin, A.P.S.; Mitchell, C.R.; Whorwell, P.; Mulligan, C.; Cole, O.; Agréus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; de Foy, J.-P. Systematic review: Probiotics in the management of lower gastrointestinal symptoms—An updated evidence-based international consensus. Aliment. Pharmacol. Ther. 2018, 47, 1054–1070. [Google Scholar] [CrossRef] [Green Version]
- Kailasapathy, K.; Chin, J.C. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Evivie, S.E. Preliminary studies on pharmaceutical microencapsulation for symbiotic application. J. Appl. Nat. Sci. 2013, 5, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Hekmat, S.; Reid, G. Sensory properties of probiotic yogurt is comparable to standard yogurt. Nutr. Res. 2006, 26, 163–166. [Google Scholar] [CrossRef]
- Aragon-Alegro, L.C.; Alarcon Alegro, J.H.; Roberta Cardarelli, H.; Chiu, M.C.; Saad, S.M.I. Potentially probiotic and synbiotic chocolate mousse. LWT Food Sci. Technol. 2007, 40, 669–675. [Google Scholar] [CrossRef]
- Rodrigues, D.; Rocha-Santos, T.A.P.; Pereira, C.I.; Gomes, A.M.; Malcata, F.X.; Freitas, A.C. The potential effect of FOS and inulin upon probiotic bacterium performance in curdled milk matrices. LWT Food Sci. Technol. 2011, 44, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.B.; Jurkiewicz, C.H. Influence of inulin and acacia gum on the viability of probiotic bacteria in synbiotic fermented milk. Braz. J. Food Technol. 2009, 12, 138–144. [Google Scholar] [CrossRef]
- Champagne, C.P. Some technological challenges in the addition of probiotic bacteria to foods. In Prebiotics and Probiotics Science and Technology; Charalampopoulos, D., Rastall, R.A., Eds.; Springer: New York, NY, USA, 2009; pp. 761–804. [Google Scholar]
- Antoine, J.M. Current challenges for probiotics in food. In Lactic Acid Bacteria: Microbiological and Functional Aspects; Lahtinne, S., Salminen, S., Von Wright, A., Ouwehand, A.C., Eds.; CRC Press: London, UK, 2011; pp. 213–226. [Google Scholar]
- Dos Santos, F.B.; De Vos, W.M.; Teusink, B. Towards metageome-scale models for industrial applications–The case of lactic acid bacteria. Curr. Opin. Biotechnol. 2013, 24, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.A. Review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Crit. Rev. Biotechnol. 2017, 37, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Castellano, V.; Martínez-Larrañaga, M.R. Regulation and guidelines of probiotics and prebiotics. In Probiotics and Prebiotics in Food, Nutrition and Health; Ötles, S., Ed.; CRC Press, LLC Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 91–113. ISBN 978-1-4665-8623-9. [Google Scholar]
- Patel, A.; Shah, N.; Prajapati, J.B. Clinical application of probiotics in the treatment of Helicobacter pylori infection-a brief review. J. Microbiol. Immunol. Infec. 2014, 47, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snydman, D.R. The safety of probiotics. Clin. Infect. Dis. 2008, 46, S104–S111. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, F.A. commentary on the safety of probiotics. Gastroenterol. Clin. N. Am. 2012, 41, 869–876. [Google Scholar] [CrossRef]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Horwitch, C.A.; Furseth, H.A.; Larson, A.M.; Jones, T.L.; Olliffe, J.F.; Spach, D.H. Lactobacillemia in three patients with AIDS. Clin. Infect. Dis. 1995, 21, 1460–1462. [Google Scholar] [CrossRef]
- Besselink, M.G.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; Ramshorst, B.; Witteman, B.J.M.; et al. Probiotic prophylaxis in predicted severe acute pancreatitis: A randomised, double-blind, placebo controlled trial. Lancet 2008, 371, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Jarvinen, A. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin. Infect. Dis. 2006, 42, e35–e44. [Google Scholar] [CrossRef]
- Allen, S.J.; Jordan, S.; Storey, M.; Thornton, C.A.; Gravenor, M.; Garaiova, I.; Plummer, S.F.; Wang, D.; Morgan, G. Dietary supplementation with lactobacilli and bifidobacteria is well tolerated and not associated with adverse events during late pregnancy and early infancy. J. Nutr. 2010, 140, 483–488. [Google Scholar] [CrossRef]
- Fedorak, R.N.; Madsen, K.L. Probiotics and prebiotics in gastrointestinal disorders. Curr. Opin. Gastroenterol. 2004, 20, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.; Plummer, S.; Marchesi, J.; Mahenthiralingam, E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. Fems Microbiol. Lett. 2013, 349, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinleyici, E.C.; Kara, A.; Ozen, M.; Vandenplas, Y. Saccharomyces boulardii CNCM I-745 in different clinical conditions. Expert Opin. Biol. Ther. 2014, 14, 1593–1609. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, M.; Stanton, C. Probiotic bacteria: Legislative framework—Requirements to evidence basis. J. Nutr. 2007, 137, 850S–853S. [Google Scholar] [CrossRef] [PubMed]
- Kolaček, S.; Hojsak, I.; Berni Canani, R.; Guarino, A.; Indrio, F.; Orel, R.; Pot, B.; Shamir, R.; Szajewska, H.; Vandenplas, Y.; et al. Commercial probiotic products: A call for improved quality control. A position paper by the ESPGHAN working group for probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Degnan, F.H. The US food and drug administration and probiotics: Regulatory categorization. Clin. Infect. Dis. 2008, 46, S133–S136. [Google Scholar] [CrossRef]
- Salvetti, E.; O’Toole, P.W. When regulation challenges innovation: The case of the genus Lactobacillus. Trends Food Sci. Technol. 2017, 66, 187–194. [Google Scholar] [CrossRef]
- Foligné, B.; Daniel, C.; Pot, B. Probiotics from research to market: The possibilities, risks and challenges. Curr. Opin. Microbiol. 2013, 16, 284–292. [Google Scholar] [CrossRef]
- Baldi, A.; Arora, M. Regulatory categories of probiotics across the globe: A review representing existing and recommended categorization. Indian J. Med. Microbiol. 2015, 33, 2. [Google Scholar] [CrossRef]
- Amagase, H. Current marketplace for Probiotics: A Japanese perspective. Clin. Infect. Dis. 2008, 46, S73–S75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.; Salminen, S.; Verhagen, H.; Rowland, I.; Heimbach, J.; Bañares, S.; Young, T.; Nomoto, K.; LaLonde, M. Novel probiotics and prebiotics: Road to the market. Curr. Opin. Biotechnol. 2015, 32, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, Q.; Li, S.; Xiong, S.; Jiang, S.; Tan, Q.; Zhang, Z.; Zhu, D.; Wei, H. Microbiological quality and characteristics of probiotic products in China. J. Sci. Food Agric. 2014, 94, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, Q.; Zhou, H.; Deng, K.; Wang, X.; Meng, F.; Yang, S.; Wang, X.; Shah, N.P.; Wei, H. Assessment of commercial probiotic products in China for labelling accuracy and probiotic characterisation of selected isolates. Int. J. Dairy Technol. 2017, 70, 119–126. [Google Scholar] [CrossRef]
- Zoumpopoulou, G.; Kazou, M.; Alexandraki, V.; Angelopoulou, A.; Papadimitriou, K.; Pot, B.; Tsakalidou, E. Probiotics and prebiotics: An overview on recent trends. In Probiotics and Prebiotics in Animal Health and Food Safety Ham; Springer International Publishing: Basel, Switzerland, 2018; pp. 1–34. [Google Scholar]
- De Melo Pereira, G.V.; de Oliveira Coelho, B.; Júnior, A.I.M.; ThomazSoccol, V.; Soccol, C.R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef]
- Song, D.; Ibrahim, S.; Hayek, S. Recent application of probiotics in food and agricultural science. Probiotics 2015. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.K.; Wang, S.C.; Chiu, C.K.; Chen, S.-Y.; Chen, Z.-T.; Duh, P.-D. Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity. Asian Pac. J. Trop. Biomed. 2015, 5, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Klaenhammer, T.R.; de Vos, W.M. An incredible scientific journey. The evolutionary tale of the lactic acid bacteria. In The 10th LAB Symposium. Thirty Years of Research on Lactic Acid Bacteria; Ledeboer, A., Hugenholtz, J., Kok, J., Konings, W., Wouters, J., Eds.; 24 Media Labs: Rotterdam, UK, 2011; pp. 1–11. [Google Scholar]
- Wu, Q.; Tun, H.M.; Leung, F.C.C.; Shah, N.P. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci. Rep. 2014, 4, 4974. [Google Scholar] [CrossRef]
- Li, P.; Gu, Q.; Zhou, Q. Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against foodborne pathogens. J. Biotechnol. 2016, 238, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, F.; Tang, Y.; Luo, G.; Evivie, S.; Zhang, D.; Wang, N.; Li, W.; Huo, G. Complete Genome Sequence of Lactobacillus helveticus KLDS 18701, a probiotic strain producing bacteriocin. J. Biotechnol. 2015, 212, 90–91. [Google Scholar] [CrossRef] [Green Version]
- Galvez, A.; Abriouel, H.; Ben Omar, N.; Lucas, R. Microbial antagonists to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol. 2010, 21, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, S.E.; Dobrogosz, W.J. Antagonistic activities of lactic acid bacteria in food and feed fermentations. Fems Microbiol. Rev. 1990, 87, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, M.; Choiset, Y.; Dalgalarrondo, M.; Chobert, J.; Dousset, X.; Ivanova, I.; Haertle, T. Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int. J. Food Microbiol. 2003, 87, 63–73. [Google Scholar] [CrossRef]
- WHO. WHO’s First Ever Global Estimates of Foodborne Diseases Find Children under 5 Account for Almost One Third of Deaths; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Bian, X.; Huo, G.; Evivie, S.E.; Muhammad, Z.; Luo, G.-W.; Liang, H.-Z.; Wang, N.-N. In vitro assessment of antimicrobial potentials of Lactobacillus helveticus strains isolated from traditional cheese in sinkiang China against food-borne pathogens. Food Funct. 2015, 7, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Muhammad, Z.; Evivie, S.E.; Luo, G.-W.; Xu, M.; Huo, G.-C. Screening of antifungal potentials of Lactobacillus helveticus 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control. 2016, 66, 183–189. [Google Scholar] [CrossRef]
- Della Porta, G.; Castaldo, F.; Scognamiglio, M.; Paciello, L.; Parascandola, P.; Reverchon, E. Bacteria microencapsulation in PLGA micro devices by superficial emulsion extraction. J. Superf. Fluids. 2012, 63, 1–7. [Google Scholar] [CrossRef]
- Chakraborti, C.K. The Status of Synbiotics in Colorectal Cancer. Life Sci. Med. Res. 2011. Available online: https://www.semanticscholar.org/paper/The-Status-of-Synbiotics-in-Colorectal-Cancer-Chakraborti-Manjari/2d48222a2c51b9f89178ff6bbea7da77685e37a5 (accessed on 1 September 2020).
- Wang, J.; Tang, H.; Zhang, C.; Zhao, Y.; Derrien, M.; Rocher, E.; Vlieg, J.E.T.V.-H.; Strissel, K.J.; Zhao, L.; Obin, M.S.; et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. Int. Soc. Microb. Ecol. 2015, 9, 1–15. [Google Scholar] [CrossRef]
- Xu, J.; Lian, F.; Zhao, L.; Zhao, Y.; Chen, X.; Zhang, X.; Guo, Y.; Zhang, C.; Zhou, Q.; Xue, Z.; et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. Int. Soc. Microb. Ecol. 2015, 9, 552–562. [Google Scholar] [CrossRef]
- Panwar, H.; Calderwood, D.; Grant, I.R.; Grover, S.; Green, B.D. Lactobacilli possess inhibitory activity against dipeptidylpeptidase4 (DPP-4). Ann. Microbiol. 2015, 66, 505–509. [Google Scholar] [CrossRef]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Z.; Zhang, H. Microevolution of lactic acid bacteria-A review. Acta Microbiol. Sin. 2015, 55, 1371–1377. [Google Scholar]
- Paton, A.W.; Morona, R.; Paton, J.C. Bioengineered microbes in disease therapy. Trends Mol. Med. 2012, 18, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, F.; Dinan, T.G.; Ross, P.; Hill, C. Probiotics in transition. Clin. Gastroenterol. Hepatol. 2012, 10, 1220–1224. [Google Scholar] [CrossRef]
- Eeckhaut, V.; Ducatelle, R.; Sas, B.; Vermeire, S.; Van Immerseel, F. Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics. Gut 2014, 63, 367. [Google Scholar] [CrossRef]
Period | Discoveries and Highlights |
---|---|
1857–1864 | Pasteur discovered LAB as spoilage organisms |
1878 | LAB isolated from milk by Lister |
1889 | Tissier described Bifidobacterium |
1907 | Metchnikoff describes Bulgarian Bacillus associated with health |
1900 | Bacillus acidophilus described by Moro |
1930 | The commercialization of fermented milk-based on Lactobacillus casei isolate by Shirota |
1953 | The use of the term ‘probiotika’ referring to active compounds promoting health |
1965 | Definition of probiotics by Lilly and Stillwell: “Microbes stimulating growth of other microorganisms” |
1989 | Definition of probiotics by Fuller: “Beneficial microbial supplements” |
2001 | FAO/WHO: Definition of probiotics |
2003 | Era of Genomics: First genome sequencing of the probiotic Lactobacillus plantarum |
2005 | Relman and the use of high-throughput 16S amplicon sequencing to catalogue gut microbiome |
2016 | FDA/CBER guidelines for live biotherapeutics |
Microorganisms | As Pharmaceutical Products | As Food Additives | Qualified Presumption of Safety Microorganisms |
---|---|---|---|
Lactobacillus acidophilus | + | + | |
Lactobacillus amylovorus | + | + | |
Lactobacillus casei | + | + | + |
Lactobacillus gasseri | + | + | |
Lactobacillus helveticus | + | + | |
Lactobacillus johnsonii | + | + | |
Lactobacillus pentosus | + | + | |
Lactobacillus plantarum | + | + | |
Lactobacillus reuteri | + | + | |
Lactobacillus rhamnosus | + | + | + |
Bifidobacterium adolescentis | + | ||
Bifidobacterium animalis | + | + | |
Bifidobacterium bifidum | + | ||
Bifidobacterium breve | + | ||
Bifidobacterium infantis | + | ||
Bifidobacterium longum | + | + | |
Enterococcus faecium | + | ||
Lactococcus lactis | + | + | |
Streptococcus thermophilus | + | + | |
Bacillus clausii | + | + | |
Escherichia coli Nissle 1917 | + | ||
Saccharomyces cerevisiae (boulardii) | + | + |
Probiotic Microorganisms | Reported Specific Benefits in Indicated References | References |
---|---|---|
Overweight and Obesity | ||
Enterococcus faecium, Streptococcus thermophilus | Reduction in body weight, systolic Blood Pressure LDL-C (Low-Density Lipoprotein Cholesterol) and increase in fibrinogen levels. | [63] |
Lactobacillus gasseri SBT2055 | Significant decrease in body mass index (BMI), waist, abdominal Visceral Fat Area (VFA) and hip circumference. | [64] |
Lactobacillus salivarius Ls-33 | Increase in the ratios of Bacteroides, Prevotellae and Porphyromonas. | [65] |
Lactobacillus gasseri SBT2055 | Decrease in BMI and arterial blood pressure values. | [66] |
Lactobacillus plantarum | Reduction in BMI and arterial blood pressure levels. | [67] |
Lactobacillus acidophilus La5, Bifidobacterium lactis Bb12, Lactobacillus casei DN001 | Drastic modifications in gene expression in PBMCs as well as BMI, fat percentage and leptin values. | [68,69,70] |
Bifidobacterium, Streptococcus thermophilus | Improvement in lipid profile, insulin sensitivity, and decrease in CRP (C-reactive protein). | [71] |
Lactobacillus paracasei N19 | No effects have been noticed. | [72] |
Lactobacillus acidophilus La5, Bifidobacterium animalis Bb12 | Significant drop in fasting glucose concentration and increase in HOMA-IR (Homeostasis Model Assessment of Insulin Resistance). | [73] |
Type-2 diabetes and Dyslipidemia | ||
Lactobacillus acidophilus La5, Bifidobacterium lactis Bb12 | Total cholesterol (TC) and LDL-C improvement. | [74] |
Lactobacillus acidophilus La5, Bifidobacterium lactis Bb12 | Decreased fasting blood glucose and antioxidant status. | [75] |
Bifidobacterium animalis DSMZ 23733, Bifidobacterium breve DSMZ 23732 | Reduction of total cholesterol (TC). | [76] |
Lactobacillus acidophilus La-5, Bifidobacterium animalis BB-12 | Improved HDL-C levels and reduced LDL-C/HDL-C ratio. | [77] |
Lactobacillus plantarum A7 | Decreased methylation process, SOD (superoxide dismutase). | [78] |
Lactobacillus acidophilus La-5, Lactobacillus animalis BB-12 | Significant difference between groups concerning mean changes of HbA1c, TC, and LDL-C. | [79] |
Lactobacillus acidophilus, Lactobacillus reuteri NCIMB | Reduced LDL-C (Low-Density Lipoprotein Cholesterol) levels. | [80] |
Lactobacillus acidophilus | A significant reduction was found in LDL. | [81] |
Lactobacillus reuteri NCIMB 30242 | Reduced low-density lipoprotein cholesterol by 11.64% and total cholesterol by 9.14% in hypercholesterolemic adults | [82] |
Various strains of LAB | Control of blood cholesterol-Hypocholesterolemia-effect and hyperlipidemia | [83] |
Weissella koreensis | Significant anti-obesity effect | [84] |
Constipation | ||
Bifidobacterium animalis DN-173 010, Escherichia coli Nissle 1917 Lactobacillus casei Lcr35 | Treatment of functional constipation in adults. | [85] |
Bifidobacterium lactis | Improvement of the whole gut transit time, stool frequency, and stool consistency. | [86] |
Bifidobacterium animalis subsp. lactis, BB-12(R) | Manage symptoms of occasional constipation | [87] |
Antibiotic-Associated Diarrhea, Diarrheas, Colic, Ulcerative colitis | ||
Saccharomyces cerevisiae, Saccharomyces boulardii | Reduction of diarrhea rates in children receiving probiotic yeast (7.5%) compared to those receiving placebo (23%). | [88] |
Lactobacillus reuteri ATCC 55730 | Elimination of pain and symptoms in direct association with intestinal colic. | [89] |
Probiotic VSL#3 | Remission in 42.9% of patients in the probiotic group versus 15.7% in the placebo group. | [90] |
Escherichia coli Nissle 1917 | Treatment of inflammatory bowel disease. | [91] |
Bifidobacterium longum CMCC P0001 | Treatment of gastro-intestinal disorders. | [92] |
Lactobacillus, Bifidobacterium | Reduction of the incidence of severe necrotizing enterocolitis by 57% and the risk of mortality by 35%. | [93] |
Lactobacillus rhamnosus, Saccharomyces boulardii | A protective role in preventing antibiotic-associated diarrhea after intake of 5011 CFU/day. | [94] |
Lactobacillus GG | Probiotics may decrease duration of acute diarrhoea in infants and children by ~1 day | [95] |
Bacillus licheniformis | Reduce the effect of antibiotics use in treatment of diarrhea and can detoxify aflatoxin B1up to 94.7% in food matrixes. | [96] |
Bacillus clausii | Treatment of acute diarrhea in children | [97] |
Lactobacillus reuteri | Reduced crying time by an average of 25.4 min per day and Treat colic in breastfed infants | [98] |
Bacillus clausii UBBC-07 | Reduced severity of diarrhea in children under 5 years of age | [99] |
Alleviation of lactose intolerance | ||
Streptococcus lactis, Streptococcus plantarum, Streptococcus cremoris, Streptococcus casei, Streptococcus diacetylactis, Streptococcus florentinus, Streptococcus cremoris | Improved lactose digestion and tolerance. | [100] |
Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus | Consumption of live yogurt cultures in yogurt improves the digestion of lactose present in yogurt in individuals with lactose maldigestion. Yogurt should contain at least 108 CFU live probiotic strains per gram | [101] |
Bifidobacterium animalis DSM 26137 and Lactobacillus plantarum DSM 26329 | Significant reduction of diarrhea frequency and flatulence. | [102] |
Allergic Rhinitis | ||
Streptococcus paracasei-33 | Clinical improvements in nasal blockage, rhinorrhea, and nasal itching. | [103] |
Lactobacillus paracasei-33 | Significant evidence of beneficial clinical and immunologic effects of probiotics in the treatment of seasonal Allergic Rhinitis. | [104] |
Blood Pressure | ||
Various strains of Lactobacillus sp. | Regulation of blood pressure. | [105] |
Lactobacillus helveticus and Saccharomyces cerevisiae | Reduction of hypertension effects | [106] |
Atopic Dermatitis | ||
Lactobacillus fermentum VRI 033 PCC™ | Reduction in SCORAD (SCORing Atopic Dermatitis). | [107] |
Bifidobacterium animalis subsp lactis | Important decrease in the sternness of atopic dermatitis with an improvement in the ration of IFN- and IL-10. | [108] |
Lactobacillus rhamnosus HN001 | Substantially reduced the cumulative prevalence of eczema in infants | [109] |
Cancer and side effects associated with cancer | ||
Lactobacillus rhamnosus 573 | Patients had less abdominal discomfort, with less hospital care and fewer chemo dose reductions. | [110] |
Lactobacillus acidophilus, Bifidobacterium bifidum | Reduction in incidence of diarrhea and better stool consistency. | [111] |
Lactobacillus plantarum CGMCC 1258, Lactobacillus acidophilus LA-11, Bifidobacterium longum BL-88 | Significant improvement in the integrity of gut mucosal barrier and reduction in infections complications. | [112] |
Lactobacillus casei Shirota (LcS) | Significant evidence of cancer preventing particularly colorectal cancer. | [113] |
Lactobacillus casei ATCC 393 | Significant in vivo anti-proliferative effects accompanied by apoptotic cell death in colon carcinoma cells. | [114] |
Lactobacillus acidophilus and Bifidobacterium spp. | Inhibit growth of tumor cell, produce anti-carcinogens and reduces cancer risks | [115] |
Lactobacillus paracasei | Anticancer activity | [116] |
Bacterial Vaginosis | ||
Lactobacillus rhamnosus | The vaginal administration of the probiotic strain leads to stabilization of the vaginal flora with obvious reduction of bacterial vaginosis recurrence. | [117] |
Lactobacillus gasseri LN40, Lactobacillus fermentum LN99, Lactobacillus casei LN113, Pediococcus acidilactici LN23 | Strain LN is characterized by a high colonial rate in the vagina bacterial vaginosis, patients and women receiving LN strain were totally cured 2–3 days after administration. | [118] |
Lactobacillus acidophilus La-14® and Lactobacillus rhamnosus HN001® | The addition of a combination of the probiotic strains La-14® and HN001® alongside bovine lactoferrin to antibiotic treatment, was shown to significantly improve symptoms of BV. It also decreased the recurrence rate, as compared with antibiotic treatment alone. | [119] |
Lactobacillus crispatus CTV-05 | The administration of 2 billion CFU of L. crispatus CTV-05 to 228 premenopausal women with recurrent BV using a vaginal applicator daily for 24 weeks led to 30% of recurrence of BV in the intervention group compared with 45% of the placebo group | [120] |
Depression, Anxiety and Mental disorders | ||
Lactobacillus helveticus R0052 Bifidobacterium longum R0175 | Probiotic supplementation reduced aggressive and ruminative thoughts in response to sad mood. | [121] |
Lactobacillus, Bifidobacterium | Beneficial effects on mental health and mood. | [33] |
Probiotic Microorganisms | Main Results—Microbial Antagonism | References |
---|---|---|
Antifungal activity | ||
Lactobacillus acidophilus ATCC 4495, Lactobacillus plantarum NRRL B-4496 | Significant antifungal activity. | [135] |
Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum | Probiotic strains have the potential to reduce enteral fungal colonization and decrease invasive fungal sepsis rates in low–birth-weight neonates. | [136] |
Lactobacillus acidophilus ATCC 4356 | L. acidophilus produced substances with anti-Candida activity, reducing its growth by 45.1%. | [137] |
Lactobacillus buchneri | Antagonistic potential against Candida albicans | [131] |
Eradication of Helicobacter | ||
Lactobacillus casei Shirota | Inhibition of the growth of Helicobacter pylori (by 64% in the probiotic group and by 33% in the control). | [138] |
Pediococcus acidilactici BA28 | Significant rates of elimination of H. pylori infections. | [139] |
Lactobacillus plantarum ZDY 2013 | Preventive effects against H. pylori. | [140] |
Lactobacillus acidophilus, Bifidobacterium animalis | A significant efficacy in H. pylori eradication. | [141] |
Lactobacillus fermentum UCO-979C | Inhibition of the function of H. pylori by regulating the immune system. | [142] |
Antimicrobial activity | ||
Lactobacillus acidophillus | Antimicrobial activity against Campylobacter jejuni and Listeria monocytogenes | [143] |
Lactobacillus casei | Antagonistic potential against Cronobacter sakazakii, Cl. jejuni and L. monocytogenes | [143] |
Lactobacillus plantarum | Microbial antagonism against Salmonella enteritidis, Cr. sakazakii, Cl. jejuni, L. monocytogenes and E. coli | [143] |
Lactobacillus lactis | Antimicrobial activity against S. enteritidis, Cr. sakazakii, Cl. jejuni, L. monocytogenes and E. coli | [143] |
Bifidobacterium bifidum | Antagonistic activity against Cr. sakazakii, Cl. jejuni, L. monocytogenes and E. coli | [143] |
Lactobacillus salivarius | Antimicrobial activity against L. monocytogenes, S. enteritidis, St. mutans, Candida albicans, Cr. sakazakii and Cl. Jejuni | [143,144] |
Lactobacillus rhamnosus | Microbial antagonism against S. enteritidis, Cr. sakazakii, Cl. jejuni, L. monocytogenes, E. coli and Clostridium difficile | [143,145] |
Weissella cibaria and Weissella koreensis | Antimicrobial activity against L. monocytogenes, E. coli and Salmonella spp. | [84] |
LAB | Effective against Salmonella enterica ver. Typhimurium, Rota viral infections and Clostridium difficile diarrhea | [145] |
Lactobacillus paracasei | E. coli and Listeria innocua inhibition effects | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020, 8, 1907. https://doi.org/10.3390/microorganisms8121907
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms. 2020; 8(12):1907. https://doi.org/10.3390/microorganisms8121907
Chicago/Turabian StyleZommiti, Mohamed, Marc G. J. Feuilloley, and Nathalie Connil. 2020. "Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time" Microorganisms 8, no. 12: 1907. https://doi.org/10.3390/microorganisms8121907