High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Identification of Resistance Determinants
2.4. Molecular Typing
2.5. Plasmid Analysis and Mating-Out Assays
2.6. Plasmid Sequencing and Bioinformatic Analysis
3. Results
3.1. Isolation of Carbapenemase-Producing Enterobacteriaceae
3.2. Isolation of ESBL-Producing Enterobacteriaceae
3.3. Isolation of MRSA and VRE
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bonnedahl, J.; Jarhult, J.D. Antibiotic resistance in wild birds. UPS J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; Waldenstrom, J.; McMahon, B.J.; Tolf, C.; Olsen, B.; Drobni, M. Carriage of CTX-M type extended spectrum beta-lactamases (ESBLs) in gulls across Europe. Acta Vet. Scand. 2015, 57, 74. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.; Melhus, A.; Sandegren, L.; Alam, M.; Olsen, B. The gull (Chroicocephalus brunnicephalus) as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the Bay of Bengal. Microb. Drug Resist. 2014, 20, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Stedt, J.; Waldenstrom, J.; Svensson, L.; Drobni, M.; Olsen, B. Comparison of extended-spectrum ß-lactamase (ESBL) CTX-M genotypes in Franklin Gulls from Canada and Chile. PLoS ONE 2015, 10, e0141315. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Johansson, A.; Stedt, J.; Bengtsson, S.; Porczak, A.; Granholm, S.; González-Acuña, D.; Olsen, B.; Bonnedahl, J.; Drobni, M. Characterization and comparison of extended-spectrum ß-lactamase (ESBL) resistance genotypes and population structure of Escherichia coli isolated from Franklin’s gulls (Leucophaeus pipixcan) and humans in Chile. PLoS ONE 2013, 8, e76150. [Google Scholar] [CrossRef]
- Poirel, L.; Potron, A.; de la Cuesta, C.; Cleary, T.; Nordmann, P.; Munoz-Price, L.S. Wild coastline birds as reservoirs of broad-spectrum-ß-lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob. Agents Chemother. 2012, 56, 2756–2758. [Google Scholar] [CrossRef]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef][Green Version]
- Vergara, A.; Pitart, C.; Montalvo, T.; Roca, I.; Sabaté, S.; Hurtado, J.C.; Planell, R.; Marco, F.; Ramírez, B.; Peracho, V.; et al. Prevalence of extended-spectrum-ß-lactamase- and/or carbapenemase-producing Escherichia coli isolated from yellow-legged gulls from Barcelona, Spain. Antimicrob. Agents Chemother. 2017, 61, e02071-16. [Google Scholar] [CrossRef]
- Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol. Evol. 2017, 7, 1224–1232. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Ramey, A.M.; Woksepp, H.; Bonnedahl, J. Repeated detection of carbapenemase-producing Escherichia coli in gulls inhabiting Alaska. Antimicrob. Agents Chemother. 2019, 63, e00758-19. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe—Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. 2018. Available online: EARS-Net-report-2017-update-jan-2019.pdf (accessed on 10 June 2020).
- Simoes, R.R.; Poirel, L.; da Costa, P.M.; Nordmann, P. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia . Coli. Emerg. Infect. Dis. 2010, 16, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Poeta, P.; Radhouani, H.; Igrejas, G.; Gonçalves, A.; Carvalho, C.; Rodrigues, J.; Vinué, L.; Somalo, S.; Torres, C. Seagulls of the Berlengas natural reserve of Portugal as carriers of fecal Escherichia coli harboring CTX-M and TEM extended-spectrum ß-lactamases. Appl. Environ. Microbiol. 2008, 74, 7439–7441. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.; Silva, A.; Lito, L.; melo-Cristino, J.; Duarte, A. Emergence of Klebsiella pneumoniae ST11-producing KPC-3 carbapenemase at a Lisbon hospital. Clin. Microbiol. Infect. 2010, 16, S28. [Google Scholar]
- Manageiro, V.; Ferreira, E.; Almeida, J.; Barbosa, S.; Simões, C.; Antibiotic Resistance Surveillance Program in Portugal (ARSIP); Bonomo, R.A.; Caniça, M. Predominance of KPC-3 in a survey for carbapenemase-producing Enterobacteriaceae in Portugal. Antimicrob. Agents Chemother. 2015, 59, 3588–3592. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Ortiz de la Rosa, J.M.; Goncalves, M.L.; Pereira, A.L.; Nordmann, P.; Poirel, L. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital, Portugal. Emerg. Infect. Dis. 2019, 25, 1632–1638. [Google Scholar] [CrossRef]
- Lopes, E.; Saavedra, M.J.; Costa, E.; de Lencastre, H.; Poirel, L.; Aires-de-Sousa, M. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in Northern Portugal: Predominance of KPC-2 and OXA-48. J. Glob. Antimicrob Resist. 2020, 22, 349–353. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Ortiz de la Rosa, J.M.; Goncalves, M.L.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-producing Morganella morganii and Proteus mirabilis in a single patient in Portugal: Probable in vivo transfer by conjugation. J. Antimicrob Chemother 2020, 75, 903–906. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Boye, K.; de Lencastre, H.; Deplano, A.; Enright, M.C.; Etienne, J.; Friedrich, A.; Harmsen, D.; Holmes, A.; Huijsdens, X.W.; et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J. Clin. Microbiol. 2006, 44, 619–621. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef]
- Poirel, L.; Dortet, L.; Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 5403–5407. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, G.; Wachino, J.; Sato, N.; Kimura, K.; Yamada, K.; Jin, W.; Shibayama, K.; Yagi, T.; Kawamura, K.; Arakawa, Y. Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J. Clin. Microbiol. 2014, 52, 3175–3179. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aires-de-Sousa, M.; Lopes, E.; Goncalves, M.L.; Pereira, A.; Costa, A.M.E.; de Lencastre, H.; Poirel, L. Intestinal carriage of extended-spectrum ß-lactamase-producing Enterobacteriaceae at admission in a Portuguese hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Mueller, L.; Cimen, C.; Poirel, L.; Descombes, M.C.; Nordmann, P. Prevalence of fosfomycin resistance among ESBL-producing Escherichia coli isolates in the community, Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 945–949. [Google Scholar] [CrossRef]
- Okuma, K.; Iwakawa, K.; Turnidge, J.D.; Grubb, W.B.; Bell, J.M.; O’Brien, F.G.; Coombs, G.W.; Pearman, J.W.; Tenover, F.C.; Kapi, M.; et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 2002, 40, 4289–4294. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, R.L.; Pallesen, L.V.; Frimodt-Moller, N.; Espersen, F. Detection of clinical vancomycin-resistant enterococci in Denmark by multiplex PCR and sandwich hybridization. APMIS 1999, 107, 404–412. [Google Scholar] [CrossRef]
- Kieffer, N.; Nordmann, P.; Aires-de-Sousa, M.; Poirel, L. High prevalence of carbapenemase-producing Enterobacteriaceae among hospitalized children in Luanda, Angola. Antimicrob. Agents Chemother. 2016, 60, 6189–6192. [Google Scholar] [CrossRef]
- Kieser, T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia. Coli. Plasmid. 1984, 12, 19–36. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef]
- Ngaiganam, E.P.; Pagnier, I.; Chaalal, W.; Leangapichart, T.; Chabou, S.; Rolain, J.M.; Diene, S.M. Investigation of urban birds as source of ß-lactamase-producing Gram-negative bacteria in Marseille city, France. Acta Vet. Scand. 2019, 61, 51. [Google Scholar] [CrossRef]
- Atterby, C.; Borjesson, S.; Ny, S.; Jarhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-producing Escherichia coli in Swedish gulls—A case of environmental pollution from humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef] [PubMed]
- Wallensten, A.; Hernandez, J.; Ardiles, K.; Gonzalez-Acuna, D.; Drobni, M.; Olsen, B. Extended spectrum beta-lactamases detected in Escherichia coli from gulls in Stockholm, Sweden. Infect. Ecol. Epidemiol. 2011, 1, 7030. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Drobni, M.; Gauthier-Clerc, M.; Hernandez, J.; Granholm, S.; Kayser, Y.; Melhus, A.; Kahlmeter, G.; Waldenstrom, J.; Johansson, A.; et al. Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS ONE 2009, 4, e5958. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar] [CrossRef] [PubMed]
- Flerlage, T.; Brazelton de Cardenas, J.N.; Garner, C.D.; Hasan, N.A.; Karathia, H.; Qudeimat, A.; Maron, G.; Hayden, R. Multiple NDM-5-Expressing Escherichia coli Isolates from an immunocompromised pediatric host. Open Forum. Infect. Dis. 2020, 7, ofaa018. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Sang, J.H.; Pitondo-Silva, A.; Laupland, K.B.; Pitout, J.D.D. Molecular epidemiology of extended-spectrum-ß-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary, Canada. J. Antimicrob. Chemother. 2012, 67, 1114–1120. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.T.; Pomba, C. Evidence of sharing of Klebsiella pneumoniae strains between healthy companion animals and cohabiting humans. J. Clin. Microbiol. 2019, 57, e01537-18. [Google Scholar] [CrossRef]
- Jones-Dias, D.; Manageiro, V.; Ferreira, E.; Louro, D.; Antibiotic Resistance Surveillance Program in Portugal (ARSIP) participants; Caniça, M. Diversity of extended-spectrum and plasmid-mediated AmpC ß-lactamases in Enterobacteriaceae isolates from Portuguese health care facilities. J. Microbiol. 2014, 52, 496–503. [Google Scholar] [CrossRef]
- Rodrigues, C.; Machado, E.; Fernandes, S.; Peixe, L.; Novais, A. An update on faecal carriage of ESBL-producing Enterobacteriaceae by Portuguese healthy humans: Detection of the H30 subclone of B2-ST131 Escherichia coli producing CTX-M-27. J. Antimicrob. Chemother. 2016, 71, 1120–1122. [Google Scholar] [CrossRef][Green Version]
- Peirano, G.; Pitout, J.D.D. Extended-spectrum ß-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Fournier, C.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. Occurrence of CTX-M-15- and MCR-1-producing Enterobacterales in pigs in Portugal: Evidence of direct links with antibiotic selective pressure. Int J. Antimicrob. Agents 2020, 55, 105802. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Machado, E.; Pires, J.; Ramos, H.; Novais, A.; Peixe, L. Increase of widespread A, B1 and D Escherichia coli clones producing a high diversity of CTX-M-types in a Portuguese hospital. Future Microbiol. 2015, 10, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Correia, B.; de Lencastre, H. Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: Surveillance over a 16-year period. J. Clin. Microbiol. 2008, 46, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.; Tacao, M.; Pureza, L.; Gonçalves, J.; Silva, A.; Cruz-Schneider, M.P.; Henriques, I. Occurrence of carbapenemase-producing Enterobacteriaceae in a Portuguese river: Blandm, blaKPC and blaGES among the detected genes. Environ. Pollut. 2020, 260, 113913. [Google Scholar] [CrossRef]
- Agência Portuguesa do Ambiente. Perfil de água balnear de Caxias. 2013. Available online: http://apambiente.pt/_zdata/ARHTO/AGUAS_BALNEARES/PERFIS_BOLETINS_2013/OEIRAS/PE_Oeiras_Caxias.pdf (accessed on 22 May 2020).
Sampling Area | Samples Recovered | Samples Positive for Carbapenemase Producers | Samples Positive for ESBL Producers | ||
---|---|---|---|---|---|
No. | % | No. | % | ||
Carcavelos | 24 | 0 | 0% | 7 | 29% |
Paço d’Arcos | 41 | 3 | 7% | 22 | 54% |
Caxias | 23 | 11 | 48% | 19 | 83% |
Total | 88 | 14 | 16% | 48 | 55% |
Fecal Sample | Sampling Area | Isolate | Species | PFGE | MLST | Resistance Genes a | Plasmid Type b | TIC | CAZ | AMC | CTX | ETP | IMP | MEP | TEM | FOX | CIP | SXT | FOS | TET | AMK | GEN | TOB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81 | Caxias | 81OXA R | E. coli | A | ST219 | blaOXA-48 | IncL | R | S | R | S | R | S | S | R | S | S | S | S | S | S | S | S |
82 | Caxias | 82OXA R | E. coli | B | ST80 | blaOXA-48 | IncL | R | S | R | S | S | S | S | R | S | S | S | S | S | S | S | S |
85 | Caxias | 85OXA R | E. coli | C | ST940 | blaOXA-181 | IncX3 | R | S | R | S | S | S | S | R | S | S | S | S | R | S | S | S |
79 | Caxias | 79CAR R | E. coli | D | ST940 | blaOXA-181 | IncX3 | R | S | R | S | S | S | S | R | S | S | S | S | R | S | S | S |
80 | Caxias | 80OXA R | E. coli | D | ST940 | blaOXA-181 | IncX3 | R | S | R | S | S | S | S | R | S | S | S | S | R | S | S | S |
79 | Caxias | 79OXA R | E. coli | E | ST940 | blaOXA-181, blaCTX-M-15 | IncX3 | R | R | R | R | R | S | S | R | R | R | S | S | R | S | S | S |
88 | Caxias | 88OXA R | E. coli | F | SLV ST4440 | blaOXA-181 | IncX3 | R | S | R | S | S | S | S | R | S | S | S | S | S | S | S | S |
72 | Caxias | 72OXA R | E. coli | G | ST155 | blaOXA-181 | IncX3 | R | S | R | S | S | S | S | R | S | S | S | S | S | S | S | S |
77 | Caxias | 77OXA A | K. pneumoniae | J | ST321 | blaOXA-48 | IncL | R | S | R | S | R | S | S | R | S | I | S | S | S | S | S | S |
79 | Caxias | 79OXA A | K. pneumoniae | J | ST4845 | blaOXA-181 | IncX3 | R | S | R | S | R | S | S | R | S | S | S | R | S | S | S | S |
85 | Caxias | 85OXA A | K. pneumoniae | J | ST321 | blaOXA-181 | IncX3 | R | S | R | S | R | S | S | R | S | I | S | S | S | S | S | S |
86 | Caxias | 86OXA A | K. pneumoniae | J | ST321 | blaOXA-181 | IncX3 | R | S | R | S | R | S | S | R | S | R | S | R | S | S | S | S |
83 | Caxias | 83OXA A | K. pneumoniae | I | ST17 | blaOXA-181, blaCTX-M-15 | IncX3 | R | R | R | R | R | S | S | R | S | R | R | R | S | S | R | R |
72 | Caxias | 72OXA A | K. pneumoniae | K | ST17 | blaOXA-181, blaCTX-M-15 | IncX3 | R | R | R | R | R | S | S | R | S | R | R | R | R | S | S | R |
70 | Caxias | 70OXA A | K. pneumoniae | O | ST17 | blaOXA-181, blaCTX-M-15 | IncX3 | R | R | R | R | R | S | S | R | R | R | R | R | S | S | R | R |
80 | Caxias | 80OXA A | K. pneumoniae | L | ST4845 | blaOXA-48, blaCTX-M-15 | IncL | R | R | R | R | R | S | S | R | S | R | R | R | R | S | R | R |
88 | Caxias | 88OXA A | K. pneumoniae | M | New 1 | blaOXA-181, blaCTX-M-15 | IncX3 | R | R | R | R | R | S | S | R | S | R | R | S | S | S | S | R |
25 | Paço d’Arcos | 25CAR A | K. pneumoniae | P | New 2 | blaKPC-3 | IncFII | R | R | R | S | R | S | S | S | S | I | R | S | S | S | R | R |
44 | Paço d’Arcos | 44CAR A | K. pneumoniae | N | ST13 | blaKPC-2 | IncF | R | R | R | R | R | S | S | S | S | S | R | R | S | R | R | R |
44 | Paço d’Arcos | 44E A | K. pneumoniae | Q | ST1490 | blaKPC-2, blaCTX-M-15 | IncF | R | R | R | R | R | S | S | S | S | R | R | S | R | S | R | R |
45 | Paço d’Arcos | 45OXA A | C. freundii | S | - | blaOXA-48, blaGES-5 | IncL, ColE1 | R | R | R | S | R | S | S | R | R | S | S | S | S | S | R | R |
45 | Paço d’Arcos | 45OXA R | C. freundii | T | - | blaOXA-48, blaKPC-2 | IncL, IncF | R | R | R | I | R | I | I | R | R | I | S | R | S | S | R | R |
45 | Paço d’Arcos | 45CAR A | E. cloacae | R | - | blaGES-6 | ColE1 | R | R | R | S | S | S | S | S | R | S | S | R | S | S | S | S |
81 | Caxias | 81CAR A | K. oxytoca | H | - | blaKPC-2 | IncF | R | R | R | S | R | I | R | R | R | R | R | S | S | S | R | R |
Species | No. of Isolates | ESBL | blaCMY | TIC | CAZ | AMC | CTX | TEM | FOX | CIP | SXT | FOS | TET | AMK | GEN | TOB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli (n = 39) | 12 | CTX-M-15 | R | R(10) | S | R | S | S | S(6) | S(6) | S(9) | R(7) | S | S(9) | S(9) | |
1 | R | R | R | R | S | R | S | R | S | S | S | S | S | |||
8 | CTX-M-1 | R | S(6) | S(7) | R | S | S(7) | S(5) | S(5) | S | R(5) | S | S | S | ||
7 | SHV-12 | R | R | S | S | S | S | S | S(4) | S | R(4) | S | S | S | ||
1 | R | R | R | S | S | R | R | S | S | S | S | S | S | |||
4 | CTX-M-65 | R | S(3) | S(3) | R | S(3) | S(3) | R | S(2) | S(3) | S(2) | S | S | R(3) | ||
3 | CTX-M-32 | R | R (2) | S | R | S | S | R(2) | S(2) | S | R(2) | S | S | S | ||
2 | CTX-M-55 | R | R | S | R | S | S | R | R | S | R | S | S | S | ||
1 | CTX-M-8 | R | S | S | S * | S | S | R | S | S | R | S | R | R | ||
1 | CTX-M-14 | R | S | S | S * | S | S | R | S | S | R | S | S | S | ||
1 | CTX-M-27 | R | S | S | S * | S | S | R | S | S | S | S | S | S | ||
K. pneumoniae (n = 20) | 19 | CTX-M-15 | R | R (16) | S (10) | R | S | S | R(12) | R(17) | S(10) | R(11) | S | R(9) | R(10) | |
1 | CTX-M-55 | R | R | R | R | S | S | R | R | S | S | S | S | R | ||
1 | SHV-2 | R | S | S | S | S | S | R | R | R | R | S | S | R | ||
E. cloacae (n = 2) | 2 | CTX-M-15 | R | R | R | R | S | R | R | R | S | S(1) | S | R | R |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aires-de-Sousa, M.; Fournier, C.; Lopes, E.; de Lencastre, H.; Nordmann, P.; Poirel, L. High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal. Microorganisms 2020, 8, 1487. https://doi.org/10.3390/microorganisms8101487
Aires-de-Sousa M, Fournier C, Lopes E, de Lencastre H, Nordmann P, Poirel L. High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal. Microorganisms. 2020; 8(10):1487. https://doi.org/10.3390/microorganisms8101487
Chicago/Turabian StyleAires-de-Sousa, Marta, Claudine Fournier, Elizeth Lopes, Hermínia de Lencastre, Patrice Nordmann, and Laurent Poirel. 2020. "High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal" Microorganisms 8, no. 10: 1487. https://doi.org/10.3390/microorganisms8101487
APA StyleAires-de-Sousa, M., Fournier, C., Lopes, E., de Lencastre, H., Nordmann, P., & Poirel, L. (2020). High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal. Microorganisms, 8(10), 1487. https://doi.org/10.3390/microorganisms8101487