Next Article in Journal
The Foodborne Strain Lactobacillus fermentum MBC2 Triggers pept-1-Dependent Pro-Longevity Effects in Caenorhabditis elegans
Next Article in Special Issue
Metabolic Modeling of Pectobacterium parmentieri SCC3193 Provides Insights into Metabolic Pathways of Plant Pathogenic Bacteria
Previous Article in Journal
Environmental Aspects of the Use of Hedera helix Extract in Bioremediation Process
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessReview
Microorganisms 2019, 7(2), 44;

Green Technology: Bacteria-Based Approach Could Lead to Unsuspected Microbe–Plant–Animal Interactions

Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, Italy, via Celoria 2, 20133 Milan, Italy
Piattaforma di Microbiologia Agroalimentare ed Ambientale (Pi.Mi.A.A.), AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
Author to whom correspondence should be addressed.
Received: 14 December 2018 / Revised: 23 January 2019 / Accepted: 2 February 2019 / Published: 6 February 2019
(This article belongs to the Special Issue Macro and Microorganism Interactions)
PDF [1080 KB, uploaded 18 February 2019]


The recent and massive revival of green strategies to control plant diseases, mainly as a consequence of the Integrated Pest Management (IPM) rules issued in 2009 by the European Community and the increased consumer awareness of organic products, poses new challenges for human health and food security that need to be addressed in the near future. One of the most important green technologies is biocontrol. This approach is based on living organisms and how these biocontrol agents (BCAs) directly or indirectly interact as a community to control plant pathogens and pest. Although most BCAs have been isolated from plant microbiomes, they share some genomic features, virulence factors, and trans-kingdom infection abilities with human pathogenic microorganisms, thus, their potential impact on human health should be addressed. This evidence, in combination with the outbreaks of human infections associated with consumption of raw fruits and vegetables, opens new questions regarding the role of plants in the human pathogen infection cycle. Moreover, whether BCAs could alter the endophytic bacterial community, thereby leading to the development of new potential human pathogens, is still unclear. In this review, all these issues are debated, highlighting that the research on BCAs and their formulation should include these possible long-lasting consequences of their massive spread in the environment. View Full-Text
Keywords: plant microbiome; pathogens; trans-kingdom; biostimulants; biocontrol plant microbiome; pathogens; trans-kingdom; biostimulants; biocontrol

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Bulgari, D.; Montagna, M.; Gobbi, E.; Faoro, F. Green Technology: Bacteria-Based Approach Could Lead to Unsuspected Microbe–Plant–Animal Interactions. Microorganisms 2019, 7, 44.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Microorganisms EISSN 2076-2607 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top