Urobiome: In Sickness and in Health
Abstract
:1. Introduction
2. Bacterial Components of Urobiome
2.1. Urinary Microbiome in Health
2.2. Urinary Microbiome in Disease
2.3. Chronic Kidney Disease and Kidney Transplantation
2.3.1. Chronic Kidney Disease
2.3.2. Kidney Transplantation
3. Viruses of the Urinary Tract
3.1. Urinary Virome in Health
3.2. Urinary Virome in Diseases
Urinary Virome and Kidney Transplantation
3.3. Bacteriophages in the Urinary Tract
4. Fungi in the Urobiome
5. Challenges and Future Directions
Acknowledgments
Conflicts of Interest
References
- Thomas-White, K.; Brady, M.; Wolfe, A.J.; Mueller, E.R. The Bladder Is Not Sterile: History and Current Discoveries on the Urinary Microbiome. Curr. Bladder Dysfunct. Rep. 2016, 11, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Handelsman, J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Wooley, J.C.; Godzik, A.; Friedberg, I. A Primer on Metagenomics. PLoS Comput. Biol. 2010, 6, e1000667. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [PubMed] [Green Version]
- Hilt, E.E.; McKinley, K.; Pearce, M.M.; Rosenfeld, A.B.; Zilliox, M.J.; Mueller, E.R.; Brubaker, L.; Gai, X.; Wolfe, A.J.; Schreckenberger, P.C. Urine Is Not Sterile: Use of Enhanced Urine Culture Techniques to Detect Resident Bacterial Flora in the Adult Female Bladder. J. Clin. Microbiol. 2014, 52, 871. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, S.A.; Razvi, H.; Dave, S.; Reid, G.; Burton, J.P. The microbiome of the urinary tract—A role beyond infection. Nat. Rev. Urol. 2015, 12, 81–90. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef]
- Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018, 15, 36–59. [Google Scholar] [CrossRef]
- Wolfe, A.J.; Brubaker, L. Urobiome updates: Advances in urinary microbiome research. Nat. Rev. Urol. 2019, 16, 73–74. [Google Scholar] [CrossRef]
- Mueller, E.R.; Wolfe, A.J.; Brubaker, L. Female urinary microbiota. Curr. Opin. Urol. 2017, 27, 282–286. [Google Scholar] [CrossRef]
- Gottschick, C.; Deng, Z.L.; Vital, M.; Masur, C.; Abels, C.; Pieper, D.H.; Wagner-Döbler, I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Fouts, D.; Pieper, R.; Szpakowski, S.; Pohl, H.; Knoblach, S.; Suh, M.J.; Huang, S.T.; Ljungberg, L.; Sprague, B.M.; Lucas, S.K.; et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 2012, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, H.; Nederbragt, A.J.; Lagesen, K.; Jeansson, S.L.; Jakobsen, K.S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011, 11, 244. [Google Scholar] [CrossRef]
- Lewis, D.A.; Brown, R.; Williams, J.; White, P.; Jacobson, S.K.; Marchesi, J.R.; Drake, M.J. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 2013, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, D.; Goulart, C.; Pagliarone, A.C.; Silva, E.P.; Cunegundes, P.S.; Nascimento, I.P.; Borra, R.C.; Dias, W.O.; Tagliabue, A.; Boraschi, D.; et al. In vitro Evidence of Human Immune Responsiveness Shows the Improved Potential of a Recombinant BCG Strain for Bladder Cancer Treatment. Front. Immunol. 2019, 10, 1460. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.; Radjabzadeh, D.; Hassing, R.J.; Heeringa, J.; Uitterlinden, A.G.; Kraaij, R.; Stricker, B.H.; Verbon, A. The effect of antimicrobial drug use on the composition of the genitourinary microbiota in an elderly population. BMC Microbiol. 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Van Der Pol, B.; Dong, Q.; Revanna, K.V.; Fan, B.; Easwaran, S.; Sodergren, E.; Weinstock, G.M.; Diao, L.; Fortenberry, J.D. Characteristic Male Urine Microbiomes Associate with Asymptomatic Sexually Transmitted Infection. PLoS ONE 2010, 5, e14116. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, G.; Zhao, J.; Chen, J.; Chen, Y.; Huang, W.; Zhong, J.; Zeng, J. Corrigendum: Profiling the Urinary Microbiota in Male Patients with Bladder Cancer in China. Front. Cell. Infect. Microbiol. 2018, 8, 167. [Google Scholar] [CrossRef]
- Bučević Popović, V.; Šitum, M.; Chow, C.E.T.; Chan, L.S.; Roje, B.; Terzić, J. The urinary microbiome associated with bladder cancer. Sci. Rep. 2018, 8, 12157. [Google Scholar] [CrossRef]
- Schroeder, B.O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Tadic, S.D.; Griffiths, D.; Schaefer, W.; Cheng, C.I.; Resnick, N.M. Brain Activity Measured by Functional Magnetic Resonance Imaging is Related to Patient Reported Urgency Urinary Incontinence Severity. J. Urol. 2010, 183, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, H.; Kuffel, G.; Thomas-White, K.; Wolfe, A.J.; Vellanki, K.; Leehey, D.J.; Bansal, V.K.; Brubaker, L.; Flanigan, R.; Koval, J.; et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. Int. Urol. Nephrol. 2018, 50, 1123–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, A.; Ranjan, R.; McGee, H.S.; Andropolis, K.E.; Panchal, D.V.; Hajjiri, Z.; Brennan, D.C.; Finn, P.W.; Perkins, D.L. Urinary microbiome of kidney transplant patients reveals dysbiosis with potential for antibiotic resistance. Transl. Res. 2017, 181, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Fricke, W.F.; Maddox, C.; Song, Y.; Bromberg, J.S. Human Microbiota Characterization in the Course of Renal Transplantation. Am. J. Transplant. 2014, 14, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.F.; Muthusamy, A.; Al-Ghalith, G.A.; Knights, D.; Guo, B.; Wu, B.; Remmel, R.P.; Schladt, D.P.; Alegre, M.-L.; Oetting, W.S.; et al. Urinary microbiome associated with chronic allograft dysfunction in kidney transplant recipients. Clin. Transplant. 2018, 32, e13436. [Google Scholar] [CrossRef] [PubMed]
- Modena, B.D.; Milam, R.; Harrison, F.; Cheeseman, J.A.; Abecassis, M.M.; Friedewald, J.J.; Kirk, A.D.; Salomon, D.R. Changes in Urinary Microbiome Populations Correlate in Kidney Transplants With Interstitial Fibrosis and Tubular Atrophy Documented in Early Surveillance Biopsies. Am. J. Transplant. 2017, 17, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, M.; Pesce, F.; Schena, A.; Simone, S.; Castellano, G.; Gesualdo, L. Updates on urinary tract infections in kidney transplantation. J. Nephrol. 2019, 32, 751–761. [Google Scholar] [CrossRef]
- Abbott, K.C.; Swanson, S.J.; Richter, E.R.; Bohen, E.M.; Agodoa, L.Y.; Peters, T.G.; Barbour, G.; Lipnick, R.; Cruess, D.F. Late urinary tract infection after renal transplantation in the United States. Am. J. Kidney Dis. 2004, 44, 353–362. [Google Scholar] [CrossRef]
- Pesce, F.; Martino, M.; Fiorentino, M.; Rollo, T.; Simone, S.; Gallo, P.; Stallone, G.; Grandaliano, G.; Schena, A.; Margiotta, M.; et al. Recurrent urinary tract infections in kidney transplant recipients during the first-year influence long-term graft function: A single-center retrospective cohort study. J. Nephrol. 2019, 32, 661–668. [Google Scholar] [CrossRef]
- Divers, J.; Langefeld, C.D.; Lyles, D.S.; Ma, L.; Freedman, B.I. Protective association between JC polyoma viruria and kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 65–69. [Google Scholar] [CrossRef]
- Sigdel, T.K.; Mercer, N.; Nandoe, S.; Nicora, C.D.; Burnum-Johnson, K.; Qian, W.-J.; Sarwal, M.M. Urinary Virome Perturbations in Kidney Transplantation. Front. Med. 2018, 5, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecuit, M.; Eloit, M. The human virome: New tools and concepts. Trends Microbiol. 2013, 21, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M. Identification and Quantification of DNA Viral Populations in Human Urine Using Next-Generation Sequencing Approaches. In The Human Virome; Humana Press: New York, NY, USA, 2018; Volume 1838, pp. 191–200. [Google Scholar]
- Santiago-Rodriguez, T.M.; Ly, M.; Bonilla, N.; Pride, D.T. The human urine virome in association with urinary tract infections. Front. Microbiol. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.; Miller, G.; Li, X.; Saxena, D. Virome and bacteriome: Two sides of the same coin. Curr. Opin. Virol. 2019, 37, 37–43. [Google Scholar] [CrossRef]
- Brennan, D.C. Introduction: Kidney Transplantation and Viral Infections. Semin. Nephrol. 2016, 36, 343. [Google Scholar] [CrossRef]
- Jamboti, J.S. BK virus nephropathy in renal transplant recipients. Nephrology 2006, 21, 647–654. [Google Scholar] [CrossRef]
- Vanichanan, J.; Udomkarnjananun, S.; Avihingsanon, Y.; Jutivorakool, K. Common viral infections in kidney transplant recipients. Kidney Res. Clin. Pract. 2018, 37, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.P.; Anderson, K.L.; Brennan, D.C. JC polyoma virus and kidney disease. Kidney Int. 2014, 85, 1242. [Google Scholar] [CrossRef]
- Rani, A.; Ranjan, R.; McGee, H.S.; Metwally, A.; Hajjiri, Z.; Brennan, D.C.; Finn, P.W.; Perkins, D.L. A diverse virome in kidney transplant patients contains multiple viral subtypes with distinct polymorphisms. Sci. Rep. 2016, 6, 33327. [Google Scholar] [CrossRef]
- Schreiber, P.W.; Kufner, V.; Hübel, K.; Schmutz, S.; Zagordi, O.; Kaur, A.; Bayard, C.; Greiner, M.; Zbinden, A.; Capaul, R.; et al. Metagenomic Virome Sequencing in Living Donor and Recipient Kidney Transplant Pairs Revealed JC Polyomavirus Transmission. Clin. Infect. Dis. 2018, 69, 987–994. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Jończyk-Matysiak, E.; Wojciechowska, R.; Górski, A. Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog. 2017, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.M.; Handley, S.A.; Baldridge, M.T.; Droit, L.; Liu, C.Y.; Keller, B.C.; Kambal, A.; Monaco, C.L.; Zhao, G.; Fleshner, P.; et al. Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 2015, 160, 447–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, J.; Maksimovic, J.; Farries, G.; Sim, W.H.; Bishop, R.F.; Cameron, D.J.; Catto-Smith, A.G.; Kirkwood, C.D. Bacteriophages in Gut Samples from Pediatric Crohn’s Disease Patients. Inflamm. Bowel Dis. 2013, 19, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, L.A.; Jones, B.V. The human gut virome: A multifaceted majority. Front. Microbiol. 2015, 6, 918. [Google Scholar] [CrossRef] [PubMed]
- Manrique, P.; Dills, M.; Young, M. The Human Gut Phage Community and Its Implications for Health and Disease. Viruses 2017, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Manrique, P.; Bolduc, B.; Walk, S.T.; van der Oost, J.; de Vos, W.M.; Young, M.J. Healthy human gut phageome. Proc. Natl. Acad. Sci. USA 2016, 113, 10400–10405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown-Jaque, M.; Muniesa, M.; Navarro, F. Bacteriophages in clinical samples can interfere with microbiological diagnostic tools. Sci. Rep. 2016, 6, 33000. [Google Scholar] [CrossRef]
- Sybesma, W.; Zbinden, R.; Chanishvili, N.; Kutateladze, M.; Chkhotua, A.; Ujmajuridze, A.; Mehnert, U.; Kessler, T.M. Bacteriophages as potential treatment for urinary tract infections. Front. Microbiol. 2016, 7, 465. [Google Scholar] [CrossRef]
- Khawaldeh, A.; Morales, S.; Dillon, B.; Alavidze, Z.; Ginn, A.N.; Thomas, L.; Chapman, S.J.; Dublanchet, A.; Smithyman, A.; Iredell, J.R. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 2011, 60, 1697–1700. [Google Scholar] [CrossRef]
- Miller-Ensminger, T.; Garretto, A.; Brenner, J.; Thomas-White, K.; Zambom, A.; Wolfe, A.J.; Putonti, C. Bacteriophages of the Urinary Microbiome. J. Bacteriol. 2018, 200, e00738-17. [Google Scholar] [CrossRef]
- Navarro, F.; Muniesa, M. Phages in the human body. Front. Microbiol. 2017, 8, 566. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, A.L.; Underhill, D.M. The mycobiome of the human urinary tract: Potential roles for fungi in urology. Ann. Transl. Med. 2017, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, A.L.; Anger, J.T.; Khalique, M.U.; Ackerman, J.E.; Tang, J.; Kim, J.; Underhill, D.M.; Freeman, M.R.; MAPP. Optimization of DNA extraction from human urinary samples for mycobiome community profiling. PLoS ONE 2019, 14, e0210306. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.M.; Hilt, E.E.; Rosenfeld, A.B.; Zilliox, M.J.; Thomas-White, K.; Fok, C.; Kliethermes, S.; Schreckenberger, P.C.; Brubaker, L.; Gai, X.; et al. The female urinary microbiome: A comparison of women with and without urgency urinary incontinence. MBio 2014, 5, e01283-14. [Google Scholar] [CrossRef]
- Thomas-White, K.J.; Hilt, E.E.; Fok, C.; Pearce, M.M.; Mueller, E.R.; Kliethermes, S.; Jacobs, K.; Zilliox, M.J.; Brincat, C.; Price, T.K.; et al. Incontinence medication response relates to the female urinary microbiota. Int. Urogynecol. J. 2016, 27, 723–733. [Google Scholar] [CrossRef]
- Khasriya, R.; Sathiananthamoorthy, S.; Ismail, S.; Kelsey, M.; Wilson, M.; Rohn, J.L.; Malone-Lee, J. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J. Clin. Microbiol. 2013, 51, 2054–2062. [Google Scholar] [CrossRef]
- Nickel, J.C.; Stephens, A.; Landis, J.R.; Mullins, C.; van Bokhoven, A.; Lucia, M.S.; Ehrlich, G.D. Assessment of the Lower Urinary Tract Microbiota during Symptom Flare in Women with Urologic Chronic Pelvic Pain Syndrome: A MAPP Network Study. J. Urol. 2016, 195, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Hiergeist, A.; Gessner, A. Clinical implications of the microbiome in urinary tract diseases. Curr. Opin. Urol. 2017, 27, 93–98. [Google Scholar] [CrossRef]
- Thomas-White, K.; Forster, S.C.; Kumar, N.; Van Kuiken, M.; Putonti, C.; Stares, M.D.; Hilt, E.E.; Price, T.K.; Wolfe, A.J.; Lawley, T.D. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat. Commun. 2018, 9, 1557. [Google Scholar] [CrossRef]
Gender | Overall 1 | Age 20–49 2 | Age 50–69 2 | Age > 70 2 |
---|---|---|---|---|
Female | Lactobacillus, Gardnerella, Prevotella, Sneathia, Atopobium, Enterococcus, Streptococcus, Enterobacteriaceae | Azospira Butyricicoccus Coriobacterium Friedmanniella Gardnerella Microvirgula Neisseria Paraprevotella Rhodopila Sutterella Tepidimonas Tessaracoccus | Brevibacterium Catonella Caulobacter Methylovirgula Pelomonas Peptostreptococcus Sneathia Streptophyta Thermoleophilum | Actinomyces Arthrobacter Gulosibacter Jonquetella Lachnospiracea incertae sedis Modestobacter Oligella Parvimonas Proteiniphilum Rhodococcus Saccharofermentans |
Male | Lactobacillus, Sneathia, Veillonella, Corynebacterium Prevotella, Streptococcus, Ureaplasma | Pseudomonas, Lactobacillus, Actinobaculum, | Aminobacterium Anaerococcus Anaerophaga Anaerosphaera Anaerotruncus Atopobium Atopostipes Azospira Butyricicoccus Campylobacter Catonella Corynebacterium Dialister Eubacterium Filifactor Finegoldia Fusobacterium Lactonifactor Marixanthomonas Megasphaera Microvirgula Mobiluncus Murdochiella Mycoplasma Parvimonas Peptococcus Peptoniphilus Peptostreptococcus Porphyromonas Prevotella Proteiniphilum Pseudoramibacter Rikenella Saccharofermentans Sediminitomix Lactobacillus Actinobaculum |
Clinical Status | Microorganisms | Methods |
---|---|---|
CKD stage 3–5 | Staphylococcus, Lactobacillus, Enterobacteriaceae, Gardnerella, Prevotella, Streptococcus, Corynebacterium, Aerococcus, Anaerococcus, Bifidobacterium, | V4 region 16s RNA gene sequencing |
Kidney recipients before transplantation | Anaeroglobus, Achromobacter, Clostridiaceae, Dethiosulfovibrio, Oligella, Massilia, Microvirga, Pseudoramibacter, Sneathia, Staphylococcus | V1–V3 region 16s RNA gene sequencing |
Males 1 month post transplant—stable function vs. healthy controls | Gardnerella, Prevotella, Corynebacterium, Lactobacillus, Streptococcus (reduced) | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Males 1 month post transplant—IFTA vs. stable function | Prevotella, Corynebacterium, Lactobacillus, Streptococcus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Females 1 month post transplant—stable function vs. healthy controls | Gardnerella, Prevotella, Corynebacterium (reduced), Lactobacillus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Females 1 month post transplant—IFTA vs. stable function | Gardnerella, Prevotella, Lactobacillus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Males 6 months post transplant—stable function vs. healthy controls | Prevotella, Corynebacterium, Lactobacillus, Streptococcus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Males 6 months post transplant—IFTA vs. stable function | Gardnerella, Prevotella, Corynebacterium, Lactobacillus, Streptococcus (reduced) | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Females 6 months post transplant—stable function vs. healthy controls | Gardnerella, Prevotella, Lactobacillus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Females 6 months post transplant—IFTA vs. stable function | Gardnerella, Prevotella, Lactobacillus | V2,3,4,6,7,8,9 region 16s RNA gene sequencing |
Kidney recipients first 12 months post transplant vs. healthy controls | Streptococcus, Enterococcus, Escherichia, Propionibacterium, Ralstonia, Proteus, Bacteroides, Salmonella, Shigella, Lactobacillus | Shotgun sequencing |
Kidney recipients with decreased graft function at least 12 months post transplant vs. controls with stable graft function | Corynebacterium, Rhodococcus, Parabacteroides, Staphylococcus, Planococcaceae, Facklamia, | V4, ITS1, ITS2 regions 16s RNA gene fragment sequencing |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciuk, B.; Salabura, A.; Grygorcewicz, B.; Kędzierska, K.; Ciechanowski, K.; Dołęgowska, B. Urobiome: In Sickness and in Health. Microorganisms 2019, 7, 548. https://doi.org/10.3390/microorganisms7110548
Wojciuk B, Salabura A, Grygorcewicz B, Kędzierska K, Ciechanowski K, Dołęgowska B. Urobiome: In Sickness and in Health. Microorganisms. 2019; 7(11):548. https://doi.org/10.3390/microorganisms7110548
Chicago/Turabian StyleWojciuk, Bartosz, Agata Salabura, Bartłomiej Grygorcewicz, Karolina Kędzierska, Kazimierz Ciechanowski, and Barbara Dołęgowska. 2019. "Urobiome: In Sickness and in Health" Microorganisms 7, no. 11: 548. https://doi.org/10.3390/microorganisms7110548
APA StyleWojciuk, B., Salabura, A., Grygorcewicz, B., Kędzierska, K., Ciechanowski, K., & Dołęgowska, B. (2019). Urobiome: In Sickness and in Health. Microorganisms, 7(11), 548. https://doi.org/10.3390/microorganisms7110548