Chronic Rhinosinusitis at the Interface of Type 2 Inflammation, Epithelial Barrier Dysfunction, and Microbiome Dysbiosis
Abstract
1. Introduction
2. Epidemiology
3. CRS Phenotypes and Endotypes
4. Definitions and Conceptual Framework
5. The Sinonasal Microbiome and Dysbiosis in CRS
5.1. The Bacteriome: Diversity Loss, Pathogen Enrichment, and Community States
5.2. Beyond Bacteria: Mycobiome, Virome, and Phage Considerations
5.3. Methodological Heterogeneity and Key Confounders in CRS Microbiome Studies
6. Mechanistic Links: Allergic CRS at the Microbiome–Barrier–Type 2 Inflammation Interface
6.1. Clinical and Epidemiologic Evidence Linking Allergy and CRS
6.2. Atopy-Associated Microbial Signatures and T2-High Dysbiosis
6.3. Epithelial Barrier Dysfunction as a Driver of a Pro-Dysbiotic, Type 2-Skewing Microenvironment
6.4. Unifying Feedback Loops and Knowledge Gaps
7. Type 2/Allergy-Associated CRS Entities: Clinical Prototypes
7.1. Allergic Fungal Rhinosinusitis (AFRS)
7.2. Central Compartment Atopic Disease (CCAD)
7.3. Aspirin-Exacerbated Respiratory Disease (AERD)
8. Therapeutic Implications: From Biologics to Microbiome Modulation
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dykewicz, M.S.; Wallace, D.V.; Amrol, D.J.; Baroody, F.M.; Bernstein, J.A.; Craig, T.J.; Dinakar, C.; Ellis, A.K.; Finegold, I.; Golden, D.B.K.; et al. Rhinitis 2020: A practice parameter update. J. Allergy Clin. Immunol. 2020, 146, 721–767. [Google Scholar] [CrossRef]
- Rondon, C.; Campo, P.; Eguiluz-Gracia, I.; Plaza, C.; Bogas, G.; Galindo, P.; Mayorga, C.; Torres, M.J. Local allergic rhinitis is an independent rhinitis phenotype: The results of a 10-year follow-up study. Allergy 2018, 73, 470–478. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef]
- Gurrola, J., 2nd; Borish, L. Chronic rhinosinusitis: Endotypes, biomarkers, and treatment response. J. Allergy Clin. Immunol. 2017, 140, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- McCrory, D.C.; Williams, J.W.; Dolor, R.J.; Gray, R.N.; Kolimaga, J.T.; Reed, S.; Sundy, J.; Witsell, D.L. Management of allergic rhinitis in the working-age population. Evid. Rep. Technol. Assess. (Summ.) 2003, 67, 1–4. [Google Scholar]
- Meltzer, E.O.; Blaiss, M.S.; Naclerio, R.M.; Stoloff, S.W.; Derebery, M.J.; Nelson, H.S.; Boyle, J.M.; Wingertzahn, M.A. Burden of allergic rhinitis: Allergies in America, Latin America, and Asia-Pacific adult surveys. Allergy Asthma Proc. 2012, 33, S113–S141. [Google Scholar] [CrossRef] [PubMed]
- Blaiss, M.S.; Meltzer, E.O.; Derebery, M.J.; Boyle, J.M. Patient and healthcare-provider perspectives on the burden of allergic rhinitis. Allergy Asthma Proc. 2007, 28, S4–S10. [Google Scholar] [CrossRef]
- Keith, P.K.; Desrosiers, M.; Laister, T.; Schellenberg, R.R.; Waserman, S. The burden of allergic rhinitis (AR) in Canada: Perspectives of physicians and patients. Allergy Asthma Clin. Immunol. 2012, 8, 7. [Google Scholar] [CrossRef]
- Bauchau, V.; Durham, S.R. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur. Respir. J. 2004, 24, 758–764. [Google Scholar] [CrossRef]
- Bousquet, J.; Fokkens, W.; Burney, P.; Durham, S.R.; Bachert, C.; Akdis, C.A.; Canonica, G.W.; Dahlen, S.E.; Zuberbier, T.; Bieber, T.; et al. Important research questions in allergy and related diseases: Nonallergic rhinitis: A GA2LEN paper. Allergy 2008, 63, 842–853. [Google Scholar] [CrossRef]
- Leynaert, B.; Bousquet, J.; Neukirch, C.; Liard, R.; Neukirch, F. Perennial rhinitis: An independent risk factor for asthma in nonatopic subjects: Results from the European Community Respiratory Health Survey. J. Allergy Clin. Immunol. 1999, 104, 301–304. [Google Scholar] [CrossRef]
- Settipane, R.A.; Lieberman, P. Update on nonallergic rhinitis. Ann. Allergy Asthma Immunol. 2001, 86, 494–507. [Google Scholar] [CrossRef]
- Tomassen, P.; Newson, R.B.; Hoffmans, R.; Lotvall, J.; Cardell, L.O.; Gunnbjornsdottir, M.; Thilsing, T.; Matricardi, P.; Kramer, U.; Makowska, J.S.; et al. Reliability of EP3OS symptom criteria and nasal endoscopy in the assessment of chronic rhinosinusitis—A GA(2) LEN study. Allergy 2011, 66, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Pilan, R.R.; Pinna, F.R.; Bezerra, T.F.; Mori, R.L.; Padua, F.G.; Bento, R.F.; Perez-Novo, C.; Bachert, C.; Voegels, R.L. Prevalence of chronic rhinosinusitis in Sao Paulo. Rhinology 2012, 50, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.B.; Fu, Q.L.; Zhang, H.; Cheng, L.; Wang, Y.J.; Zhu, D.D.; Lv, W.; Liu, S.X.; Li, P.Z.; Ou, C.Q.; et al. Epidemiology of chronic rhinosinusitis: Results from a cross-sectional survey in seven Chinese cities. Allergy 2015, 70, 533–539. [Google Scholar] [CrossRef]
- Dietz de Loos, D.; Lourijsen, E.S.; Wildeman, M.A.M.; Freling, N.J.M.; Wolvers, M.D.J.; Reitsma, S.; Fokkens, W.J. Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J. Allergy Clin. Immunol. 2019, 143, 1207–1214. [Google Scholar] [CrossRef]
- Hirsch, A.G.; Nordberg, C.; Bandeen-Roche, K.; Tan, B.K.; Schleimer, R.P.; Kern, R.C.; Sundaresan, A.; Pinto, J.M.; Kennedy, T.L.; Greene, J.S.; et al. Radiologic sinus inflammation and symptoms of chronic rhinosinusitis in a population-based sample. Allergy 2020, 75, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, I.A.; Shah, S.B. Chronic rhinosinusitis: Allergy and sinus computed tomography relationships. Otolaryngol. Head Neck Surg. 2000, 123, 687–691. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, M.; Liu, Z. Revisiting Asian chronic rhinosinusitis in the era of type 2 biologics. Clin. Exp. Allergy 2022, 52, 231–243. [Google Scholar] [CrossRef]
- Wilson, K.F.; McMains, K.C.; Orlandi, R.R. The association between allergy and chronic rhinosinusitis with and without nasal polyps: An evidence-based review with recommendations. Int. Forum Allergy Rhinol. 2014, 4, 93–103. [Google Scholar] [CrossRef]
- Cho, S.H.; Hamilos, D.L.; Han, D.H.; Laidlaw, T.M. Phenotypes of Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2020, 8, 1505–1511. [Google Scholar] [CrossRef]
- McCormick, J.P.; Thompson, H.M.; Cho, D.Y.; Woodworth, B.A.; Grayson, J.W. Phenotypes in Chronic Rhinosinusitis. Curr. Allergy Asthma Rep. 2020, 20, 20. [Google Scholar] [CrossRef]
- Song, W.J.; Lee, J.H.; Won, H.K.; Bachert, C. Chronic Rhinosinusitis with Nasal Polyps in Older Adults: Clinical Presentation, Pathophysiology, and Comorbidity. Curr. Allergy Asthma Rep. 2019, 19, 46. [Google Scholar] [CrossRef]
- Chang, E.H.; Stern, D.A.; Willis, A.L.; Guerra, S.; Wright, A.L.; Martinez, F.D. Early life risk factors for chronic sinusitis: A longitudinal birth cohort study. J. Allergy Clin. Immunol. 2018, 141, 1291–1297.e1292. [Google Scholar] [CrossRef]
- DelGaudio, J.M.; Loftus, P.A.; Hamizan, A.W.; Harvey, R.J.; Wise, S.K. Central compartment atopic disease. Am. J. Rhinol. Allergy 2017, 31, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Vandeplas, G.; Huynh, T.M.T.; Joish, V.N.; Mannent, L.; Tomassen, P.; Van Zele, T.; Cardell, L.O.; Arebro, J.; Olze, H.; et al. The Global Allergy and Asthma European Network (GALEN rhinosinusitis cohort: A large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 2019, 57, 32–42. [Google Scholar] [CrossRef]
- Akdis, C.A.; Bachert, C.; Cingi, C.; Dykewicz, M.S.; Hellings, P.W.; Naclerio, R.M.; Schleimer, R.P.; Ledford, D. Endotypes and phenotypes of chronic rhinosinusitis: A PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2013, 131, 1479–1490. [Google Scholar] [CrossRef]
- Bachert, C.; Marple, B.; Hosemann, W.; Cavaliere, C.; Wen, W.; Zhang, N. Endotypes of Chronic Rhinosinusitis with Nasal Polyps: Pathology and Possible Therapeutic Implications. J. Allergy Clin. Immunol. Pract. 2020, 8, 1514–1519. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, N.; Xu, Z.; Zhang, L.; Bachert, C. The Development of the Mucosal Concept in Chronic Rhinosinusitis and Its Clinical Implications. J. Allergy Clin. Immunol. Pract. 2022, 10, 707–715. [Google Scholar] [CrossRef]
- Tomassen, P.; Vandeplas, G.; Van Zele, T.; Cardell, L.O.; Arebro, J.; Olze, H.; Forster-Ruhrmann, U.; Kowalski, M.L.; Olszewska-Ziaber, A.; Holtappels, G.; et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 2016, 137, 1449–1456.e1444. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Akdis, C.A. Phenotypes and Emerging Endotypes of Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2016, 4, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Kato, A. Immunopathology of chronic rhinosinusitis. Allergol. Int. 2015, 64, 121–130. [Google Scholar] [CrossRef]
- Schleimer, R.P. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu. Rev. Pathol. 2017, 12, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, N.; Bo, M.; Holtappels, G.; Zheng, M.; Lou, H.; Wang, H.; Zhang, L.; Bachert, C. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016, 138, 1344–1353. [Google Scholar] [CrossRef]
- Tan, B.K.; Klingler, A.I.; Poposki, J.A.; Stevens, W.W.; Peters, A.T.; Suh, L.A.; Norton, J.; Carter, R.G.; Hulse, K.E.; Harris, K.E.; et al. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J. Allergy Clin. Immunol. 2017, 139, 699–703.e697. [Google Scholar] [CrossRef] [PubMed]
- Stevens, W.W.; Peters, A.T.; Tan, B.K.; Klingler, A.I.; Poposki, J.A.; Hulse, K.E.; Grammer, L.C.; Welch, K.C.; Smith, S.S.; Conley, D.B.; et al. Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2019, 7, 2812–2820.e2813. [Google Scholar] [CrossRef]
- Kato, A.; Peters, A.T.; Stevens, W.W.; Schleimer, R.P.; Tan, B.K.; Kern, R.C. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 2022, 77, 812–826. [Google Scholar] [CrossRef]
- Lee, M.; Kim, D.W.; Khalmuratova, R.; Shin, S.H.; Kim, Y.M.; Han, D.H.; Kim, H.J.; Kim, D.Y.; Rhee, C.S.; Park, J.W.; et al. The IFN-gamma-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition. Mucosal Immunol. 2019, 12, 601–611. [Google Scholar] [CrossRef]
- Borish, L.; Hamilos, D.L. Endotype-Phenotype Correlation in Chronic Rhinosinusitis: Is It Time to Think Beyond Polyposis? J. Allergy Clin. Immunol. Pract. 2019, 7, 2821–2822. [Google Scholar] [CrossRef]
- Bachert, C.; Zhang, N. Medical algorithm: Diagnosis and treatment of chronic rhinosinusitis. Allergy 2020, 75, 240–242. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, N.; Zheng, M.; Li, Y.; Meng, L.; Ruan, Y.; Han, J.; Zhao, N.; Wang, X.; Zhang, L.; et al. Cross-talk between T(H)2 and T(H)17 pathways in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019, 144, 1254–1264. [Google Scholar] [CrossRef]
- Ramakrishnan, V.R.; Hauser, L.J.; Feazel, L.M.; Ir, D.; Robertson, C.E.; Frank, D.N. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J. Allergy Clin. Immunol. 2015, 136, 334–342.e331. [Google Scholar] [CrossRef]
- Cope, E.K.; Goldberg, A.N.; Pletcher, S.D.; Lynch, S.V. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome 2017, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Grayson, J.W.; Hopkins, C.; Mori, E.; Senior, B.; Harvey, R.J. Contemporary Classification of Chronic Rhinosinusitis Beyond Polyps vs. No Polyps: A Review. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 831–838, Erratum in JAMA Otolaryngol. Head Neck Surg. 2020, 146, 876.. [Google Scholar] [CrossRef]
- Arbes, S.J., Jr.; Gergen, P.J.; Elliott, L.; Zeldin, D.C. Prevalences of positive skin test responses to 10 common allergens in the US population: Results from the third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 2005, 116, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.; Jarvis, D.; Pekkanen, J.; Chinn, S.; Janson, C.; Leynaert, B.; Luczynska, C.; Garcia-Esteban, R.; Burney, P.; Anto, J.M.; et al. Geographic variations in the effect of atopy on asthma in the European Community Respiratory Health Study. J. Allergy Clin. Immunol. 2004, 114, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.L.; Borish, L. Chronic sinusitis pathophysiology: The role of allergy. Am. J. Rhinol. Allergy 2013, 27, 367–371. [Google Scholar] [CrossRef]
- White, A.A.; Stevenson, D.D. Aspirin-exacerbated respiratory disease. N. Engl. J. Med. 2018, 379, 1060–1070. [Google Scholar] [CrossRef]
- Abreu, N.A.; Nagalingam, N.A.; Song, Y.; Roediger, F.C.; Pletcher, S.D.; Goldberg, A.N.; Lynch, S.V. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci. Transl. Med. 2012, 4, 151ra124. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, R.; Xiong, X.; Hu, Z.; Mao, X.; Wang, X.; Zhang, J.; Sun, P.; Yue, Z.; Wang, W.; et al. Alterations of nasal microbiome in eosinophilic chronic rhinosinusitis. J. Allergy Clin. Immunol. 2023, 151, 1286–1295.e1282. [Google Scholar] [CrossRef]
- Chegini, Z.; Didehdar, M.; Khoshbayan, A.; Karami, J.; Yousefimashouf, M.; Shariati, A. The role of Staphylococcus aureus enterotoxin B in chronic rhinosinusitis with nasal polyposis. Cell Commun. Signal. 2022, 20, 29. [Google Scholar] [CrossRef]
- Watts, A.M.; West, N.P.; Zhang, P.; Smith, P.K.; Cripps, A.W.; Cox, A.J. The Gut Microbiome of Adults with Allergic Rhinitis Is Characterised by Reduced Diversity and an Altered Abundance of Key Microbial Taxa Compared to Controls. Int. Arch. Allergy Immunol. 2021, 182, 94–105. [Google Scholar] [CrossRef]
- Wang, K.S.; Tu, J.H.; Wang, Q.X.; Zhou, S.Z.; Wu, J.R.; Qiu, Q.H. Alterations of gut microbiome in chronic rhinosinusitis: Insights from a mendelian randomization study. Braz. J. Otorhinolaryngol. 2025, 92, 101698. [Google Scholar] [CrossRef]
- Chalermwatanachai, T.; Vilchez-Vargas, R.; Holtappels, G.; Lacoere, T.; Jauregui, R.; Kerckhof, F.M.; Pieper, D.H.; Van de Wiele, T.; Vaneechoutte, M.; Van Zele, T.; et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci. Rep. 2018, 8, 7926. [Google Scholar] [CrossRef]
- Psaltis, A.J.; Mackenzie, B.W.; Cope, E.K.; Ramakrishnan, V.R. Unraveling the role of the microbiome in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2022, 149, 1513–1521. [Google Scholar] [CrossRef]
- Connell, J.T.; Bouras, G.; Yeo, K.; Fenix, K.; Cooksley, C.; Bassiouni, A.; Vreugde, S.; Wormald, P.J.; Psaltis, A.J. Characterising the allergic fungal rhinosinusitis microenvironment using full-length 16S rRNA gene amplicon sequencing and fungal ITS sequencing. Allergy 2024, 79, 3082–3094. [Google Scholar] [CrossRef]
- Lee, J.T.; Simpson, C.A.; Yang, H.H.; Suh, J.D.; Wang, M.B.; Lagishetty, V.; Liang, F.; Jacobs, J.P. Fungal and Bacterial Microbiome in Sinus Mucosa of Patients with and without Chronic Rhinosinusitis. Laryngoscope 2024, 134, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Simpson, C.A.; Srivastava, M.; Bera, A.; Cappelletti, M.; Suh, J.D.; Wang, M.B.; Beswick, D.M.; Maxim, T.; Basak, S.K.; et al. Biodiversity of the Bacterial and Fungal Microbiome and Associated Inflammatory Cytokine Profile in Chronic Rhinosinusitis. Int. Forum Allergy Rhinol. 2025, 15, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Huntley, K.S.; Raber, J.; Fine, L.; Bernstein, J.A. Influence of the Microbiome on Chronic Rhinosinusitis with and Without Polyps: An Evolving Discussion. Front. Allergy 2021, 2, 737086. [Google Scholar] [CrossRef]
- Kumar, N.; Brar, T.; Kita, H.; Marks, L.A.; Miglani, A.; Marino, M.J.; Lal, D. Viruses in chronic rhinosinusitis: A systematic review. Front. Allergy 2023, 4, 1237068. [Google Scholar] [CrossRef] [PubMed]
- Feazel, L.M.; Robertson, C.E.; Ramakrishnan, V.R.; Frank, D.N. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope 2012, 122, 467–472. [Google Scholar] [CrossRef]
- Anderson, M.; Stokken, J.; Sanford, T.; Aurora, R.; Sindwani, R. A systematic review of the sinonasal microbiome in chronic rhinosinusitis. Am. J. Rhinol. Allergy 2016, 30, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Wagner Mackenzie, B.; Waite, D.W.; Hoggard, M.; Douglas, R.G.; Taylor, M.W.; Biswas, K. Bacterial community collapse: A meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 2017, 19, 381–392. [Google Scholar] [CrossRef]
- Ramakrishnan, V.R.; Gitomer, S.; Kofonow, J.M.; Robertson, C.E.; Frank, D.N. Investigation of sinonasal microbiome spatial organization in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.C.; Cheng, K.J.; Wang, F.; Zhou, S.H. Role of atopy in chronic rhinosinusitis with nasal polyps: Does an atopic condition affect the severity and recurrence of disease? J. Laryngol. Otol. 2016, 130, 640–644. [Google Scholar] [CrossRef]
- Adkins, T.N.; Goodgold, H.M.; Hendershott, L.; Slavin, R.G. Does inhaled pollen enter the sinus cavities? Ann. Allergy Asthma Immunol. 1998, 81, 181–184. [Google Scholar] [CrossRef]
- Hamizan, A.W.; Christensen, J.M.; Ebenzer, J.; Oakley, G.; Tattersall, J.; Sacks, R.; Harvey, R.J. Middle turbinate edema as a diagnostic marker of inhalant allergy. Int. Forum Allergy Rhinol. 2017, 7, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Philpott, C.M.; Erskine, S.; Hopkins, C.; Kumar, N.; Anari, S.; Kara, N.; Sunkaraneni, S.; Ray, J.; Clark, A.; Wilson, A.; et al. Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: Data from the UK National Chronic Rhinosinusitis Epidemiology Study. Respir. Res. 2018, 19, 129. [Google Scholar] [CrossRef]
- Benjamin, M.R.; Stevens, W.W.; Li, N.; Bose, S.; Grammer, L.C.; Kern, R.C.; Tan, B.K.; Conley, D.B.; Smith, S.S.; Welch, K.C.; et al. Clinical Characteristics of Patients with Chronic Rhinosinusitis without Nasal Polyps in an Academic Setting. J. Allergy Clin. Immunol. Pract. 2019, 7, 1010–1016. [Google Scholar] [CrossRef]
- Dykewicz, M.S.; Rodrigues, J.M.; Slavin, R.G. Allergic fungal rhinosinusitis. J. Allergy Clin. Immunol. 2018, 142, 341–351. [Google Scholar] [CrossRef]
- Halderman, A.A.; Tully, L.J. The Role of Allergy in Chronic Rhinosinusitis. Otolaryngol. Clin. N. Am. 2017, 50, 1077–1090. [Google Scholar] [CrossRef]
- Grimm, D.; Hwang, P.H.; Lin, Y.T. The link between allergic rhinitis and chronic rhinosinusitis. Curr. Opin. Otolaryngol. Head Neck Surg. 2023, 31, 3–10. [Google Scholar] [CrossRef]
- Helman, S.N.; Barrow, E.; Edwards, T.; DelGaudio, J.M.; Levy, J.M.; Wise, S.K. The Role of Allergic Rhinitis in Chronic Rhinosinusitis. Immunol. Allergy Clin. N. Am. 2020, 40, 201–214. [Google Scholar] [CrossRef]
- Mahdavinia, M.; Engen, P.A.; LoSavio, P.S.; Naqib, A.; Khan, R.J.; Tobin, M.C.; Mehta, A.; Kota, R.; Preite, N.Z.; Codispoti, C.D.; et al. The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients. J. Allergy Clin. Immunol. 2018, 142, 287–290.e284. [Google Scholar] [CrossRef]
- Lal, D.; Keim, P.; Delisle, J.; Barker, B.; Rank, M.A.; Chia, N.; Schupp, J.M.; Gillece, J.D.; Cope, E.K. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int. Forum Allergy Rhinol. 2017, 7, 561–569. [Google Scholar] [CrossRef]
- Gan, W.; Yang, F.; Meng, J.; Liu, F.; Liu, S.; Xian, J. Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur. Arch. Otorhinolaryngol. 2021, 278, 711–718. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.H.; Lim, J.Y.; Kim, D.; Jeong, I.S.; Lee, D.K.; Jang, Y.J. Association between the sinus microbiota with eosinophilic inflammation and prognosis in chronic rhinosinusitis with nasal polyps. Exp. Mol. Med. 2020, 52, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Kidoguchi, M.; Imoto, Y.; Noguchi, E.; Nakamura, T.; Morii, W.; Adachi, N.; Ii, R.; Koyama, K.; Aoki, S.; Miyashita, K.; et al. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J. Allergy Clin. Immunol. 2023, 152, 1669–1676.e1663. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, T.J.; Campion, N.J.; Freisl, K.; Liu, D.T.; Gangl, K.; Stanek, V.; Tu, A.; Pjevac, P.; Hausmann, B.; Eckl-Dorna, J.; et al. The nasal microbiome in patients suffering from non-steroidal anti-inflammatory drugs-exacerbated respiratory disease in absence of corticosteroids. Front. Immunol. 2023, 14, 1112345. [Google Scholar] [CrossRef] [PubMed]
- Schleimer, R.P.; Berdnikovs, S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J. Allergy Clin. Immunol. 2017, 139, 1752–1761. [Google Scholar] [CrossRef]
- Steelant, B. Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr. Opin. Pulm. Med. 2020, 26, 20–26. [Google Scholar] [CrossRef]
- Koefoed, A.; Wagner Mackenzie, B.; Douglas, R.; Biswas, K. Current evidence of biofilms in chronic rhinosinusitis- a microbiological perspective. Expert. Rev. Clin. Immunol. 2023, 19, 911–920. [Google Scholar] [CrossRef]
- Lucas, S.K.; Feddema, E.; Boyer, H.C.; Hunter, R.C. Diversity of cystic fibrosis chronic rhinosinusitis microbiota correlates with different pathogen dominance. J. Cyst. Fibros. 2021, 20, 678–681. [Google Scholar] [CrossRef]
- Laulajainen-Hongisto, A.; Toppila-Salmi, S.K.; Luukkainen, A.; Kern, R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front. Cell Dev. Biol. 2020, 8, 204. [Google Scholar] [CrossRef]
- Ordovas-Montanes, J.; Dwyer, D.F.; Nyquist, S.K.; Buchheit, K.M.; Vukovic, M.; Deb, C.; Wadsworth, M.H., 2nd; Hughes, T.K.; Kazer, S.W.; Yoshimoto, E.; et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 2018, 560, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, D.; Bassiouni, A.; Cooksley, C.; Ou, J.; Hauben, E.; Wormald, P.J.; Vreugde, S. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis. Allergy 2014, 69, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Hulse, K.E.; Stevens, W.W.; Tan, B.K.; Schleimer, R.P. Pathogenesis of nasal polyposis. Clin. Exp. Allergy 2015, 45, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Denning, D.W.; Ferguson, B.J.; Ponikau, J.; Buzina, W.; Kita, H.; Marple, B.; Panda, N.; Vlaminck, S.; Kauffmann-Lacroix, C.; et al. Fungal rhinosinusitis: A categorization and definitional schema addressing current controversies. Laryngoscope 2009, 119, 1809–1818. [Google Scholar] [CrossRef]
- Bent, J.P., 3rd; Kuhn, F.A. Diagnosis of allergic fungal sinusitis. Otolaryngol. Head Neck Surg. 1994, 111, 580–588. [Google Scholar] [CrossRef]
- Collins, M.; Nair, S.; Smith, W.; Kette, F.; Gillis, D.; Wormald, P.J. Role of local immunoglobulin E production in the pathophysiology of noninvasive fungal sinusitis. Laryngoscope 2004, 114, 1242–1246. [Google Scholar] [CrossRef]
- Barac, A.; Stevanovic, G.; Pekmezovic, M.; Rakocevic, Z.; Stosovic, R.; Erovic, B.; Tomic Spiric, V. Study toward resolving the controversy over the definition of allergic fungal rhinosinusitis. Med. Mycol. 2018, 56, 162–171. [Google Scholar] [CrossRef]
- Kuhn, F.A.; Javer, A.R. Allergic fungal sinusitis: A four-year follow-up. Am. J. Rhinol. 2000, 14, 149–156. [Google Scholar] [CrossRef]
- Tyler, M.A.; Padro Dietz, C.J.; Russell, C.B.; Citardi, M.J.; Assassi, S.; Ying, J.; Luong, A.U. Distinguishing Molecular Features of Allergic Fungal Rhinosinusitis. Otolaryngol. Head Neck Surg. 2018, 159, 185–193. [Google Scholar] [CrossRef]
- Tyler, M.A.; Russell, C.B.; Smith, D.E.; Rottman, J.B.; Padro Dietz, C.J.; Hu, X.; Citardi, M.J.; Fakhri, S.; Assassi, S.; Luong, A. Large-scale gene expression profiling reveals distinct type 2 inflammatory patterns in chronic rhinosinusitis subtypes. J. Allergy Clin. Immunol. 2017, 139, 1061–1064.e1064. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, D.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Chronic Rhinosinusitis with Polyps Is Characterized by Increased Mucosal and Blood Th17 Effector Cytokine Producing Cells. Front. Physiol. 2017, 8, 898. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Knight, J.M.; Li, Y.D.; Ashoori, F.; Citardi, M.J.; Yao, W.C.; Corry, D.B.; Luong, A.U. Allergic fungal rhinosinusitis linked to other hyper-IgE syndromes through defective T(H)17 responses. J. Allergy Clin. Immunol. 2024, 154, 1169–1179. [Google Scholar] [CrossRef]
- Kato, A.; Schleimer, R.P. Beyond inflammation: Airway epithelial cells are at the interface of innate and adaptive immunity. Curr. Opin. Immunol. 2007, 19, 711–720. [Google Scholar] [CrossRef]
- AlBloushi, S.; Al-Ahmad, M. Exploring the immunopathology of type 2 inflammatory airway diseases. Front. Immunol. 2024, 15, 1285598. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.H.; Stybayeva, G.; Hwang, S.H. Short-Term Efficacy of Biologics in Recalcitrant Allergic Fungal Rhinosinusitis: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2025, 173, 840–847. [Google Scholar] [CrossRef]
- Chua, A.J.; Jafar, A.; Luong, A.U. Update on allergic fungal rhinosinusitis. Ann. Allergy Asthma Immunol. 2023, 131, 300–306. [Google Scholar] [CrossRef]
- Roland, L.T.; Damask, C.; Luong, A.U.; Azar, A.; Ebert, C.S., Jr.; Edwards, T.; Cahill, K.N.; Cho, D.Y.; Corry, D.; Croston, T.L.; et al. Allergic Fungal Rhinosinusitis Diagnosis, Management, Associated Conditions, Pathophysiology, and Future Directions: Summary of a Multidisciplinary Workshop. Int. Forum Allergy Rhinol. 2025, 15, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Hamizan, A.W.; Loftus, P.A.; Alvarado, R.; Ho, J.; Kalish, L.; Sacks, R.; DelGaudio, J.M.; Harvey, R.J. Allergic phenotype of chronic rhinosinusitis based on radiologic pattern of disease. Laryngoscope 2018, 128, 2015–2021. [Google Scholar] [CrossRef]
- Marcus, S.; Schertzer, J.; Roland, L.T.; Wise, S.K.; Levy, J.M.; DelGaudio, J.M. Central compartment atopic disease: Prevalence of allergy and asthma compared with other subtypes of chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2020, 10, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Roland, L.T.; Marcus, S.; Schertzer, J.S.; Wise, S.K.; Levy, J.M.; DelGaudio, J.M. Computed Tomography Findings Can Help Identify Different Chronic Rhinosinusitis with Nasal Polyp Phenotypes. Am. J. Rhinol. Allergy 2020, 34, 679–685. [Google Scholar] [CrossRef]
- Huang, S.K.; Hsieh, C.H.; Weng, M.C.; Lai, J.T.; Shen, P.H. Central Compartment Atopic Disease and Its Surgical Outcomes: Olfactory Changes and Technical Notes. Ther. Adv. Allergy Rhinol. 2023, 14, 27534030231217423. [Google Scholar] [CrossRef]
- Steehler, A.J.; Vuncannon, J.R.; Wise, S.K.; DelGaudio, J.M. Central compartment atopic disease: Outcomes compared with other subtypes of chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2021, 11, 1549–1556. [Google Scholar] [CrossRef]
- Marcus, S.; Roland, L.T.; DelGaudio, J.M.; Wise, S.K. The relationship between allergy and chronic rhinosinusitis. Laryngoscope Investig. Otolaryngol. 2019, 4, 13–17. [Google Scholar] [CrossRef]
- Shih, L.C.; Hsieh, B.H.; Ma, J.H.; Huang, S.S.; Tsou, Y.A.; Lin, C.D.; Huang, K.H.; Tai, C.J. A comparison of central compartment atopic disease and lateral dominant nasal polyps. Int. Forum Allergy Rhinol. 2022, 12, 1387–1396. [Google Scholar] [CrossRef]
- Nie, Z.; Xu, Z.; Fan, Y.; Guo, Y.; Chen, C.; Liu, W.; Li, Y.; Lai, Y.; Shi, J.; Chen, F. Clinical characteristics of central compartment atopic disease in Southern China. Int. Forum Allergy Rhinol. 2023, 13, 205–215. [Google Scholar] [CrossRef]
- Kong, W.; Wu, Q.; Chen, Y.; Ren, Y.; Wang, W.; Zheng, R.; Deng, H.; Yuan, T.; Qiu, H.; Wang, X.; et al. Chinese Central Compartment Atopic Disease: The Clinical Characteristics and Cellular Endotypes Based on Whole-Slide Imaging. J. Asthma Allergy 2022, 15, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Rajan, J.P.; Wineinger, N.E.; Stevenson, D.D.; White, A.A. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: A meta-analysis of the literature. J. Allergy Clin. Immunol. 2015, 135, 676–681.e671. [Google Scholar] [CrossRef]
- Stevens, W.W.; Peters, A.T.; Hirsch, A.G.; Nordberg, C.M.; Schwartz, B.S.; Mercer, D.G.; Mahdavinia, M.; Grammer, L.C.; Hulse, K.E.; Kern, R.C.; et al. Clinical Characteristics of Patients with Chronic Rhinosinusitis with Nasal Polyps, Asthma, and Aspirin-Exacerbated Respiratory Disease. J. Allergy Clin. Immunol. Pract. 2017, 5, 1061–1070.e1063. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Feng, S.; Xia, W.; Qu, L.; Li, X.; Chen, S.; Ding, M.; Lai, Y.; Shi, J.; Xu, G.; et al. Aspirin-exacerbated respiratory disease in China: A cohort investigation and literature review. Am. J. Rhinol. Allergy 2012, 26, e20–e22. [Google Scholar] [CrossRef]
- Szczeklik, A. Aspirin-induced asthma as a viral disease. Clin. Allergy 1988, 18, 15–20. [Google Scholar] [CrossRef]
- Mendelsohn, D.; Jeremic, G.; Wright, E.D.; Rotenberg, B.W. Revision rates after endoscopic sinus surgery: A recurrence analysis. Ann. Otol. Rhinol. Laryngol. 2011, 120, 162–166. [Google Scholar] [CrossRef]
- Morrissey, D.K.; Bassiouni, A.; Psaltis, A.J.; Naidoo, Y.; Wormald, P.J. Outcomes of modified endoscopic Lothrop in aspirin-exacerbated respiratory disease with nasal polyposis. Int. Forum Allergy Rhinol. 2016, 6, 820–825. [Google Scholar] [CrossRef]
- Kowalski, M.L.; Agache, I.; Bavbek, S.; Bakirtas, A.; Blanca, M.; Bochenek, G.; Bonini, M.; Heffler, E.; Klimek, L.; Laidlaw, T.M.; et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)—A EAACI position paper. Allergy 2019, 74, 28–39. [Google Scholar] [CrossRef]
- Hoyte, F.C.; Weber, R.W.; Katial, R.K. Pancreatitis as a novel complication of aspirin therapy in patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2012, 129, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.R.; Lipworth, B.J.; Guthrie, B.; Jackson, C.; Donnan, P.T.; Santiago, V.H. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: Meta-analysis of controlled clinical trials. J. Allergy Clin. Immunol. 2014, 134, 40–45. [Google Scholar] [CrossRef]
- Kshirsagar, R.S.; Chou, D.W.; Wei, J.; Liang, J. Aspirin-exacerbated respiratory disease: Longitudinal assessment of a large cohort and implications of diagnostic delay. Int. Forum Allergy Rhinol. 2020, 10, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Wangberg, H.; Spierling Bagsic, S.R.; Osuna, L.; White, A.A. Appraisal of the Real-World Effectiveness of Biologic Therapies in Aspirin-Exacerbated Respiratory Disease. J. Allergy Clin. Immunol. Pract. 2022, 10, 478–484.e473. [Google Scholar] [CrossRef]
- Berges-Gimeno, M.P.; Simon, R.A.; Stevenson, D.D. The natural history and clinical characteristics of aspirin-exacerbated respiratory disease. Ann. Allergy Asthma Immunol. 2002, 89, 474–478. [Google Scholar] [CrossRef]
- Kratchmarov, R.; Dharia, T.; Buchheit, K. Clinical efficacy and mechanisms of biologics for chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2025, 155, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Endam, L.M.; Alromaih, S.; Gonzalez, E.; Madrenas, J.; Cousineau, B.; Renteria, A.E.; Desrosiers, M. Intranasal Application of Lactococcus lactis W136 Is Safe in Chronic Rhinosinusitis Patients with Previous Sinus Surgery. Front. Cell Infect. Microbiol. 2020, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Al-Romaih, S.; Harati, O.; Mfuna, L.E.; Filali-Mouhim, A.; Pelletier, A.; Renteria Flores, A.; Desrosiers, M. Response to intranasal Lactococcus lactis W136 probiotic supplementation in refractory CRS is associated with modulation of non-type 2 inflammation and epithelial regeneration. Front. Allergy 2023, 4, 1046684. [Google Scholar] [CrossRef]
- Abbas, A.; Abbas, M.; Mughal, Z.; Martinez-Devesa, P.; Qureishi, A. The Efficacy and Safety of Probiotics in the Management of Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 5001. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.A.; Gill, A.L.; Gill, S.R.; Allen, P.D.; Man, L.X. Microbiomics of irrigation with xylitol or Lactococcus lactis in chronic rhinosinusitis. Laryngoscope Investig. Otolaryngol. 2021, 6, 64–70. [Google Scholar] [CrossRef]
- Drilling, A.; Morales, S.; Jardeleza, C.; Vreugde, S.; Speck, P.; Wormald, P.J. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am. J. Rhinol. Allergy 2014, 28, 3–11. [Google Scholar] [CrossRef]
- Shekhar, S.; Schwarzer, M.; Dhariwal, A.; Petersen, F.C. Nasal microbiota transplantation: A gateway to novel treatments. Trends Microbiol. 2025, 33, 264–267. [Google Scholar] [CrossRef]
- Graspeuntner, S.; Heidemann, M.; Jeschke, S.; Lupatsii, M.; Penxova, Z.; Kunzel, S.; Wollenberg, B.; Leichtle, A.; Ploch, M.; Bruchhage, K.L.; et al. Gut microbial communities in chronic rhinosinusitis patients in response to 1,8-Cineol treatment. Curr. Res. Microb. Sci. 2025, 9, 100442. [Google Scholar] [CrossRef]
- Walker, S.M.; Durham, S.R.; Till, S.J.; Roberts, G.; Corrigan, C.J.; Leech, S.C.; Krishna, M.T.; Rajakulasingham, R.K.; Williams, A.; Chantrell, J.; et al. Immunotherapy for allergic rhinitis. Clin. Exp. Allergy 2011, 41, 1177–1200. [Google Scholar] [CrossRef]
- Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 723–729. [Google Scholar] [CrossRef]
- Biswas, K.; Hoggard, M.; Jain, R.; Taylor, M.W.; Douglas, R.G. The nasal microbiota in health and disease: Variation within and between subjects. Front. Microbiol. 2015, 9, 134. [Google Scholar] [CrossRef]
- Lee, R.J.; Kofonow, J.M.; Rosen, P.L.; Siebert, A.P.; Chen, B.; Doghramji, L.; Xiong, G.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 2014, 124, 1393–1405. [Google Scholar] [CrossRef]
- Lee, R.J.; Xiong, G.; Kofonow, J.M.; Chen, B.; Lysenko, A.; Jiang, P.; Abraham, V.; Doghramji, L.; Adappa, N.D.; Palmer, J.N.; et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Investig. 2012, 122, 4145–4159. [Google Scholar] [CrossRef]
- Carey, R.M.; Adappa, N.D.; Palmer, J.N.; Lee, R.J.; Cohen, N.A. Taste Receptors: Regulators of Sinonasal Innate Immunity. Laryngoscope Investig. Otolaryngol. 2016, 1, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Adappa, N.D.; Zhang, Z.; Palmer, J.N.; Kennedy, D.W.; Doghramji, L.; Lysenko, A.; Reed, D.R.; Scott, T.; Zhao, N.W.; Owens, D.; et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int. Forum Allergy Rhinol. 2014, 4, 3–7. [Google Scholar] [CrossRef]
- Adappa, N.D.; Farquhar, D.; Palmer, J.N.; Kennedy, D.W.; Doghramji, L.; Morris, S.A.; Owens, D.; Mansfield, C.; Lysenko, A.; Lee, R.J.; et al. TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2016, 6, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Pothoven, K.L.; Norton, J.E.; Hulse, K.E.; Suh, L.A.; Carter, R.G.; Rocci, E.; Harris, K.E.; Shintani-Smith, S.; Conley, D.B.; Chandra, R.K.; et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J. Allergy Clin. Immunol. 2015, 136, 737–746.e734. [Google Scholar] [CrossRef] [PubMed]
- Bleier, B.S.; Singleton, A.; Nocera, A.L.; Kocharyan, A.; Petkova, V.; Han, X. P-glycoprotein regulates Staphylococcus aureus enterotoxin B-stimulated interleukin-5 and thymic stromal lymphopoietin secretion in organotypic mucosal explants. Int. Forum Allergy Rhinol. 2016, 6, 169–177. [Google Scholar] [CrossRef]
- Miyake, M.M.; Nocera, A.; Miyake, M.M. P-glycoprotein and chronic rhinosinusitis. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, T.; Kato, A.; Peters, A.T.; Hulse, K.E.; Suh, L.A.; Carter, R.; Norton, J.; Grammer, L.C.; Cho, S.H.; Tan, B.K.; et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 2013, 187, 49–57. [Google Scholar] [CrossRef]
- Takabayashi, T.; Kato, A.; Peters, A.T.; Hulse, K.E.; Suh, L.A.; Carter, R.; Norton, J.; Grammer, L.C.; Tan, B.K.; Chandra, R.K.; et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2013, 132, 584–592.e584. [Google Scholar] [CrossRef]
- Kim, D.Y.; Cho, S.H.; Takabayashi, T.; Schleimer, R.P. Chronic Rhinosinusitis and the Coagulation System. Allergy Asthma Immunol. Res. 2015, 7, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Yao, Y.; Pan, L.; Hu, S.T.; Ma, J.; Wang, Z.C.; Kern, R.C.; Schleimer, R.P.; Liu, Z. Common fibrin deposition and tissue plasminogen activator downregulation in nasal polyps with distinct inflammatory endotypes. J. Allergy Clin. Immunol. 2020, 146, 677–681. [Google Scholar] [CrossRef] [PubMed]

| Clinical Phenotype (Prototype) | Key Diagnostic Clues/Clinical Context | Typical Endotype Features (Common, Not Exclusive) | Clinical Relevance/Management Cues |
|---|---|---|---|
| Allergic fungal rhinosinusitis (AFRS) | AFRS typically presents as CRSwNP with allergic mucin and evidence of fungal hypersensitivity in an atopic context. | AFRS is commonly T2-high/eosinophilic with elevated IgE and prominent type 2-skewed inflammation. | Management is usually multimodal and centers on surgery plus anti-inflammatory control, with attention to comorbid allergic disease. |
| Central compartment atopic disease (CCAD) | CCAD is characterized by inflammation/polypoid changes predominating in the central compartment (e.g., the middle turbinate/olfactory cleft region) and is strongly associated with inhalant allergy. | CCAD frequently aligns with a T2-high pattern, but inflammatory expression may vary across patients and populations. | Allergy evaluation and control are clinically central, with topical therapy and surgery used as indicated by anatomy and extent. |
| Aspirin-exacerbated respiratory disease (AERD/N-ERD) | AERD is a clinical syndrome defined by CRSwNP with asthma and respiratory reactions to COX-1 inhibitors, and it is often associated with severe, recurrent disease. | AERD is commonly T2-high/eosinophilic and may show strong type 2 mediator signatures within polyp tissue. | Recognition of the syndrome guides integrated upper–lower airway care and supports consideration of endotype-directed escalation in appropriate patients. |
| Study (Ref.) | Cohort | Allergy/Atopy Definition | Design | Key Microbiome Conclusion Relevant to Allergic/T2-High CRS |
|---|---|---|---|---|
| Mahdavinia et al., 2018 [74] | CRS cohort with allergic phenotyping. | Allergic status/AR assessed within CRS. | Cross-sectional culture-independent bacterial profiling. | Allergic status/AR associated with differences in relative abundance and predicted functional pathways (e.g., lower Corynebacterium spp. in allergic vs. non-allergic CRS), supporting stratification of CRS by allergic features. |
| Lal et al., 2017 [75] | Healthy controls vs. AR vs. CRS. | Clinical AR group (definition per study). | Cross-sectional bacterial community profiling. | Group-level differences in composition/diversity across health, AR and CRS, positioning AR as a distinct sinonasal habitat state relevant when interpreting CRS dysbiosis signals. |
| Gan et al., 2021 [76] | AR vs. CRS vs. controls. | Clinical AR group (definition per study). | Cross-sectional bacterial community profiling. | Differences in diversity and taxonomic composition between AR, CRS and controls, reinforcing that AR should not be treated only as a covariate in CRS microbiome analyses. |
| Abreu et al., 2012 [49] | Rhinosinusitis-associated vs. healthy sinonasal microbiomes. | N/A. | Cross-sectional 16S profiling with mechanistic modeling. | Reduced community diversity with enrichment of specific taxa (e.g., Corynebacterium tuberculostearicum), supporting a commensal-depletion/pathobiont-enrichment dysbiosis framework compatible with barrier–immune hypotheses. |
| Feazel et al., 2012 [61] | CRS vs. controls; middle meatus swabs during ESS. | N/A. | Cross-sectional culture vs. 16S sequencing comparison. | Culture-independent profiling revealed greater biodiversity than culture and showed altered composition with higher Staphylococcus aureus in CRS; diversity correlated with recent antibiotics and asthma, highlighting key confounders for microbiome–atopy inference. |
| Ramakrishnan et al., 2015 [42] | CRS phenotypes and surgical outcome. | N/A. | Cross-sectional 16S profiling with outcome linkage. | Sinonasal microbiota differed across CRS phenotypes and was associated with postoperative outcomes, supporting microbiome-informed stratification relevant to precision CRS frameworks. |
| Anderson et al., 2016 [62] | Systematic review of culture-independent CRS microbiome studies. | N/A. | Systematic review. | Marked heterogeneity across cohorts/sampling/analytics with no single taxon consistently linked to CRS, emphasizing the need for standardized design and endotyping (including allergic/T2 markers) in future work. |
| Cope et al., 2017 [43] | CRS patients with divergent clinical/immune features. | N/A. | Community and functional analyses. | Distinct community states were linked to divergent mucosal immune profiles and clinical consequences, supporting a host–microbe “state” model rather than a single pathogen paradigm. |
| Wagner Mackenzie et al., 2017 [63] | Meta-analysis/ecological synthesis of CRS vs. controls. | N/A. | Meta-analysis/ecological synthesis of 16S datasets. | Supported a “bacterial community collapse” model with reduced diversity and ecological disruption despite inter-study variability, informing restorative approaches rather than pathogen-only targeting. |
| Chalermwatanachai et al., 2018 [54] | CRSwNP vs. controls. | N/A. | Cross-sectional 16S profiling. | CRSwNP was characterized by dysbacteriosis of the nasal microbiota, aligning with T2-high polyp-disease frameworks and providing background for atopy-associated subtypes. |
| Kim et al., 2020 [77] | CRSwNP with eosinophilic inflammation. | N/A. | Cross-sectional profiling and correlations. | Microbial patterns correlated with eosinophilic inflammation, directly linking community structure with T2-relevant tissue inflammation. |
| Liang et al., 2023 [50] | Eosinophilic CRS vs. comparators. | N/A. | Cross-sectional 16S profiling. | Eosinophilic CRS exhibited distinct microbiome alterations compared with non-eosinophilic disease, supporting endotype–microbiome coupling relevant to allergic/T2-high phenotyping. |
| Kidoguchi et al., 2023 [78] | Japanese cohort; eosinophilic CRS focus. | N/A. | Cross-sectional middle meatus profiling. | Microbiome differences were described in eosinophilic CRS in a Japanese population, highlighting geographic/ethnic variability and the need for harmonized sampling/confounder control. |
| Bartosik et al., 2023 [79] | Steroid-free N-ERD/AERD vs. comparator CRS/controls. | N/A. | Cross-sectional profiling in absence of corticosteroids; correlations. | In steroid-free N-ERD, increased staphylococci and reduced corynebacteria correlated with IL-5 and other T2 markers, supporting microbiome–T2 links while addressing corticosteroid confounding. |
| Connell et al., 2024 [56] | AFRS vs. CRSwNP (non-fungal). | N/A. | Multi-kingdom profiling (full-length 16S and fungal ITS). | AFRS showed lower bacterial diversity and Staphylococcus aureus dominance with a mycobiome enriched in Malassezia/Aspergillus/Curvularia, supporting a multi-kingdom dysbiotic microenvironment in allergy-associated CRS. |
| Therapy Class | Primary Target in the Triad (Immune/Barrier/Microbiome) | Evidence Level in CRS (Very High-Level) | Most Relevant Phenotypes/Endotypes | Key Practical Notes/Limitations (Microbiome Perspective) |
|---|---|---|---|---|
| Intranasal corticosteroids + saline irrigations [3,40] | Immune + barrier (reduce inflammation; improve mucociliary clearance) | Established standard of care | Broad CRS; particularly adjunctive in T2-high disease and atopy-associated phenotypes | May indirectly modulate microbial habitat by improving clearance and reducing inflammatory exudate; confounding factor in microbiome studies (should be documented/standardized). |
| Endoscopic sinus surgery (ESS) [3,40] | Barrier/habitat “reset” (ventilation, drainage, access for topical treatments) | Established standard of care in selected patients | Recalcitrant CRS; diffuse CRSwNP; AFRS; AERD | Alters local ecology and enables topical therapies; postoperative microbiome trajectories may relate to recurrence risk [43]. |
| Biologics targeting T2 pathways (anti-IL-4Rα, anti-IgE, anti-IL-5, anti-TSLP) [123] | Immune (T2 axis) | High-level evidence (RCTs/real-world in CRSwNP) | T2-high CRSwNP; AERD; severe eosinophilic disease; refractory AFRS (emerging) [99] | Primarily host-directed; may secondarily reshape microbiome by reducing T2 inflammation and epithelial injury; optimal integration with microbiome-directed adjuncts is unknown. |
| Aspirin desensitization + leukotriene-modifying therapy (AERD) [48,117] | Immune mediator balance (eicosanoid/leukotriene pathways) | Established in AERD specialty care | AERD/N-ERD | Mechanism is not IgE-mediated; requires careful selection/monitoring; may reduce need for repeated antibiotics/steroids, indirectly influencing dysbiosis. |
| Antifungal-directed strategies (AFRS) [3,100,101] | Microbiome (mycobiome) + immune (reduce fungal antigenic drive) | Variable/heterogeneous evidence | AFRS | Evidence for routine antifungals is mixed; ESS + steroid-centric anti-inflammatory control remains core; multi-kingdom profiling may help identify responders. |
| Allergen immunotherapy (AIT) and optimized AR control [1,131] | Immune (allergen-specific tolerance) + barrier (reduce chronic allergic edema) | Established in AR; adjunct role in CRS is phenotype-dependent | CCAD; CRS with strong inhalant allergy comorbidity | Likely benefits the “allergic habitat” rather than directly treating dysbiosis; careful phenotyping needed (systemic vs. local allergic rhinitis). |
| Topical probiotics/bacteriotherapy (e.g., Lactococcus lactis W136) [124,125,126,127] | Microbiome + barrier repair (competitive exclusion; epithelial regeneration signals) | Early-phase clinical studies | Refractory CRS (post-surgery cohorts studied) | Promising safety signals; needs larger controlled trials with standardized endpoints and longitudinal microbiome + host readouts [124]. |
| Bacteriophage therapy (anti-S. aureus biofilms) [128,132] | Microbiome (pathobiont/biofilm targeting) | Preclinical/ex vivo evidence | Biofilm-associated, recalcitrant CRS where S. aureus implicated | Mechanistically attractive for biofilm disease; clinical delivery, resistance, and regulatory pathways remain open questions. |
| Nasal microbiota transplantation (NMT) concepts [129] | Microbiome (community restoration/resilience) | Conceptual/early translational | Future candidate approach for dysbiosis-dominant states | Requires rigorous donor/recipient selection, safety frameworks, and definition of “healthy” sinonasal communities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Petalas, K.; Konstantinou, G.N. Chronic Rhinosinusitis at the Interface of Type 2 Inflammation, Epithelial Barrier Dysfunction, and Microbiome Dysbiosis. Microorganisms 2026, 14, 386. https://doi.org/10.3390/microorganisms14020386
Petalas K, Konstantinou GN. Chronic Rhinosinusitis at the Interface of Type 2 Inflammation, Epithelial Barrier Dysfunction, and Microbiome Dysbiosis. Microorganisms. 2026; 14(2):386. https://doi.org/10.3390/microorganisms14020386
Chicago/Turabian StylePetalas, Konstantinos, and George N. Konstantinou. 2026. "Chronic Rhinosinusitis at the Interface of Type 2 Inflammation, Epithelial Barrier Dysfunction, and Microbiome Dysbiosis" Microorganisms 14, no. 2: 386. https://doi.org/10.3390/microorganisms14020386
APA StylePetalas, K., & Konstantinou, G. N. (2026). Chronic Rhinosinusitis at the Interface of Type 2 Inflammation, Epithelial Barrier Dysfunction, and Microbiome Dysbiosis. Microorganisms, 14(2), 386. https://doi.org/10.3390/microorganisms14020386

