Assessment of Eravacycline Antimicrobial Susceptibility in China During the First Year Following Regulatory Approval (2023–2024): A Real-World Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Antimicrobial Susceptibility Testing
2.3. Bacteriological Outcomes of Antimicrobials
2.4. Statistical Analysis
3. Results
3.1. Microbiological Characteristics
3.2. In Vitro Susceptibility Analysis of Eravacycline
3.3. In Vitro Susceptibility Analysis of Carbapenems
3.4. In Vitro Drug Susceptibility Analysis of Other Antimicrobials
3.5. In Vitro Susceptibility to Other Antimicrobials Among ERV-Susceptible A. baumannii and K. pneumoniae Isolates
3.6. Microbiological Efficacy by Pathogen and Antimicrobial Susceptibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BALF | Bronchoalveolar lavage fluid |
| ChinaCAST | Committee of the National Health Commission on Antimicrobial Susceptibility Testing and Standard Research of China |
| CLSI | Clinical and Laboratory Standards Institute |
| CRAB | Carbapenem-resistant Acinetobacter baumannii |
| CRE | Carbapenem-resistant Enterobacteriaceae |
| CRKP | Carbapenem-resistant Klebsiella pneumonia |
| ERV | Eravacycline |
| ESCMID | European Society of Clinical Microbiology and Infectious Diseases |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| FDA | the US Food and Drug Administration |
| IDSA | Infectious Diseases Society of America |
| IMP | Imipenem |
| MEM | Meropenem |
| MIC | Minimum Inhibitory Concentration |
| NMPA | China’s National Medical Products Administration |
| POL | Polymyxin |
| TGC | Tigecycline |
References
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-4-009346-1.
- Macesic, N.; Uhlemann, A.-C.; Peleg, A.Y. Multidrug-Resistant Gram-Negative Bacterial Infections. Lancet 2025, 405, 257–272. [Google Scholar] [CrossRef]
- Alosaimy, S.; Abdul-Mutakabbir, J.C.; Kebriaei, R.; Jorgensen, S.C.J.; Rybak, M.J. Evaluation of Eravacycline: A Novel Fluorocycline. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 221–238. [Google Scholar] [CrossRef]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/drugs/development-resources/eravacycline-injection-products (accessed on 6 June 2022).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: https://www.eucast.org/fileadmin/eucast/pdf/breakpoints/v_15.0_Breakpoint_Tables.pdf (accessed on 26 January 2023).
- Expert Committee of the National Health Commission on Antimicrobial Susceptibility Testing and Standard Research; Clinical Microbiology Laboratory Specialized Committee of Chinese Hospital Association; Chinese Committee on Antimicrobial Susceptibility Testing. Specifications for Antimicrobial Susceptibility Testing of Eravacycline (2025). Chin. J. Lab. Med. 2025, 48, 693–700.
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025; ISBN 978-1-68440-263-2. [Google Scholar]
- Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 26 January 2023).
- Lee, J.; Sunny, S.; Nazarian, E.; Fornek, M.; Abdallah, M.; Episcopia, B.; Rowlinson, M.C.; Quale, J. Carbapenem-Resistant Klebsiella Pneumoniae in Large Public Acute-Care Healthcare System, New York, NY, USA, 2016–2022. Emerg. Infect. Dis. 2023, 29, 1973–1978. [Google Scholar] [CrossRef]
- Lei, T.; Liao, B.; Yang, L.-R.; Wang, Y.; Chen, X. Hypervirulent and Carbapenem-Resistant Klebsiella Pneumoniae: A Global Public Health Threat. Microbiol. Res. 2024, 288, 127839. [Google Scholar] [CrossRef]
- Qin, X.; Ding, L.; Hao, M.; Li, P.; Hu, F.; Wang, M. Antimicrobial Resistance of Clinical Bacterial Isolates in China: Current Status and Trends. JAC Antimicrob. Resist. 2024, 6, dlae052. [Google Scholar] [CrossRef] [PubMed]
- Manjusha, M.; Yasasve, M.; Saravanan, M.; Belete, M.A. Carbapenem-Resistant Acinetobacter Baumannii Healthcare-Associated Infections: Antimicrobial Resistance and Its Spread as a Global Threat. Int. J. Surg. 2023, 109, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Reuter, S.; Wille, J.; Xanthopoulou, K.; Stefanik, D.; Grundmann, H.; Higgins, P.G.; Seifert, H. A Global View on Carbapenem-Resistant Acinetobacter baumannii. mBio 2023, 14, e02260-23. [Google Scholar] [CrossRef]
- Pogue, J.M.; Mann, T.; Barber, K.E.; Kaye, K.S. Carbapenem-Resistant Acinetobacter baumannii: Epidemiology, Surveillance and Management. Expert. Rev. Anti Infect. Ther. 2013, 11, 383–393. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-Resistant Acinetobacter Baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef]
- Wang, J.L.; Lai, C.C.; Ko, W.C.; Hsueh, P.R. Geographical Patterns of in Vitro Susceptibilities to Tigecycline and Colistin among Worldwide Isolates of Acinetobacter baumannii, Escherichia Coli and Klebsiella Pneumoniae: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Programme, 2016–2021. Int. J. Antimicrob. Agents 2023, 62, 106930. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Zhang, G.; Li, J.; Wang, T.; Kang, W.; Zhang, J.; Sun, H.; Liu, Y.; Xu, Y. In-Vitro Activities of Essential Antimicrobial Agents Including Aztreonam/Avibactam, Eravacycline, Colistin and Other Comparators against Carbapenem-Resistant Bacteria with Different Carbapenemase Genes: A Multi-Centre Study in China, 2021. Int. J. Antimicrob. Agents 2024, 64, 107341. [Google Scholar] [CrossRef]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-Cause Mortality Imbalance in the Tigecycline Phase 3 and 4 Clinical Trials. Int. J. Antimicrob. Agents 2013, 41, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, F.; Chen, Y.; Zhao, C.; Niu, J.; Yang, J.; Li, Z.; Chen, C.; Qiu, S.; Zhang, H.; et al. Efficacy and Safety of Colistin Sulfate in the Treatment of Infections Caused by Carbapenem-Resistant Organisms: A Multicenter Retrospective Cohort Study. J. Thorac. Dis. 2023, 15, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and Safety of Sulbactam–Durlobactam versus Colistin for the Treatment of Patients with Serious Infections Caused by Acinetobacter Baumannii–Calcoaceticus Complex: A Multicentre, Randomised, Active-Controlled, Phase 3, Non-Inferiority Clinical Trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Jo, J.; Kwon, K.T.; Ko, K.S. Multiple Heteroresistance to Tigecycline and Colistin in Acinetobacter Baumannii Isolates and Its Implications for Combined Antibiotic Treatment. J. Biomed. Sci. 2023, 30, 37. [Google Scholar] [CrossRef]
- Roch, M.; Sierra, R.; Andrey, D.O. Antibiotic Heteroresistance in ESKAPE Pathogens, from Bench to Bedside. Clin. Microbiol. Infect. 2023, 29, 320–325. [Google Scholar] [CrossRef]
- Band, V.I.; Satola, S.W.; Smith, R.D.; Hufnagel, D.A.; Bower, C.; Conley, A.B.; Rishishwar, L.; Dale, S.E.; Hardy, D.J.; Vargas, R.L.; et al. Colistin Heteroresistance Is Largely Undetected among Carbapenem-Resistant Enterobacterales in the United States. mBio 2021, 12, e02881-20. [Google Scholar] [CrossRef]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X.; Li, Z.; Li, Z.; Lei, Z.; Fan, Y.; Yang, X.; Liu, Q.; Ma, Y.; Lu, B. Tracking International and Regional Dissemination of the KPC/NDM Co-Producing Klebsiella pneumoniae. Nat. Commun. 2025, 16, 5574. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-Y.; Hsu, C.-K.; Tang, H.-J.; Lai, C.-C. Eravacycline: A Comprehensive Review of in Vitro Activity, Clinical Efficacy, and Real-World Applications. Expert. Rev. Anti Infect. Ther. 2024, 22, 387–398. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Ko, W.-C.; Lee, W.-S.; Lu, P.-L.; Chen, Y.-H.; Cheng, S.-H.; Lu, M.-C.; Lin, C.-Y.; Wu, T.-S.; Yen, M.-Y.; et al. In-Vitro Activity of Cefiderocol, Cefepime/Zidebactam, Cefepime/Enmetazobactam, Omadacycline, Eravacycline and Other Comparative Agents against Carbapenem-Nonsusceptible Enterobacterales: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2017–2020. Int. J. Antimicrob. Agents 2021, 58, 106377. [Google Scholar] [CrossRef]
- Galani, I.; Papoutsaki, V.; Karaiskos, I.; Moustakas, N.; Galani, L.; Maraki, S.; Mavromanolaki, V.E.; Legga, O.; Fountoulis, K.; Platsouka, E.D.; et al. In Vitro Activities of Omadacycline, Eravacycline, Cefiderocol, Apramycin, and Comparator Antibiotics against Acinetobacter baumannii Causing Bloodstream Infections in Greece, 2020–2021: A Multicenter Study. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.Q.-M.; Chang, H.Y.; Tan, S.H.; Tang, C.Y.; Ong, R.T.-H.; Ko, K.K.K.; Chung, S.J.; Tan, T.T.; Kwa, A.L.-H. Comparative Activities of Novel Therapeutic Agents against Molecularly Characterized Clinical Carbapenem-Resistant Enterobacterales Isolates. Microbiol. Spectr. 2023, 11. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Magkafouraki, E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Scoulica, E. Epidemiology and in Vitro Activity of Ceftazidime–Avibactam, Meropenem–Vaborbactam, Imipenem–Relebactam, Eravacycline, Plazomicin, and Comparators against Greek Carbapenemase-Producing Klebsiella pneumoniae Isolates. Infection 2022, 50, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Flemming, L.K.; Scudder, C.J.; Ly, M.A.; Porterfield, H.S.; Smith, R.D.; Clark, A.E.; Johnson, J.K.; Das, S. Comparative Phenotypic and Genotypic Antimicrobial Susceptibility Surveillance in Achromobacter spp. through Whole Genome Sequencing. Microbiol. Spectr. 2025, 13. [Google Scholar] [CrossRef]
- Jean, S.-S.; Ko, W.-C.; Lu, M.-C.; Lee, W.-S.; Hsueh, P.-R. Multicenter Surveillance of in Vitro Activities of Cefepime-Zidebactam, Cefepime-Enmetazobactam, Omadacycline, Eravacycline, and Comparator Antibiotics against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Complex Causing Bloodstream Infection in Taiwan, 2020. Expert Rev. Anti-Infect. Ther. 2022, 20, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, P.; Chen, M.; Li, B.; Xu, X. In Vitro Activity of Eravacycline against Carbapenem-Resistant Gram-Negative Bacilli and Associated Risk Factors for Non-Susceptible Infections from a Tertiary Hospital in Fujian, China from 2021 to 2024. BMC Microbiol. 2025, 25, 551. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Guo, Y.; Lin, S.; Wang, M.; Xu, J.; Wang, X.; He, G.; Tan, X.; Zhuo, C.; et al. Emergence of Eravacycline Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii Isolates in China. Front. Cell. Infect. Microbiol. 2024, 14, 1356353. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef]
- Connors, K.P.; Housman, S.T.; Pope, J.S.; Russomanno, J.; Salerno, E.; Shore, E.; Redican, S.; Nicolau, D.P. Phase I, Open-Label, Safety and Pharmacokinetic Study To Assess Bronchopulmonary Disposition of Intravenous Eravacycline in Healthy Men and Women. Antimicrob. Agents Chemother. 2014, 58, 2113–2118. [Google Scholar] [CrossRef] [PubMed]



| Organisms | Zone Diameter, Nearest Whole mm | MIC, μg/mL | ||||
|---|---|---|---|---|---|---|
| ChinaCAST 1 | EUCAST 2 | FDA 3 | ChinaCAST | EUCAST | FDA | |
| E. coli | ≥17/- | ≥17/- | ≥15/- | ≤0.5/- | ≤0.5/>0.5 | ≤0.5/- |
| K. pneumoniae | ≥15/- | -/- | -/- | ≤1/- | -/- | -/- |
| A. baumannii | ≥15/- | -/- | -/- | ≤1/- | -/- | -/- |
| S. aureus | ≥20/- | ≥20/<20 | -/- | ≤0.25/- | ≤0.25/>0.25 | ≤0.06/- |
| E. faecalis | -/- | ≥22/<22 | -/- | ≤0.125/- | ≤0.25/>0.25 | ≤0.06/- |
| E. faecium | -/- | ≥22/<22 | -/- | ≤0.125/- | ≤0.25/>0.25 | ≤0.06/- |
| Pathogen | Specimen | IMP 1-Resistant (n/m, %) | MEM-Resistant (n/m, %) | TGC-Susceptible 2 (n/m, %) | POL-Susceptible (n/m, %) |
|---|---|---|---|---|---|
| A. baumannii | Overall | 392/414, 94.7% | 386/424, 91% | 495/631, 78.4% | 520/543, 95.8% |
| Sputum | 237/248, 95.6% | 235/255, 92.2% | 244/316, 77.2% | 276/293, 94.2% | |
| BALF | 78/83, 94% | 79/90, 87.8% | 146/184, 79.3% | 149/140, 99.3% | |
| Blood | 37/40, 92.5% | 35/38, 92.1% | 53/66, 80.3% | 43/46, 93.5% | |
| Ascites | 6/6, 100% | 6/6, 100% | 20/20, 100% | 19/20, 95% | |
| K. pneumoniae | Overall | 153/178, 86% | 143/165, 86.7% | 168/233, 72.1% | 163/185, 88.1% |
| Sputum | 77/92, 83.7% | 72/87, 82.8% | 83/109, 76.1% | 80/92, 87% | |
| BALF | 41/43, 95.3% | 40/42, 95.2% | 45/67, 67.2% | 44/49, 89.8% | |
| Blood | 15/20, 75% | 14/16, 87.5% | 19/26, 73.1% | 18/19, 94.7% | |
| Ascites | 5/5, 100% | 6/6, 100% | 4/6, 66.7% | 4/6, 66.7% |
| Pathogen | Group | Counts | Eradication | Presumed Eradication | Total Success | Failure | p-Value |
|---|---|---|---|---|---|---|---|
| A. baumannii | IMP-R | 656 | 41.6% | 38.1% | 90.1% | 9.9% | 0.6158 |
| IMP-S | 37 | 29.7% | 45.9% | 91.9% | 8.1% | ||
| MEM-R | 641 | 41.5% | 38.5% | 90.2% | 9.8% | 0.5909 | |
| MEM-S | 51 | 33.3% | 45.1% | 94.1% | 5.9% | ||
| ERV-NS | 26 | 57.7% | 26.9% | 96.2% | 3.8% | 0.3899 | |
| ERV-S | 478 | 43.5% | 43.9% | 94.4% | 5.6% | ||
| K. pneumoniae | IMP-R | 296 | 43.6% | 39.2% | 88.9% | 11.1% | 0.4785 |
| IMP-S | 59 | 32.2% | 42.4% | 84.7% | 15.3% | ||
| MEM-R | 279 | 43% | 40.5% | 90.3% | 9.7% | 0.1842 | |
| MEM-S | 50 | 28% | 48% | 84% | 16% | ||
| ERV-NS | 21 | 47.6% | 28.6% | 90.5% | 9.5% | 0.6424 | |
| ERV-S | 197 | 50.3% | 42.6% | 94.4% | 5.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yi, Q.; Li, Y.; Zhou, M.; Jing, R.; Lu, M.; Xu, Y. Assessment of Eravacycline Antimicrobial Susceptibility in China During the First Year Following Regulatory Approval (2023–2024): A Real-World Study. Microorganisms 2026, 14, 44. https://doi.org/10.3390/microorganisms14010044
Yi Q, Li Y, Zhou M, Jing R, Lu M, Xu Y. Assessment of Eravacycline Antimicrobial Susceptibility in China During the First Year Following Regulatory Approval (2023–2024): A Real-World Study. Microorganisms. 2026; 14(1):44. https://doi.org/10.3390/microorganisms14010044
Chicago/Turabian StyleYi, Qiaolian, Yi Li, Menglan Zhou, Ran Jing, Minya Lu, and Yingchun Xu. 2026. "Assessment of Eravacycline Antimicrobial Susceptibility in China During the First Year Following Regulatory Approval (2023–2024): A Real-World Study" Microorganisms 14, no. 1: 44. https://doi.org/10.3390/microorganisms14010044
APA StyleYi, Q., Li, Y., Zhou, M., Jing, R., Lu, M., & Xu, Y. (2026). Assessment of Eravacycline Antimicrobial Susceptibility in China During the First Year Following Regulatory Approval (2023–2024): A Real-World Study. Microorganisms, 14(1), 44. https://doi.org/10.3390/microorganisms14010044

