Fusobacterium nucleatum Enhances Intestinal Adaptation of Vibrio cholerae via Interspecies Biofilm Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Differential Abundance of Fusobacterium Genus in the Cholera Cohort
2.2. Bacterial Strains and Growth Conditions
2.3. Coaggregation Assay
2.4. Bacterial Growth Curves and Biofilm Formation Assays
2.5. Gene Expression of vpsT
2.6. Competitive Colonization Dynamics of V. cholerae and F. nucleatum in the Gut of Adult Mice
2.7. Bacterial Quantification
2.8. Small-Molecule Extraction
2.9. Untargeted Metabolomics (LC-MS)
2.10. Statistical Analysis
3. Results
3.1. The Abundance of Fusobacterium Genus in the Cholera Cohorts
3.2. The Supernatant of F. nucleatum Inhibits the Growth of V. cholerae but Promotes Its Biofilm Formation
3.3. F. nucleatum and V. cholerae Co-Aggregate to Form Biofilms by Activating vpsT
3.4. F. nucleatum Promotes the Adaptability of V. cholerae in the Gut of Adult Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Z.; Yang, X.; Chen, G.; Park, C.; Liu, Z. Crosstalks between gut microbiota and Vibrio cholerae. Front. Cell. Infect. Microbiol. 2020, 10, 582554. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cholera Kills More People for Second Consecutive Year, While Prevention and Treatment Available. 2025. Available online: https://www.who.int/news/item/12-09-2025-cholera-kills-more-people-for-second-consecutive-year-while-prevention-and-treatment-available (accessed on 12 September 2025).
- Hsiao, A.; Zhu, J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020, 11, 1582–1599. [Google Scholar] [CrossRef]
- Cho, J.Y.; Liu, R.; Macbeth, J.C.; Hsiao, A. The interface of Vibrio cholerae and the gut microbiome. Gut Microbes 2021, 13, 1937015. [Google Scholar] [CrossRef]
- Midani, F.S.; Weil, A.A.; Chowdhury, F.; Begum, Y.A.; Khan, A.I.; Debela, M.D.; Durand, H.K.; Reese, A.T.; Nimmagadda, S.N.; Silverman, J.D.; et al. Human gut microbiota predicts susceptibility to Vibrio cholerae infection. J. Infect. Dis. 2018, 218, 645–653. [Google Scholar] [CrossRef]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; Van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 2019, 83, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, F.; Xu, L.; Byun, H.; Fan, J.; Wang, M.; Li, M.; Zhu, J.; Li, B. Contributions of Escherichia coli and its motility to the formation of dual-species biofilms with Vibrio cholerae. Appl. Environ. Microbiol. 2021, 87, e0093821. [Google Scholar] [CrossRef] [PubMed]
- Abriat, C.; Enriquez, K.; Virgilio, N.; Cegelski, L.; Fuller, G.G.; Daigle, F.; Heuzey, M.-C. Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids Surf. B Biointerfaces 2020, 188, 110786. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Fang, J.-Y. Fusobacterium nucleatum: Ecology, pathogenesis and clinical implications. Nat. Rev. Microbiol. 2025. [Google Scholar] [CrossRef]
- Yang, R.; Liu, T.; Pang, C.; Cai, Y.; Lin, Z.; Guo, L.; Wei, X. The regulatory effect of coaggregation between Fusobacterium nucleatum and Streptococcus gordonii on the synergistic virulence to human gingival epithelial cells. Front. Cell. Infect. Microbiol. 2022, 12, 879423. [Google Scholar] [CrossRef]
- Guo, L.; Shokeen, B.; He, X.; Shi, W.; Lux, R. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Mol. Oral Microbiol. 2017, 32, 355–364. [Google Scholar] [CrossRef]
- Engevik, M.A.; Danhof, H.A.; Auchtung, J.; Endres, B.T.; Ruan, W.; Bassères, E.; Engevik, A.C.; Wu, Q.; Nicholson, M.; Luna, R.A.; et al. Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus. Gastroenterology 2021, 160, 1301–1314. [Google Scholar] [CrossRef]
- Yamaguchi-Kuroda, Y.; Kikuchi, Y.; Kokubu, E.; Ishihara, K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J. Oral Microbiol. 2023, 15, 2165001. [Google Scholar] [CrossRef]
- Lima, B.P.; Shi, W.; Lux, R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 2017, 6, e00444. [Google Scholar] [CrossRef]
- Kaplan, A.; Kaplan, C.W.; He, X.; McHardy, I.; Shi, W.; Lux, R. Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. Microb. Ecol. 2014, 68, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ghosh, S.K.; Scott, M.E.; Bainbridge, B.; Jiang, B.; Lamont, R.J.; McCormick, T.S.; Weinberg, A. Fusobacterium nucleatum-associated β-defensin inducer (FAD-I): Identification, isolation, and functional evaluation. J. Biol. Chem. 2010, 285, 36523–36531. [Google Scholar] [CrossRef] [PubMed]
- Coppenhagen-Glazer, S.; Sol, A.; Abed, J.; Naor, R.; Zhang, X.; Han, Y.W.; Bachrach, G. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 2015, 83, 1104–1113. [Google Scholar] [CrossRef]
- Wang, J.C.; Cordero, J.; Sun, Y.; Aranke, M.; Wolcott, R.; Colmer-Hamood, J.A.; Hamood, A.N. Planktonic growth of Pseudomonas aeruginosa around a dual-species biofilm supports the growth of Fusobacterium nucleatum within that biofilm. Int. J. Otolaryngol. 2017, 2017, 3037191. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tan, L.; Wang, H.; Kou, Y.; Shi, X.; Zhang, S.; Pan, Y. Fusobacterium nucleatum interaction with Pseudomonas aeruginosa induces biofilm-associated antibiotic tolerance via Fusobacterium adhesin A. ACS Infect. Dis. 2020, 6, 1686–1696. [Google Scholar] [CrossRef]
- Horiuchi, A.; Kokubu, E.; Warita, T.; Ishihara, K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe 2020, 62, 102100. [Google Scholar] [CrossRef]
- Yang, L.; Sriram, G.; Chew, R.J.J.; Tan, K.S. Limosilactobacillus reuteri—Fusobacterium nucleatum interactions modulate biofilm composition and immunogenicity. J. Periodontal Res. 2025, 60, 1006–1017. [Google Scholar] [CrossRef]
- Okuda, T.; Kokubu, E.; Kawana, T.; Saito, A.; Okuda, K.; Ishihara, K. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe 2012, 18, 110–116. [Google Scholar] [CrossRef]
- Okuda, T.; Okuda, K.; Kokubu, E.; Kawana, T.; Saito, A.; Ishihara, K. Synergistic effect on biofilm formation between Fusobacterium nucleatum and Capnocytophaga ochracea. Anaerobe 2012, 18, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Anju, V.T.; Busi, S.; Imchen, M.; Kumavath, R.; Mohan, M.S.; Salim, S.A.; Subhaswaraj, P.; Dyavaiah, M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics 2022, 11, 1731. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ning, T.; Wu, J. Fusobacterium nucleatum in Health and Disease. MedComm 2025, 11, e70465. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Li, Z.; Liu, H.; Zheng, S.; Zhang, F.; Zhu, J.; Ye, H.; Chou, Z.; Gao, L.; Diao, J.; et al. Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host Microbe 2023, 31, 798–810. [Google Scholar] [CrossRef]
- Yan, Q.; Li, S.; Yan, Q.; Huo, X.; Wang, C.; Wang, X.; Sun, Y.; Zhao, W.; Yu, Z.; Zhang, Y.; et al. A genomic compendium of cultivated human gut fungi characterizes the gut mycobiome and its relevance to common diseases. Cell 2024, 187, 2969–2989. [Google Scholar] [CrossRef]
- Levade, I.; Khan, A.I.; Chowdhury, F.; Calderwood, S.B.; Ryan, E.T.; Harris, J.B.; LaRocque, R.C.; Bhuiyan, T.R.; Qadri, F.; Weil, A.A.; et al. A combination of metagenomic and cultivation approaches reveals hypermutator phenotypes within Vibrio cholerae-Infected Patients. mSystems 2021, 6, e0088921. [Google Scholar] [CrossRef] [PubMed]
- Madi, N.; Cato, E.T.; Sayeed, M.A.; Creasy-Marrazzo, A.; Cuénod, A.; Islam, K.; Khabir, I.U.; Bhuiyan, T.R.; Begum, Y.A.; Freeman, E.; et al. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024, 384, eadj3166. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Uritskiy, G.V.; DiRuggiero, J.; Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018, 6, 158. [Google Scholar] [CrossRef]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef]
- Aroney, S.T.N.; Newell, R.J.P.; Nissen, J.N.; Camargo, A.P.; Tyson, G.W.; Woodcroft, B.J. CoverM: Read alignment statistics for metagenomics. Bioinformatics 2025, 41, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Sit, B.; Fakoya, B.; Waldor, M.K. Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr. Opin. Microbiol. 2022, 65, 1–7. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhou, Z.G.; Sheng, Y.; Naseer, N.; Kan, B.; Zhu, J. Thiol-based switch mechanism of virulence regulator AphB modulates oxidative stress response in Vibrio cholerae. Mol. Microbiol. 2016, 102, 939–949. [Google Scholar] [CrossRef]
- Alavi, S.; Mitchell, J.D.; Cho, J.Y.; Liu, R.; Macbeth, J.C.; Hsiao, A. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 2020, 181, 1533–1546. [Google Scholar] [CrossRef]
- Pauer, H.; Teixeira, F.L.; Robinson, A.V.; Parente, T.E.; De Melo, M.A.F.; Lobo, L.A.; Domingues, R.M.C.P.; Allen-Vercoe, E.; Ferreira, R.B.R.; Antunes, L.C.M. Bioactive small molecules produced by the human gut microbiome modulate Vibrio cholerae sessile and planktonic lifestyles. Gut Microbes 2021, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ghirardo, A.; Fochi, V.; Lange, B.; Witting, M.; Schnitzler, J.P.; Perotto, S.; Balestrini, R. Metabolomic adjustments in the orchid mycorrhizal fungus Tulasnella calospora during symbiosis with Serapias vomeracea. New Phytol. 2020, 6, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ji, Y.; Li, X.; Cai, J.; Ye, J.; Wu, Y.; Liao, Q.; Wang, Z.; Sanganyado, E.; Li, P.; et al. Vibrio spp.: A potential critical pathogen for mammals with implications beyond marine aquaculture. BMC Microbiol. 2025, 25, 598. [Google Scholar] [CrossRef]
- Zhu, J.; Mekalanos, J.J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 2003, 5, 647–656. [Google Scholar] [CrossRef]
- Ramos Ricciuti, F.E.; Soldano, A.; Herrera Seitz, M.K.; Gasperotti, A.F.; Boyko, A.; Jung, K.; Bellinzoni, M.; Lisa, M.; Studdert, C.A. The chemoreceptor controlling the Wsp-like transduction pathway in Halomonas titanicae KHS3 binds and responds to purine derivatives. FEBS J. 2025, 292, 1034–1051. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Zhao, J.; Zhang, H.; Chen, W. Streptococcus mutans and Candida albicans Biofilm Inhibitors Produced by Lactiplantibacillus plantarum CCFM8724. Curr. Microbiol. 2022, 79, 143. [Google Scholar] [CrossRef]
- Gowrishankar, S.; Sivaranjani, M.; Kamaladevi, A.; Ravi, A.V.; Balamurugan, K.; Karutha Pandian, S. Cyclic dipeptide cyclo(l-leucyl-l-prolyl) from marine Bacillus amyloliquefaciens mitigates biofilm formation and virulence in Listeria monocytogenes. Pathog. Dis. 2016, 74, ftw017. [Google Scholar] [CrossRef]
- Li, L.; Xu, Z.; Cao, R.; Li, J.; Wu, C.-J.; Wang, Y.; Zhu, H. Effects of hydroxyl group in cyclo (Pro-Tyr)-like cyclic dipeptides on their anti-QS activity and self-assembly. iScience 2023, 26, 107048. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, N.L.; Waters, C.M. Cyclic di-GMP increases catalase production and hydrogen peroxide tolerance in Vibrio cholerae. Appl. Environ. Microbiol. 2019, 85, e01043-19. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, P.; Fong, J.; Shikuma, N.; Beyhan, S.; Navarro, M.; Yildiz, F.; Sondermann, H. Vibrio cholerae VpsT regulates matrix production. Science 2010, 327, 866–868. [Google Scholar] [CrossRef]
- Luo, M.; Chen, G.; Yi, C.; Xue, B.; Yang, X.; Ma, Y.; Qin, Z.; Yan, J.; Liu, X.; Liu, Z. Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog. 2023, 19, e1011250. [Google Scholar] [CrossRef]
- Hay, A.J.; Zhu, J. Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect. Immun. 2015, 83, 317–323. [Google Scholar] [CrossRef]
- Howard, M.F.; Renee Bina, X.; Bina, J.E. Indole inhibits ToxR regulon expression in Vibrio cholerae. Infect. Immun. 2019, 87, e00776-18. [Google Scholar] [CrossRef] [PubMed]
- Kuboniwa, M.; Houser, J.R.; Hendrickson, E.L.; Wang, Q.; Alghamdi, S.A.; Sakanaka, A.; Miller, D.P.; Hutcherson, J.A.; Wang, T.; Beck, D.A.C.; et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat. Microbiol. 2017, 2, 1493–1499. [Google Scholar] [CrossRef]
- Zupančič, J.; Raghupathi, P.K.; Houf, K.; Burmølle, M.; Sørensen, S.J.; Gunde-Cimerman, N. Synergistic interactions in microbial biofilms facilitate the establishment of opportunistic pathogenic fungi in household dishwashers. Front. Microbiol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Makovcova, J.; Babak, V.; Kulich, P.; Masek, J.; Slany, M.; Cincarova, L. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microb. Biotechnol. 2017, 10, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Hassall, J.; Cheng, J.K.J.; Unnikrishnan, M. Dissecting individual interactions between pathogenic and commensal bacteria within a multispecies gut microbial community. mSphere 2021, 6, e00013-21. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Wang, H.; Feng, Q. Establishment and improvement of genetic manipulation tools for Fusobacterium nucleatum. Eng. Microbiol. 2025, 5, 100192. [Google Scholar] [CrossRef]
- Bourgeois, J.; Camilli, A. High-throughput mutant screening via transposon sequencing. Cold Spring Harb. Protoc. 2023, 2023, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Wang, Q.M.; Ma, Y.; Liu, L.J.; Zhu, J.; Liu, Z. Biofilm development and environmental determinants in Vibrio cholerae. Chin. J. Biotechnol. 2017, 33, 1533–1546. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, G.; Chen, J.; Wang, X.; Guo, D.; Liu, Z. Fusobacterium nucleatum Enhances Intestinal Adaptation of Vibrio cholerae via Interspecies Biofilm Formation. Microorganisms 2026, 14, 211. https://doi.org/10.3390/microorganisms14010211
Chen G, Chen J, Wang X, Guo D, Liu Z. Fusobacterium nucleatum Enhances Intestinal Adaptation of Vibrio cholerae via Interspecies Biofilm Formation. Microorganisms. 2026; 14(1):211. https://doi.org/10.3390/microorganisms14010211
Chicago/Turabian StyleChen, Guozhong, Jiamin Chen, Xiangfeng Wang, Dingming Guo, and Zhi Liu. 2026. "Fusobacterium nucleatum Enhances Intestinal Adaptation of Vibrio cholerae via Interspecies Biofilm Formation" Microorganisms 14, no. 1: 211. https://doi.org/10.3390/microorganisms14010211
APA StyleChen, G., Chen, J., Wang, X., Guo, D., & Liu, Z. (2026). Fusobacterium nucleatum Enhances Intestinal Adaptation of Vibrio cholerae via Interspecies Biofilm Formation. Microorganisms, 14(1), 211. https://doi.org/10.3390/microorganisms14010211

