Analyzing the Effect of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Inoculation over the Growth of Tomatoes in a Martian Regolith Analog: Perspectives for Martian Agriculture †
Abstract
1. Introduction
2. Materials and Methods
2.1. Analog Selection and Characterization
2.2. Perchlorate-Tolerant Microorganisms Isolation
- •
- Soil Extract Agar (SEA) Preparation.—400 g subsample of each soil was suspended with 1 L distilled water, and sterilized at 120 °C for 1 h; then, the supernatant was recovered, adjusted to a pH of 7.0, and supplemented with 15 g/L agar; this formulation was sterilized again at 120 °C for 15 min and plated. (https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium12.pdf (accessed on 1 May 2022)).
- •
- Microorganisms extraction from soils.—2 g soil samples were added to 2 mL of Phosphate Buffer (PB) in sterile centrifugal tubes, the solution was mixed, and then plated onto the SEA. The SEA was incubated at 30 °C for 3 days [13].
- •
- Obtention of perchlorate-tolerant microorganisms.—The obtained microorganisms present in the SEA were transferred to Perchlorate Acetate Agar (PAG). This media were prepared according to the growth media described by [14], with some modifications. The media contained, per liter: 4.0 g sodium acetate (C2H3NaO2), 0.4 g ammonium phosphate (N3H12PO4), 0.2 g potassium phosphate dibasic (K2HPO4), 0.02 g magnesium sulfate (MgSO4·7H2O), 0.02 g sodium chloride (NaCl), 2 mg zinc sulfate (ZnSO4), 1 mg manganese chloride (MnCl2), 1 mg calcium chloride (CaCl2), 0.2 mg cupric sulfate (CuSO4), 0.4 mg cobalt chloride (CoCl2), 0.025 g sodium molybdate (Na2MoO4·2H2O), and 10 g of magnesium perchlorate Mg(ClO4)2. All the reagents were ACS-grade. The PAG was incubated at 30 °C for 7 days.
- •
- Isolation of perchlorate-tolerant microorganisms.—The microorganisms that survived in PAG were isolated using the streak plate method [15] on the same media. The plates were incubated for 7 days at 30 °C and the process was repeated until individual colonies were isolated. To preserve all the isolated microorganisms, we reinoculated them on fresh PAG every month and stored the plates at 4 °C.
2.3. Microorganisms Selection for the Experiments in the Martian Regolith Analog
2.4. Experiment Design for the Plant Growth Analysis
| Treatment | Number of Plants | |
|---|---|---|
| 1 | Control | 12 |
| 2 | LA 1 | 12 |
| 3 | 1% PC 2 | 12 |
| 4 | 1% PC and LA | 12 |
| 5 | AMF inoculation only 3 | 12 |
| 6 | AMF inoculation and LA | 12 |
| 7 | 1% PC and AMF inoculation | 12 |
| 8 | 1% PC, AMF inoculation and LA | 12 |
| 9 | V21AHO | 12 |
| 10 | V21AHO with 1% PC | 12 |
| 11 | V21AHO with AMF inoculation | 12 |
| 12 | V21AHO with 1% PC and AMF inoculation | 12 |
| 13 | C2A | 12 |
| 14 | C2A with 1% PC | 12 |
| 15 | C2A with AMF inoculation | 12 |
| 16 | C2A with 1% PC and AMF inoculation | 12 |
| 17 | C2A and V21AHO | 12 |
| 18 | C2A and V21AHO with 1% PC | 12 |
| 19 | C2A and V21AHO with AMF inoculation | 12 |
| 20 | C2A and V21AHO with 1% PC and AMF inoculation | 12 |
2.5. Statistical Analysis
3. Results
3.1. Analog Selection and Characterization
3.2. Perchlorate Tolerant Microorganisms Isolated and Their Plant-Beneficial Traits
3.3. Growth Parameters Determination and Statistical Analysis
3.4. Estimation of Arbuscular Mycorrhizal Fungi Colonization in Roots
4. Discussion
4.1. Analog Properties
4.2. Isolated Microorganisms Properties
4.3. Plant Growth Parameters and AMF Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wamelink, G.W.; Frissel, J.Y.; Krijnen, W.H.; Verwoert, M.R.; Goedhart, P.W. Can plants grow on Mars and the moon: A growth experiment on Mars and moon soil simulants. PLoS ONE 2014, 9, e103138. [Google Scholar] [CrossRef]
- Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R. Crop growth and viability of seeds on Mars and Moon soil simulants. Open Agric. 2019, 4, 509–516. [Google Scholar] [CrossRef]
- Ramkissoon, N.K.; Pearson, V.K.; Schwenzer, S.P.; Schröder, C.; Kirnbauer, T.; Wood, D.; Seidel, R.G.W.; Miller, M.A.; Olsson-Francis, K. New simulants for martian regolith: Controlling iron variability. Planet. Space Sci. 2019, 179, 104722. [Google Scholar] [CrossRef]
- Davila, A.F.; Willson, D.; Coates, J.D.; McKay, C.P. Perchlorate on Mars: A chemical hazard and a resource for humans. Int. J. Astrobiol. 2013, 12, 321–325. [Google Scholar] [CrossRef]
- Eichler, A.; Hadland, N.; Pickett, D.; Masaitis, D.; Handy, D.; Perez, A.; Batcheldor, D.; Wheeler, B.; Palmer, A. Challenging the agricultural viability of martian regolith simulants. Icarus 2021, 354, 114022. [Google Scholar] [CrossRef]
- Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, D.; Kozyrovska, N. Bioaugmentation in growing plants for lunar bases. Adv. Space Res. 2011, 47, 1071–1078. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Golden, D.C.; Ming, D.W. Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions. Planet. Space Sci. 2012, 72, 91–101. [Google Scholar] [CrossRef]
- Fackrell, L.E.; Humphrey, S.; Loureiro, R.; Palmer, A.G.; Long-Fox, J. Overview and recommendations for research on plants and microbes in regolith-based agriculture. npj Sustain. Agric. 2024, 2, 15. [Google Scholar] [CrossRef]
- Duri, L.G.; Romano, I.; Adamo, P.; Rouphel, Y.; Pannico, A.; Ventorino, V.; Pepe, O.; De Pascale, S.; Caporale, A.G. From earth to space: How bacterial consortia and green compost improve lettuce growth on lunar and martian simulants. Biol. Fertil. Soils 2025, 61, 1145–1164. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil pH Determination; FAO: Rome, Italy, 2021; pp. 1–23. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method: Titration and Colorimetric Method; FAO: Rome, Italy, 2019; pp. 1–27. [Google Scholar]
- Gaete, A.; Mandakovic, D.; González, M. Isolation and identification of soil bacteria from extreme environments of Chile and their plant beneficial characteristics. Microorganisms 2020, 8, 1213. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Pakshirajan, K.; Ghosh, P.K.; Sahoo, N.K. Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp. J. Hazard. Mater. 2011, 187, 133–139. [Google Scholar] [CrossRef]
- Sanders, E.R. Aseptic laboratory techniques: Plating methods. J. Vis. Exp. 2012, 63, e3064. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. (Eds.) Estimation of Phosphate Solubilizing Capacity of Microorganisms. In Plant-Microbe Interactions; Springer: New York, NY, USA, 2021; pp. 103–105. [Google Scholar] [CrossRef]
- Rajawat, M.V.S.; Singh, S.; Tyagi, S.P.; Saxena, A.K. A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 2016, 26, 768–773. [Google Scholar] [CrossRef]
- Gómez, B.; Ramírez, J.; Veloz, R.; Gasca, J.; Herrera, I. Aislamiento y caracterización de bacterias de la rizósfera de guayaba con capacidad promotora de crecimiento de las plantas. In Ciencias Agropecuarias, Handbook; Ramos, M., Aguilera, V., Eds.; ECORFAN: Valle de Santiago, Mexico, 2014; pp. 42–50. [Google Scholar]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef]
- Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef]
- Navarro-González, R.; Vargas, E.; de La Rosa, J.; Raga, A.C.; McKay, C.P. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planets 2010, 115, E12, Erratum in J. Geophys. Res. Planets 2011, 116, E8. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Flores, M.R.; Bello-Bello, E.; Rellán-Álvarez, R.; Sawers, R.J.; Olalde-Portugal, V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zea mays ssp. mays L.). Plant Direct 2019, 3, e00192. [Google Scholar] [CrossRef]
- Meraz-Mercado, M.A.; Olalde-Portugal, V.; Ramírez-Flores, M.R.; Martínez, O.; Meraz Jiménez, A.D.J.; Torres González, J.A. Bacterial community changes in the presence of AMF in the context of maize with low phosphorus content. J. Soils Sediments 2024, 24, 2918–2925. [Google Scholar] [CrossRef]
- Plumb, R.C.; Bishop, J.L.; Edwards, J.O. The pH of Mars. In Mars: Past, Present, and Future. Results from the MSATT Program; Lunar and Planetary Institute: Houston, TX, USA, 1993; p. 40. [Google Scholar]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Tomulescu, C.; Moscovici, M.; Lupescu, I.; Stoica, R.M.; Vamanu, A. A review: Klebsiella pneumoniae, Klebsiella oxytoca and Biotechnology. Rom. Biotechnol. Lett. 2021, 26, 2567–2586. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Lavigne, J.P.; Pagès, J.M. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef]
- Mowafy, A.M.; Fawzy, M.M.; Gebreil, A.; Elsayed, A. Endophytic Bacillus, Enterobacter, and Klebsiella enhance the growth and yield of maize. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 237–246. [Google Scholar] [CrossRef]
- Alrajeh, H.S.; Sherif, F.E. Study the effect of Enterobacter cloacae on the gene expression, productivity, and quality traits of Curcuma longa L. Plant. Front. Plant Sci. 2024, 15, 1393198, Erratum in Front. Plant Sci. 2024, 15, 1493043. https://doi.org/10.3389/fpls.2024.1493043.. [Google Scholar] [CrossRef]
- Oze, C.; Beisel, J.; Dabsys, E.; Dall, J.; North, G.; Scott, A.; Lopez, A.M.; Holmes, R.; Fendorf, S. Perchlorate and agriculture on Mars. Soil Syst. 2021, 5, 37. [Google Scholar] [CrossRef]
- Barrera Berdugo, S.E.; Rodriguez Lopez, N.F. Efecto de Hongos Micorrizicos Arbusculares en Plántulas de Elaeis guineensis (Palmaceae) Con Alto Nivel de Fósoforo en el Suelo. Acta Biol. Colomb. 2010, 15, 105–114. Available online: https://www.redalyc.org/articulo.oa?id=319027884007 (accessed on 21 July 2025).
- Okiobe, S.T.; Meidl, P.; Koths, T.; Olschewsky, D.; Rillig, M.C.; Lammel, D.R. Root colonization by arbuscular mycorrhizal fungi is reduced in tomato plants sprayed with fungicides. Front. Agron. 2022, 4, 1028195. [Google Scholar] [CrossRef]
- Cortez Acosta, D.F.; Délano Frier, J.P.; Dendooven, L.; González de la Vara, L.E.; Olalde Portugal, V. Aislamiento de Microorganismos Tolerantes a Perclorato en Suelos del Estado de Guanajuato y EvaluaciÓn de Su Uso Potencial como Biofertilizantes en la Agricultura del Planeta Marte. In Proceedings of the XX Congreso Nacional de Biotecnología y Bioingeniería, Ixtapa, Zihuatanejo, Mexico, 11–15 September 2023. [Google Scholar]





| Strain | Phosphorous Solubilization | Potassium Solubilization | Siderophore Production | Nitrogen Fixation |
|---|---|---|---|---|
| *C2A | ✓ | ✓ | ✓ | ✓ |
| M1A1B | ✓ | X | X | X |
| M1A2B | X | X | X | X |
| M2A1P | X | X | X | X |
| MIB1H | ✓ | ✓ | ✓ | ✓ |
| MIB2B | ✓ | X | X | X |
| *P1A | ✓ | ✓ | ✓ | ✓ |
| V11AB | X | X | X | ✓ |
| V11AP | X | X | X | ✓ |
| V11AR | X | X | X | ✓ |
| V21AHO | ✓ | ✓ | ✓ | ✓ |
| V22BR | X | X | X | X |
| V31BB | X | X | X | X |
| V32AO | ✓ | X | X | ✓ |
| Test Strain | ONPG | ADH | LDC | ODC | LCIT J | H2S | URE | TDA | IND | VP | GEL | GLU | MAN | INO | SOR | RHA | SAC | MEL | AMY | ARA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Control | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
| *C2A | + | + | − | + | + | − | − | − | − | + | − | + | + | − | + | + | + | − | + | + |
| MIB1H | + | + | − | + | + | − | − | − | − | + | − | + | + | + | + | + | + | + | + | + |
| *P1A | + | + | − | + | + | − | − | − | − | + | − | + | + | − | + | + | + | + | + | + |
| V21AHO | − | − | + | − | + | − | + | − | + | + | − | + | + | + | + | + | + | + | + | + |
| Strain | Arabidopsis Growth |
|---|---|
| Control | ✓ |
| *C2A | ✓ |
| MIB1H | X |
| *P1A | X |
| V21AHO | ✓ |
| Source | SS | df | MS | F | Prob > F |
|---|---|---|---|---|---|
| Columns | 1.03981 | 9 | 0.11553 | 22.93 | 1.65861 × 10−21 |
| Error | 0.55433 | 110 | 0.00504 | ||
| Total | 1.59414 | 119 |
| Source | SS | df | MS | F | Prob > F |
|---|---|---|---|---|---|
| Columns | 50,992.3 | 9 | 5665.81 | 40.03 | 9.67681 × 10−31 |
| Error | 15,568.1 | 110 | 141.53 | ||
| Total | 66,560.3 | 119 |
| Source | SS | df | MS | F | Prob > F |
|---|---|---|---|---|---|
| Columns | 20,844.3 | 9 | 2316.03 | 1.03 | 0.4211 |
| Error | 247,391.9 | 110 | 2249.02 | ||
| Total | 268,236.1 | 119 |
| Source | SS | df | MS | F | Prob > F |
|---|---|---|---|---|---|
| Columns | 0.76056 | 4 | 0.19014 | 4.06 | 0.0059 |
| Error | 2.57682 | 55 | 0.04685 | ||
| Total | 3.33737 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cortez Acosta, D.F.; Olalde Portugal, V.; Lozano Santacruz, R.; Valle Cervantes, S. Analyzing the Effect of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Inoculation over the Growth of Tomatoes in a Martian Regolith Analog: Perspectives for Martian Agriculture. Microorganisms 2026, 14, 200. https://doi.org/10.3390/microorganisms14010200
Cortez Acosta DF, Olalde Portugal V, Lozano Santacruz R, Valle Cervantes S. Analyzing the Effect of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Inoculation over the Growth of Tomatoes in a Martian Regolith Analog: Perspectives for Martian Agriculture. Microorganisms. 2026; 14(1):200. https://doi.org/10.3390/microorganisms14010200
Chicago/Turabian StyleCortez Acosta, Daniel Fernando, Víctor Olalde Portugal, Rufino Lozano Santacruz, and Sergio Valle Cervantes. 2026. "Analyzing the Effect of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Inoculation over the Growth of Tomatoes in a Martian Regolith Analog: Perspectives for Martian Agriculture" Microorganisms 14, no. 1: 200. https://doi.org/10.3390/microorganisms14010200
APA StyleCortez Acosta, D. F., Olalde Portugal, V., Lozano Santacruz, R., & Valle Cervantes, S. (2026). Analyzing the Effect of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Inoculation over the Growth of Tomatoes in a Martian Regolith Analog: Perspectives for Martian Agriculture. Microorganisms, 14(1), 200. https://doi.org/10.3390/microorganisms14010200

