The Pathogenesis, Clinical Features, and Treatment of Corynebacterium striatum-Related Infection
Abstract
1. Introduction
2. History and Current Trend
3. Coinfection with Other Bacteria, Fungi, and Viruses
- (1)
- Biofilm Synergy: C. striatum can form multilayered biofilms on various material surfaces, including polyurethane and silicone. When coexisting with Staphylococcus aureus, bacteria may mutually enhance biofilm structural stability and increase antibiotic tolerance. Such synergistic interactions are strongly associated with the persistence of chronic infections and their therapeutic challenges [14,15].
- (2)
- Under selective pressure from broad-spectrum antibiotic therapy, susceptible bacteria are suppressed, creating an ecological niche that allows antibiotic-resistant organisms such as C. striatum to emerge as secondary dominant species [10]. Consequently, in patients receiving prolonged antimicrobial therapy, C. striatum frequently acts as a secondary pathogen within polymicrobial infections [16].
- (3)
- Immunosuppression and device dependence: Conditions such as prolonged mechanical ventilation, indwelling medical devices, dialysis, and chemotherapy for malignancy create environments that are highly conducive to biofilm formation and microbial colonization. Patients with these risk factors exhibit a significantly higher incidence of polymicrobial infections than the general hospitalized population.
- (4)
| Site of Infection | Predominant Co-Pathogens | Clinical Features |
|---|---|---|
| Respiratory tract: such as pneumonia or ventilator-associated infections [10] | Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Stenotrophomonas maltophilia, Enterobacter cloacae. | The most common site of co-infection, typically observed in ICU patients. C. striatum often emerges as a secondary pathogen or even replaces the initially dominant microorganism. |
| Bloodstream infection [1,19] | Staphylococcus epidermidis, Enterococcus spp., Candida spp. | Commonly seen in catheter-related bloodstream infections (CRBSIs); C. striatum often contaminates catheters together with skin-colonizing bacteria and leads to true infection. |
| Wounds/surgical wounds/burn sites [20] | S. aureus, Enterococcus faecalis, Proteus mirabilis, E. coli. | C. striatum can form biofilms together with Gram-negative bacilli, exacerbating wound infections. |
| Urinary tract or implanted device infections [2,21] | Enterococcus faecium, E. coli, Klebsiella spp. | Relatively uncommon, usually associated with urinary catheters or implanted devices. |
4. Recent Identification of C. striatum in Clinical and Laboratory
5. Molecular Subtype of C. striatum
6. Virulent Agents
| Category | Representative Genes/Proteins | Function/Mechanism | Notes/Evidence |
|---|---|---|---|
| Adhesion and colonization [33] | srtA, spaA–F, LPXTG-motif adhesins | Surface anchoring and epithelial adhesion | Promote colonization on skin and medical devices |
| Biofilm formation [33] | spaD, spaE, spaF, spaG, spaH, spaI, srtA, srtB, srtC, srtD, strE, exopolysaccharide genes | Biofilm maturation and persistence | Increased antibiotic tolerance in biofilm state |
| Cell wall and lipid metabolism [35] | pks, accD, mmpL, fadD | Mycolic acid synthesis; cell envelope integrity | Enhances resistance to host defenses |
| Iron acquisition systems [36] | fagA, fagB, fagC, fagD, humU, irp6A, irp6B, fetA, fetB, siderophore transporter genes | Iron uptake in host environment | Facilitates intracellular survival |
| Oxidative stress and immune evasion [37] | sigA, sigH, sodA, katA, groEL, dnaK | Detoxification of reactive oxygen species | Promotes persistence under immune stress |
| Secreted enzymes/potential toxins [38] | rpfA, rpfB, rpfI | Tissue damage and inflammation | Non-diphtherial but contributes to virulence |
7. Multidrug Resistance
- (1)
- Endogenous multidrug resistance
- (2)
- Exogenous Multidrug Resistance
- (2.1)
- Insertion Sequences
- (2.2)
- Plasmids
- (2.3)
- CRISPR-Cas
8. Clinical Features
- (1)
- Endovascular infection
- (2)
- Thoracic disease
- (3)
- Musculoskeletal and soft tissue infection
- (4)
- Abdominal disease
- (5)
- Recurrence
9. Treatment
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Silva-Santana, G.; Silva, C.M.F.; Olivella, J.G.B.; Silva, I.F.; Fernandes, L.M.O.; Sued-Karam, B.R.; Santos, C.S.; Souza, C.; Mattos-Guaraldi, A.L. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976–2020. Arch. Microbiol. 2021, 203, 1863–1880. [Google Scholar] [CrossRef]
- Hahn, W.O.; Werth, B.J.; Butler-Wu, S.M.; Rakita, R.M. Multidrug-Resistant Corynebacterium striatum Associated with Increased Use of Parenteral Antimicrobial Drugs. Emerg. Infect. Dis. 2016, 22, 1908–1914. [Google Scholar] [CrossRef]
- Li, W.; Gao, M.; Yu, J. Rising Prevalence and Drug Resistance of Corynebacterium striatum in Lower Respiratory Tract Infections. Front. Cell. Infect. Microbiol. 2025, 14, 1526312. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro, R.; Hosokawa, N.; Otsuka, Y.; Osawa, R. Clinical Characteristics of Corynebacterium Bacteremia Caused by Different Species, Japan, 2014–2020. Emerg. Infect. Dis. 2021, 27, 2981–2987. [Google Scholar] [CrossRef]
- Renom, F.; Gomila, M.; Garau, M.; Gallegos, M.D.; Guerrero, D.; Lalucat, J.; Soriano, J.B. Respiratory Infection by Corynebacterium striatum: Epidemiological and Clinical Determinants. New Microbes New Infect. 2014, 2, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Ture, Z.; Güner, R.; Alp, E. Antimicrobial Stewardship in the Intensive Care Unit. J. Intensive Med. 2022, 3, 244–253. [Google Scholar] [CrossRef]
- Bowstead, T.T.; Santiago, S.M. Pleuropulmonary Infection Due to Corynebacterium striatum. Br. J. Dis. Chest 1980, 74, 198–200. [Google Scholar] [CrossRef]
- Renom, F.; Garau, M.; Rubí, M.; Ramis, F.; Galmés, A.; Soriano, J.B. Nosocomial Outbreak of Corynebacterium striatum Infection in Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Microbiol. 2007, 45, 2064–2067. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Huh, J.W.; Hong, S.B.; Jung, J.; Kim, M.J.; Chong, Y.P.; Kim, S.H.; Sung, H.; Do, K.H.; Lee, S.O.; et al. Severe Pneumonia Caused by Corynebacterium striatum in Adults, Seoul, South Korea, 2014–2019. Emerg. Infect. Dis. 2022, 28, 2147–2154. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, S.; Zheng, B.; Du, X.; Li, Z.; Tan, Z.; Zhou, H.; Huang, J.; Tian, L.; Zhong, J.; et al. Epidemiological Investigation of Hospital Transmission of Corynebacterium striatum Infection by Core Genome Multilocus Sequence Typing Approach. Microbiol. Spectr. 2022, 11, e01490-22. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Du, X.; Cui, J.; Wang, K.; Zhang, L.; Han, Y.Q. Rapid Transmission of Multidrug-Resistant Corynebacterium striatum among Susceptible Patients in a Tertiary Hospital in China. J. Infect. Dev. Ctries. 2016, 10, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Geng, T.; Zhou, H.; Han, Y.; Ren, H.; Qiu, Z.; Nie, X.; Du, T.; Liang, J.; Du, P.; et al. Super-Dominant Pathobiontic Bacteria in the Nasopharyngeal Microbiota as Causative Agents of Secondary Bacterial Infection in Influenza Patients. Emerg. Microbes Infect. 2020, 9, 605–615. [Google Scholar] [CrossRef]
- Mumcuoğlu, İ.; Çağlar, H.; Erdem, D.; Aypak, A.; Gün, P.; Kurşun, Ş.; Çakır, E.Y.; Aydoğan, S.; Kırca, F.; Dinç, B. Secondary Bacterial Infections of the Respiratory Tract in COVID-19 Patients. J. Infect. Dev. Ctries. 2022, 16, 1131–1137. [Google Scholar] [CrossRef]
- de Souza, C.; Faria, Y.V.; Sant’Anna, L.O.; Viana, V.G.; Seabra, S.H.; de Souza, M.C.; Vieira, V.V.; Hirata Júnior, R.; Moreira, L.O.; de Mattos-Guaraldi, A.L. Biofilm Production by Multiresistant Corynebacterium striatum Associated with Nosocomial Outbreak. Mem. Inst. Oswaldo Cruz 2015, 110, 242–248. [Google Scholar] [CrossRef]
- Ramsey, M.M.; Freire, M.O.; Gabrilska, R.A.; Rumbaugh, K.P.; Lemon, K.P. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species. Front. Microbiol. 2016, 7, 1230. [Google Scholar] [CrossRef]
- Trivedi, G.R.; Merchant, S.S. Corynebacterium striatum: A True Pathogen in Chronic Contiguous Osteomyelitis. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 5020721. [Google Scholar] [CrossRef] [PubMed]
- Silva-Santana, G.; Baêta Júnior, E.S.; Conceição, G.M.S.; Aguiar-Alves, F.; Brandão, M.L.L.; Lopes-Torres, E.J.; Mattos-Guaraldi, A.L. Intervention of Corynebacterium striatum in the Sessile Lifestyle of Staphylococcus aureus Wild-Type and ica-Mutants in Polymicrobial Biofilms. Microb. Pathog. 2025, 204, 107577. [Google Scholar] [CrossRef] [PubMed]
- Terbtothakun, P.; Visedthorn, S.; Klomkliew, P.; Chanchaem, P.; Sawaswong, V.; Sivapornnukul, P.; Sunantawanit, S.; Khamwut, A.; Rotcheewaphan, S.; Kaewsapsak, P.; et al. Clinical Metagenomics Analysis of Bacterial and Fungal Microbiota from Sputum of Patients Suspected with Tuberculosis Infection. Sci. Rep. 2025, 15, 17772. [Google Scholar] [CrossRef]
- Ramos, J.N.; Souza, C.; Faria, Y.V.; Silva, E.C.; Veras, J.F.C.; Baio, P.V.P.; Seabra, S.H.; Moreira, L.O.; Hirata Júnior, R.; Mattos-Guaraldi, A.L.; et al. Bloodstream and Catheter-Related Infections Due to Clones of Multidrug-Resistant Corynebacterium striatum. BMC Infect. Dis. 2019, 19, 672. [Google Scholar] [CrossRef]
- Streifel, A.C.; Varley, C.D.; Ham, Y.; Sikka, M.K.; Lewis, J.S., 2nd. The Challenges of Antibiotic selection in Prosthetic Joint Infection Due to Corynebacterium striatum: A Case Report. BMC Infect. Dis. 2022, 22, 290. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Wang, D.; Jiang, S. Rapid Plasmid-Mediated Acquisition of Erythromycin Resistance via ermX in Corynebacterium striatum: A 72-Hour Clinical Evolution. Infect. Drug Resist. 2025, 18, 3771–3777. [Google Scholar] [CrossRef]
- Li, Y.; Rong, J.; Gao, C. Phylogenetic Analyses of Antimicrobial-Resistant Corynebacterium striatum Strains in a Nosocomial Outbreak in China. Antonie Van Leeuwenhoek 2023, 116, 907–918. [Google Scholar] [CrossRef]
- Anawilkul, T.-T.; Chusri, S.; Kanchanasuwan, S.; Chittrakarn, S. Clinical characteristics, antimicrobial resistance patterns, and outcomes of Corynebacterium bacteremia: A 15-year retrospective study. BMC Infect Dis. 2025, 25, 1656. [Google Scholar] [CrossRef]
- UK Health Security Agency. UK Standards for Microbiology Investigations: ID 2—Identification of Corynebacterium Species; Issue 5.1; UK Health Security Agency: London, UK, 2025. [Google Scholar]
- Xu, S.; Qiu, X.; Hou, X.; Zhou, H.; Chen, D.; Wang, X.; Han, L.; Li, D.; Sun, L.; Ji, X.; et al. Direct Detection of C. striatum, C. propinquum, and C. simulans by High-Resolution Melt Analysis. BMC Infect. Dis. 2021, 21, 21. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, D.; Wang, X.; Zhou, H.; Hou, X.; Zhang, J.; Li, M.; Li, Z.J. A Novel Isothermal Amplification Method for Detection of C. striatum. J. Microbiol. Methods 2019, 164, 105675. [Google Scholar] [CrossRef]
- Martínez-Martínez, L.; Pascual, A.; Bernard, K.; Suárez, A.I. Antimicrobial Susceptibility Pattern of C. striatum. Antimicrob. Agents Chemother. 1996, 40, 2671–2672. [Google Scholar]
- Özdemir, S.; Aydoğan, O.; Köksal Çakırlar, F. Biofilm Formation and Antimicrobial Susceptibility of Non-Diphtheriae Corynebacterium Strains. Medeniyet Med. J. 2021, 36, 123–129. [Google Scholar]
- Wen, J.; Wang, Z.; Du, X.; Liu, R.; Wang, J. Antibiofilm Effects of Extracellular Matrix-Degradative Agents on MDR C. striatum. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Baio, P.V.P.; Mota, H.F.; Freitas, A.D.; Gomes, D.L.R.; Ramos, J.N.; Sant’Anna, L.O.; Souza, M.C.; Camello, T.C.F.; Hirata Júnior, R.; Vieira, V.V.; et al. Clonal Multidrug-Resistant Corynebacterium striatum within a Nosocomial Environment, Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 2013, 108, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.W.; Ju, Y.; Lee, C.K.; Sohn, J.W.; Kim, M.J.; Yoon, Y.K. Molecular epidemiology and clinical significance of Corynebacterium striatum isolated from clinical specimens. Infect. Drug Resist. 2019, 12, 161–171, Erratum in Infect. Drug Resist. 2019, 12, mmcmxv–mmcmxvi. [Google Scholar] [CrossRef]
- Gomila, M.; Renom, F.; Gallegos Mdel, C.; Garau, M.; Guerrero, D.; Soriano, J.B.; Lalucat, J. Identification and diversity of multiresistant Corynebacterium striatum clinical isolates by MALDI-TOF mass spectrometry and by a multigene sequencing approach. BMC Microbiol. 2012, 12, 52. [Google Scholar] [CrossRef]
- Alibi, S.; Ramos-Vivas, J.; Ben Selma, W.; Ben Mansour, H.; Boukadida, J.; Navas, J. Virulence of clinically relevant multidrug resistant Corynebacterium striatum strains and their ability to adhere to human epithelial cells and inert surfaces. Microb. Pathog. 2021, 155, 104887. [Google Scholar] [CrossRef]
- Silva-Santana, G.; Silva da Conceição, G.M.; Brandão, M.L.L.; Mattos-Guaraldi, A.L.; Hirata Júnior, R. Standardized method for quantifying colony-forming units in Corynebacterium striatum and Staphylococcus aureus biofilms on hydrophilic and hydrophobic surfaces. J. Microbiol. Methods 2025, 237, 107216. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.J.; Tatituri, R.V.V.; Goldner, N.K.; Dantas, G.; Hsu, F.F. Unveiling the biodiversity of lipid species in Corynebacteria—Characterization of the uncommon lipid families in C. glutamicum and pathogen C. striatum by mass spectrometry. Biochimie 2020, 178, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shi, Y.; Zhao, F.; Xu, Y.; Xu, H.; Dai, Y.; Cao, Y. The pan-genomic analysis of Corynebacterium striatum revealed its genetic characteristics as an emerging multidrug-resistant pathogen. Evol. Bioinform. Online 2023, 19, 11769343231191481. [Google Scholar] [CrossRef]
- Du, L.; Guo, B.; Wen, J.; Liu, H.; Wang, J. Intracellular invasion potential and pathogenic effects of Corynebacterium striatum clinical isolates in human airway epithelial cells. Front. Microbiol. 2025, 16, 1647771. [Google Scholar] [CrossRef] [PubMed]
- Sangal, V.; Marrs, E.C.L.; Nelson, A.; Perry, J.D. Phylogenomic analyzes of multidrug resistant Corynebacterium striatum strains isolated from patients in a tertiary care hospital in the UK. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1495–1501. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Chen, D.; Du, P.; Lan, R.; Qiu, X.; Hou, X.; Liu, Z.; Sun, L.; Xu, S.; et al. Whole-genome sequencing reveals a prolonged and persistent intrahospital transmission of Corynebacterium striatum, an emerging multidrug-resistant pathogen. J. Clin. Microbiol. 2019, 57, e00683-19. [Google Scholar] [CrossRef]
- Leyton, B.; Ramos, J.N.; Baio, P.V.P.; Veras, J.F.C.; Souza, C.; Burkovski, A.; Mattos-Guaraldi, A.L.; Vieira, V.V.; Marin, M.A. Treat me well or will resist: Uptake of mobile genetic elements determines the resistome of Corynebacterium striatum. Int. J. Mol. Sci. 2021, 22, 7499. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Zhang, J.; Wang, Y.; Lv, Y.Y.; Du, X.; ChaoLuMen, Q.Q.G.; Wang, J.R. Widespread and diversity of mutation in the gyrA gene of quinolone-resistant Corynebacterium striatum strains isolated from three tertiary hospitals in China. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 71. [Google Scholar] [CrossRef]
- Navas, J.; Fernández-Martínez, M.; Salas, C.; Cano, M.E.; Martínez-Martínez, L. Susceptibility to aminoglycosides and distribution of aph and aac(3)-XI genes among Corynebacterium striatum clinical isolates. PLoS ONE 2016, 11, e0167856. [Google Scholar] [CrossRef]
- Urrutia, C.; Leyton-Carcaman, B.; Abanto Marin, M. Contribution of the mobilome to the configuration of the resistome of Corynebacterium striatum. Int. J. Mol. Sci. 2024, 25, 10499. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.N.; Rodrigues, I.S.; Baio, P.V.P.; Veras, J.F.C.; Ramos, R.T.J.; Pacheco, L.G.C.; Azevedo, V.A.; Hirata Júnior, R.; Marín, M.A.; Mattos-Guaraldi, A.L.; et al. Genome sequence of a multidrug-resistant Corynebacterium striatum isolated from bloodstream infection from a nosocomial outbreak in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 2018, 113, e180051. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Mayrhofer, S.; Domig, K.J.; Aarts, H.J.M. Resistance determinant erm(X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. lactis. Int. J. Antimicrob. Agents 2008, 31, 544–548. [Google Scholar] [CrossRef]
- Tran, T.T.; Jaijakul, S.; Lewis, C.T.; Diaz, L.; Panesso, D.; Kaplan, H.B.; Murray, B.E.; Wanger, A.; Arias, C.A. Native valve endocarditis caused by Corynebacterium striatum with heterogeneous high-level daptomycin resistance: Collateral damage from daptomycin therapy? Antimicrob. Agents Chemother. 2012, 56, 3461–3464. [Google Scholar] [CrossRef]
- Gotoh, K.; Mayura, I.P.B.; Enomoto, Y.; Iio, K.; Matsushita, O.; Otsuka, F.; Hagiya, H. Detection of in-frame mutation by IS30-family insertion sequence in the phospholipid phosphatidylglycerol synthase gene (pgsA2) of high-level daptomycin-resistant Corynebacterium striatum. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 331–333. [Google Scholar] [CrossRef]
- Ortiz-Pérez, A.; Martín-de-Hijas, N.Z.; Esteban, J.; Fernández-Natal, M.I.; García-Cía, J.I.; Fernández-Roblas, R. High frequency of macrolide resistance mechanisms in clinical isolates of Corynebacterium species. Microb. Drug Resist. 2010, 16, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Nudel, K.; Zhao, X.; Basu, S.; Dong, X.; Hoffmann, M.; Feldgarden, M.; Allard, M.; Klompas, M.; Bry, L. Genomics of Corynebacterium striatum, an emerging multidrug-resistant pathogen of immunocompromised patients. Clin. Microbiol. Infect. 2018, 24, 1016.e7–1016.e13. [Google Scholar] [CrossRef]
- Ramos, J.N.; Baio, P.V.P.; Veras, J.F.C.; Vieira, É.M.D.; Mattos-Guaraldi, A.L.; Vieira, V.V. Novel Configurations of Type I-E CRISPR-Cas System in Corynebacterium striatum Clinical Isolates. Braz. J. Microbiol. 2023, 54, 69–80. [Google Scholar] [CrossRef]
- Zhang, M.J.; Cao, X.J.; Fan, J.; Yin, Z.G.; Yu, K. Corynebacterium striatum Meningitis Combined with Suspected Brain and Lung Abscesses: A Case Report and Review. BMC Infect. Dis. 2020, 20, 389. [Google Scholar] [CrossRef] [PubMed]
- Frikh, M.; El Yaagoubi, I.; Lemnouer, A.; Elouennass, M. Urethritis Due to Corynebacterium striatum: An Emerging Germ. Tunis. Med. 2015, 93, 43–44. [Google Scholar]
- Yamamoto, T.; Kenzaka, T.; Mizuki, S.; Nakashima, Y.; Kou, H.; Maruo, M.; Akita, H. An Extremely Rare Case of Tubo-Ovarian Abscesses Involving Corynebacterium striatum as Causative Agent. BMC Infect. Dis. 2016, 16, 527. [Google Scholar] [CrossRef] [PubMed]
- Seutz, Y.; Bäcker, H.; Akgün, D.; Adelhoefer, S.; Kriechling, P.; Gonzalez, M.R.; Karczewski, D. Corynebacterium Periprosthetic Joint Infection: A Systematic Review of 52 Cases at 2.5 Years Follow-Up. Arch. Orthop. Trauma Surg. 2023, 143, 5527–5538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, X.; Wang, Z.; Wei, S.; Wu, Z. Metagenomic Next-Generation Sequencing for the Diagnosis of Corynebacterium striatum Meningitis: Case Report and Literature Review. BMC Neurol. 2025, 25, 127. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.; Balakrishnan, P.; Riordan, J.; Kelly, M.J.; Tan, P.C.; O’Meeghan, T. Native Triple-Valve Endocarditis Caused by Corynebacterium striatum Needing Urgent Surgery. JACC Case Rep. 2025, 30, 104150. [Google Scholar] [CrossRef]
- Kimura, S.I.; Gomyo, A.; Hayakawa, J.; Akahoshi, Y.; Harada, N.; Ugai, T.; Komiya, Y.; Kameda, K.; Wada, H.; Ishihara, Y.; et al. Clinical Characteristics and Predictive Factors for Mortality in Coryneform Bacteria Bloodstream Infection in Hematological Patients. J. Infect. Chemother. 2017, 23, 148–153. [Google Scholar] [CrossRef]
- Adderson, E.E.; Boudreaux, J.W.; Hayden, R.T. Infections caused by Coryneform bacteria in pediatric oncology patients. Pediatr Infect Dis J. 2008, 27, 136–141. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Wang, Y.; Yu, X.; Guo, X.; Wang, C.; Wang, F. Corynebacterium striatum Drives Neutrophilic Asthma via IL-17 Signaling Activation. Int. Immunopharmacol. 2025, 163, 115255. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, X.; Zhang, Z.; Yang, X.; Wang, L.; Li, M.; Shi, D.; Li, Y.; Li, J.; Li, Z.; et al. Targeted Antibiotics for Lower Respiratory Tract Infection with Corynebacterium striatum. Infect. Drug Resist. 2023, 16, 2019–2028. [Google Scholar] [CrossRef]
- Tabaja, H.; Tai, D.B.G.; Beam, E.; Abdel, M.P.; Tande, A.J. Clinical Profile of Monomicrobial Corynebacterium Hip and Knee Periprosthetic Joint Infections. Open Forum Infect. Dis. 2022, 9, ofac193. [Google Scholar] [CrossRef]
- Kitayama, S.; Saito, K.; Sato, Y. Peritoneal Dialysis-Related Peritonitis Due to Corynebacterium striatum: An Emerging Multidrug-Resistant Pathogen. Ther. Apher. Dial. 2021, 25, 254–255. [Google Scholar] [CrossRef]
- Serpa Pinto, L.; Dias Frias, A.; Franca, M. Corynebacterium striatum Cardiac Device-Related Infective Endocarditis: First Case Report in a CRT-D Patient and Literature Review. J. Med. Cases 2021, 12, 61–64. [Google Scholar] [CrossRef]
- de Nettancourt, A.; Derdevet, J.; Dahmane, L.; Jaffal, K.; Perronne, V.; Tordjman, M.; Noussair, L.; Dinh, A. A Vertebral Polymicrobial Osteomyelitis with Atypical Microorganisms: A Case Report. Case Rep. 2023, 44, 190–194. [Google Scholar]
- Milosavljevic, M.N.; Milosavljevic, J.Z.; Kocovic, A.G.; Stefanovic, S.M.; Jankovic, S.M.; Djesevic, M.; Milentijevic, M.N. Antimicrobial Treatment of Corynebacterium striatum Invasive Infections: A Systematic Review. Rev. Inst. Med. Trop. São Paulo 2021, 63, e49. [Google Scholar] [CrossRef]
- Mansoor, A.E.; Krekel, T.; Cabrera, N.L. Experience with Dalbavancin for Long-Term Antimicrobial Suppression of LVAD Infections. Transpl. Infect. Dis. 2023, 25, e14068. [Google Scholar] [CrossRef] [PubMed]
- Söderquist, B.; Henningsson, T.; Stegger, M. Corynebacterium striatum Prosthetic Joint Infection Successfully Treated with Long-Term Dalbavancin. Microorganisms 2023, 11, 550. [Google Scholar] [CrossRef]
- Navarro-Jiménez, G.; Fuentes-Santos, C.; Moreno-Núñez, L.; Alfayate-García, J.; Campelo-Gutierrez, C.; Sanz-Márquez, S.; Pérez-Fernández, E.; Velasco-Arribas, M.; Hervás-Gómez, R.; Martín-Segarra, O.; et al. Experience in the Use of Dalbavancin in Diabetic Foot Infection. Enferm. Infecc. Microbiol. Clin. 2022, 40, 296–301. [Google Scholar] [CrossRef]
- Pannu, T.S.; Villa, J.M.; Ozery, M.; Piuzzi, N.S.; Higuera, C.A.; Riesgo, A.M. The Fate of Periprosthetic Joint Infection with Corynebacterium striatum: A Rare but Catastrophic Organism. J. Arthroplast. 2022, 37, 142–149. [Google Scholar] [CrossRef]
- Bayram, S.; Bilgili, F.; Anarat, F.B.; Saka, E. Subacute Osteomyelitis of the Fibula Due to Corynebacterium striatum in an Immunocompetent Child: A Case Report. JBJS Case Connect. 2019, 9, e0220. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, S.; Avatapalli, S.; Narasimhan, Y.; Kaushik, K.S.; Yennamalli, R.M. “Targeting” the Search: An Updated Repository of Antimicrobial Peptides for Biofilm Studies (B-AMP v2.0). Front. Cell. Infect. Microbiol. 2022, 12, 1020391. [Google Scholar] [CrossRef]
- Folliero, V.; Dell’Annunziata, F.; Roscetto, E.; Cammarota, M.; De Filippis, A.; Schiraldi, C.; Catania, M.R.; Casolaro, V.; Perrella, A.; Galdiero, M.; et al. Niclosamide as a Repurposing Drug Against Corynebacterium striatum Multidrug-Resistant Infections. Antibiotics 2022, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Pei, J.; Yi, W.; Fan, L.; Wang, C.; Xiao, X. Isolation and Identification of a Novel Phage Targeting Multidrug-Resistant Corynebacterium striatum. Front. Cell. Infect. Microbiol. 2024, 14, 1361045. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, S.; Bae, S.; Kim, Y.; Chang, H.H.; Kim, J. Antibacterial Effects of Recombinant Endolysins in Disinfecting Medical Equipment: A Pilot Study. Front. Microbiol. 2022, 12, 773640. [Google Scholar] [CrossRef] [PubMed]
- Holdren, G.O.; Rosenthal, D.J.; Yang, J.; Bates, A.M.; Fischer, C.L.; Zhang, Y.; Brogden, N.K.; Brogden, K.A. Antimicrobial Activity of Chemokine CXCL10 for Dermal and Oral Microorganisms. Antibiotics 2014, 3, 527–539. [Google Scholar] [CrossRef] [PubMed]

| Category of Resistance Mechanism | Molecular Basis/Representative Genes | Affected Antibiotic Class | Mobile Genetic Elements/Genetic Context |
|---|---|---|---|
| Target modification | erm(X) (23S rRNA methylation); gyrA, parC mutations (QRDR) | Macrolides, Lincosamides, Fluoroquinolones | Transposon Tn5432, Chromosomal point mutations [40,41] |
| Enzymatic inactivation | aac(3)-XI, aph(3′)-Ic, ant(4′)-Ib, bla | Aminoglycosides, β-lactams | Plasmid-encoded or IS-associated [42] |
| Efflux pump-mediated resistance | tet(W), tetA/B | Tetracyclines | Integrative conjugative elements (ICEs) [43] |
| Reduced permeability/cell wall alteration | Cell wall thickening, altered lipid metabolism | Glycopeptides (vancomycin), Daptomycin | Chromosomal regulation, no van genes detected [22,44] |
| Mobile genetic element-mediated dissemination | erm(X)–tet(W)–aac(3)-XI gene clusters | Multiple antibiotic classes (MDR phenotype) | Transposons IS6100, Tn5432, ICEs [45] |
| Infection Site | Common Medical History | Usual Clinical Sign | General Outcome |
|---|---|---|---|
| Thoracic infection | structural lung diseases; immunocompromised status; | pneumonia; intrapulmonary abscess; pulmonary nodules; mediastinitis; | In-hospital mortality rates were as high as 70.4% [7] |
| Endovascular infection | device implantation; immunocompromised status; | native endocarditis; prosthetic implantable device infection; masquerading as a myxoma in atrium; thrombophlebitis; arteritis; artery rupture; bacteremia; sepsis; | mortality rates were as high as 34% [9] |
| Musculoskeletal and soft tissue infection | arthroplasty surgery; immunocompromised status; | native joint infection; prosthetic joint infection; osteomyelitis; osteoarthritis; tenosynovitis; cellulitis; axillary malodor; | mortality was low; failure was high: reinfection (33%); [54] |
| peritonitis | catheter indwelling; chronic renal failure; | purulent peritonitis; | doing well |
| meningitis | unhealed wound; ventricular draining; | purulent meningitis; abscesses | mortality rates were as high as 30% [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Zhang, Z.; Shi, H.; Li, J.; Liao, X. The Pathogenesis, Clinical Features, and Treatment of Corynebacterium striatum-Related Infection. Microorganisms 2026, 14, 119. https://doi.org/10.3390/microorganisms14010119
Zhang H, Zhang Z, Shi H, Li J, Liao X. The Pathogenesis, Clinical Features, and Treatment of Corynebacterium striatum-Related Infection. Microorganisms. 2026; 14(1):119. https://doi.org/10.3390/microorganisms14010119
Chicago/Turabian StyleZhang, Huan, Zheng Zhang, Haiqing Shi, Jianbo Li, and Xuelian Liao. 2026. "The Pathogenesis, Clinical Features, and Treatment of Corynebacterium striatum-Related Infection" Microorganisms 14, no. 1: 119. https://doi.org/10.3390/microorganisms14010119
APA StyleZhang, H., Zhang, Z., Shi, H., Li, J., & Liao, X. (2026). The Pathogenesis, Clinical Features, and Treatment of Corynebacterium striatum-Related Infection. Microorganisms, 14(1), 119. https://doi.org/10.3390/microorganisms14010119
