Development of a Chemiluminescence Immunoassay for the Serological Diagnosis of Sheep and Bovine Brucellosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Sources
2.2. LPS Extraction
2.3. Conjugation of LPS to MPs
2.4. Conjugation of AE to SPG
2.5. Optimization of the Reaction System
- Dilutions of LPS-MPs
- 2.
- Dilutions of AE-SPG
- 3.
- Dilutions of serum samples
- 4.
- Sample dilution buffers
- 5.
- Detection procedure
2.6. Qualitative Analysis
2.7. Analytical Sensitivity, Repeatability, and Cross-Reactivity
- Sensitivity
- 2.
- Repeatability
- 3.
- Cross-reactivity
2.8. Comparison of Coincidence Rates
3. Results
3.1. Optimization of Working Condition
- Optimization of LPS-MPs and AE-SPG concentration
- 2.
- Optimization of serum sample dilutions
- 3.
- Optimization of sample diluent buffer
- 4.
- Optimization of detection procedure
3.2. Qualitative Analytical Performance
3.3. Sensitivity, Cross-Reactivity, and Repeatability for Bru-CLIA
3.4. Comparison of Coincidence Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moriyón, I.; Blasco, J.M.; Letesson, J.J.; De Massis, F.; Moreno, E. Brucellosis and One Health: Inherited and Future Challenges. Microorganisms 2023, 11, 2070. [Google Scholar] [CrossRef]
- Byndloss, M.X.; Tsolis, R.M. Brucella spp. Virulence Factors and Immunity. Annu. Rev. Anim. Biosci. 2016, 4, 111–127. [Google Scholar] [CrossRef]
- Khairullah, A.R.; Kurniawan, S.C.; Puspitasari, Y.; Aryaloka, S.; Silaen, O.S.M.; Yanestria, S.M.; Widodo, A.; Moses, I.B.; Effendi, M.H.; Afnani, D.A.; et al. Brucellosis: Unveiling the complexities of a pervasive zoonotic disease and its global impacts. Open Vet. J. 2024, 14, 1081–1097. [Google Scholar]
- Nyarku, R.; Hassim, A.; Jonker, A.; Quan, M. Development of a Genus-Specific Brucella Real-Time PCR Assay Targeting the 16S-23S rDNA Internal Transcribed Spacer from Different Specimen Types. Vet. Sci. 2020, 7, 175. [Google Scholar] [CrossRef]
- Fusco, G.; Cardillo, L.; Valvini, O.; Pucciarelli, A.; Picazio, G.; Cerrone, A.; Napoletano, M.; Pellicanò, R.; Ottaiano, M.; de Martinis, C.; et al. Detection and quantification of Brucella bortus DNA in water buffaloes (Bubalus bubalis) using droplet digital polymerase chain reaction. Vet. Q. 2024, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Z.; Li, Z.Y.; Liu, Y.Y.; Wu, Y.C.; Yu, K.Y.; He, Z. Establishment of a rapid method for the detection of Brucella canis based on recombinase-mediated thermostable nucleic acid amplification technology. Front. Cell. Infect. Microbiol. 2025, 14, 1493492. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yan, X.; Sun, M.; Guo, X.; Li, J.; Sun, X.; Liu, M.; Zhang, H.; Nan, W.; Shao, W.; et al. Evaluation of twin-arginine translocation substrate proteins as potential antigen candidates for serodiagnosis of brucellosis. Front. Vet. Sci. 2025, 12, 1398983. [Google Scholar]
- Loubet, P.; Magnan, C.; Salipante, F.; Pastre, T.; Keriel, A.; O’Callaghan, D.; Sotto, A.; Lavigne, J.P. Diagnosis of brucellosis: Combining tests to improve performance. PLoS Negl. Trop. Dis. 2024, 18, e0012442. [Google Scholar] [CrossRef]
- Ibarra, M.; Campos, M.; Hernán, B.; Loor-Giler, A.; Chamorro, A.; Nuñez, L. Comparison of diagnostic tests for detecting bovine brucellosis in animals vaccinated with S19 and RB51 strain vaccines. Vet. World 2023, 16, 2080–2085. [Google Scholar] [PubMed]
- Qureshi, K.A.; Parvez, A.; Fahmy, N.A.; Abdel Hady, B.H.; Kumar, S.; Ganguly, A.; Atiya, A.; Elhassan, G.O.; Alfadly, S.O.; Parkkila, S.; et al. Brucellosis: Epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann. Med. 2023, 55, 2295398. [Google Scholar] [CrossRef]
- ul Azim, M.A.; Hasan, M.; Ansari, I.H.; Nasreen, F. Chemiluminescence Immunoassay: Basic Mechanism and Applications. Bangladesh J. Nucl. Med. 2018, 18, 171–178. [Google Scholar] [CrossRef]
- Matsunaga, H.; Makino, A.; Kato, Y.; Murakami, T.; Yamaguchi, Y.; Kumanogoh, A.; Oba, Y.; Fujimi, S.; Honda, T.; Tomonaga, K. Radioligand Assay-Based Detection of Antibodies against SARS-CoV-2 in Hospital Workers Treating Patients with Severe COVID-19 in Japan. Viruses 2021, 13, 347. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, P.; Dong, S.; Zhang, X.; Yang, Q.; Wang, Y.; Ge, J.; Hammock, B.D.; Zhang, C.; Liu, X. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody. J. Agric. Food Chem. 2018, 66, 950–956. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, M.; Hu, C.; Wang, D.; Chen, H.; Ou, Y.; Liu, R.; Li, X.; Wu, L.; Liu, P.; et al. Multivalent bifunctional nanobody to enhance the sensitivity of direct competitive chemiluminescence immunoassay for the detection of microcystin LR in lake water. Talanta 2025, 283, 127080. [Google Scholar] [CrossRef] [PubMed]
- Satyaputra, F.; Hendry, S.; Braddick, M.; Sivabalan, P.; Norton, R. The Laboratory Diagnosis of Syphilis. J. Clin. Microbiol. 2021, 59, e0010021. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, C.; Fan, J.; Zhao, Y.; Jiang, L.; Sun, X.; Zhang, Q.; Jin, M. Development of a chemiluminescence immunoassay to accurately detect African swine fever virus antibodies in serum. J. Virol. Methods 2021, 298, 114269. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Zhao, F.R.; Gao, S.D.; Shao, J.J.; Zhang, Y.G.; Chang, H.Y. Development of a chemiluminescence immunoassay using recombinant non-structural epitope-based proteins to accurately differentiate foot-and-mouth disease virus-infected and vaccinated bovines. Transbound. Emerg. Dis. 2018, 65, 338–344, Erratum in Transbound. Emerg. Dis. 2018, 65, 1126. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, G.; Meng, Y.; Wang, Y.; Hun, X. Chemiluminescence assay for Listeria monocytogenes based on Cu/Co/Ni ternary nanocatalyst coupled with penicillin as generic capturing agent. Luminescence 2021, 36, 11–19. [Google Scholar] [CrossRef]
- Cardoso, P.G.; Macedo, G.C.; Azevedo, V.; Oliveira, S.C. Brucella spp noncanonical LPS: Structure, biosynthesis, and interaction with host immune system. Microb. Cell Fact. 2006, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Ma, L.; Zhang, R.; De, Y.; Yang, X.; Wang, C.; Wu, Q. Development of an improved competitive ELISA based on a monoclonal antibody against lipopolysaccharide for the detection of bovine brucellosis. BMC Vet. Res. 2015, 11, 118. [Google Scholar] [CrossRef]
- Abdelgawad, H.A.; Lian, Z.; Yin, Y.; Fang, T.; Tian, M.; Yu, S. Characterization of Brucella abortus Mutant A19mut2, a Potential DIVA Vaccine Candidate with a Modification on Lipopolysaccharide. Vaccines 2023, 11, 1273. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Zeng, D.; Wang, S.; Wu, J.; Liu, Y.; Peng, G.; Xu, Z.; Jia, H.; Song, C. Development of a fully automated chemiluminescent immunoassay for the quantitative and qualitative detection of antibodies against African swine fever virus p72. Microbiol. Spectr. 2024, 12, e0080924. [Google Scholar] [CrossRef] [PubMed]
- Arif, S.; Thomson, P.C.; Hernandez-Jover, M.; McGill, D.M.; Warriach, H.M.; Hayat, K.; Heller, J. Bovine brucellosis in Pakistan; an analysis of engagement with risk factors in smallholder farmer settings. Vet. Med. Sci. 2019, 5, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Munyua, P.; Osoro, E.; Hunsperger, E.; Ngere, I.; Muturi, M.; Mwatondo, A.; Marwanga, D.; Ngere, P.; Tiller, R.; Onyango, C.O.; et al. High incidence of human brucellosis in a rural Pastoralist community in Kenya, 2015. PLoS Negl. Trop. Dis. 2021, 15, e0009049. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Wei, H.X.; Li, Q.; Liu, L.; Li, B. Evaluation and Comparison of Serological Methods for COVID-19 Diagnosis. Front. Mol. Biosci. 2021, 8, 682405. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, R.H.; Gong, F.; Wei, X.; Dong, Y.; Chen, R.; Yue Liang, M.; Tang, C.; Lu, L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front. Public Health 2022, 10, 923525. [Google Scholar]
- Ji, H.; Chang, L.; Zhao, J.; Zhang, L.; Jiang, X.; Guo, F.; Wang, L. Evaluation of ELISA and CLIA for Treponema pallidum specific antibody detection in China: A multicenter study. J. Microbiol. Methods 2019, 166, 105742. [Google Scholar] [CrossRef]
- Sekacheva, M.; Boroda, A.; Fatyanova, A.; Rozhkov, A.; Bagmet, N. Clinical validation of the novel CLIA-CA-62 assay efficacy for early-stage breast cancer detection. Front. Oncol. 2023, 13, 1009863. [Google Scholar]
- Dichtl, K.; Zimmermann, J.; Koeppel, M.B.; Böhm, S.; Osterman, A. Evaluation of a Novel CLIA Monotest Assay for the Detection of Anti-Hepatitis E Virus-IgG and IgM: A Retrospective Comparison with a Line Blot and an ELISA. Pathogens 2021, 10, 689. [Google Scholar]
- Liu, B.; Su, X.; Yu, G.; Yang, S.; Wang, F.; Huang, T.; Zhou, L.; Hui, Z.; Liao, Y.; Qiu, Y.; et al. An automated chemiluminescent immunoassay (CLIA) detects SARS-CoV-2 neutralizing antibody levels in COVID-19 patients and vaccinees. Int. J. Infect. Dis. 2022, 115, 116–125, Erratum in Int. J. Infect. Dis. 2022, 116, 426. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, Q.; Huang, L.; Zhai, Y.; Liu, Y.; Deng, Y.; Su, E.; He, N. Ultrasensitive chemiluminescence immunoassay with enhanced precision for the detection of cTnI amplified by acridinium ester-loaded microspheres and internally calibrated by magnetic fluorescent nanoparticles. Nanoscale 2021, 13, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Shao, J.; Yang, S.; Wen, S.; Ma, Y.; Gao, S.; Chang, H.; Liu, W. Development of plate-type and tubular chemiluminescence immunoassay against African swine fever virus p72. Appl. Microbiol. Biotechnol. 2024, 108, 431. [Google Scholar] [CrossRef] [PubMed]
- Natrajan, A.; Sharpe, D.; Costello, J.; Jiang, Q. Enhanced immunoassay sensitivity using chemiluminescent acridinium esters with increased light output. Anal. Biochem. 2010, 406, 204–213, Erratum in Anal. Biochem. 2011, 408, 360. [Google Scholar] [CrossRef] [PubMed]
Sample | Dilution Ratios | Bru-CLIA a | Dilution Ratios | Bru-CLIA b | ||
---|---|---|---|---|---|---|
RLU | Results | RLU | Results | |||
Positive control sera | 1:2 | 814,436 | + | 1:2 | 922,104 | + |
1:4 | 759,971 | + | 1:4 | 845,213 | + | |
1:8 | 674,499 | + | 1:8 | 729,834 | + | |
1:16 | 567,784 | + | 1:16 | 564,003 | + | |
1:32 | 459,471 | + | 1:32 | 441,203 | + | |
1:64 | 352,746 | + | 1:64 | 271,532 | + | |
1:128 | 246,878 | + | 1:128 | 154,402 | + | |
1:256 | 168,844 | + | 1:256 | 89,634 | + | |
1:512 | 108,461 | + | 1:512 | 51,530 | − | |
1:1024 | 76,730 | − | 1:1024 | 25,818 | − |
Pathogens | RLU | Results |
---|---|---|
Escherichia coli O157:H7 | 3364 | − |
Mycobacterium tuberculosis | 2894 | − |
Vibrio cholerae | 3652 | − |
Legionella | 3180 | − |
Salmonella | 3556 | − |
Foot and mouth disease virus types O and A | 2426 | − |
Bovine viral diarrhea virus | 3065 | − |
Goat pox virus | 1980 | − |
Small ruminant plague virus | 2978 | − |
Brucella-negative serum | 2515 | − |
Brucella-positive serum | 270,045 | + |
Serum Number | Intra-Batch Coefficient of Variation | Coefficient of Variation Between BATCHES | ||
---|---|---|---|---|
Mean ± SD | CV (%) | Mean ± SD | CV (%) | |
1 a | 562,542 ± 5936 | 1.1 | 567,451 ± 9916 | 1.8 |
2 a | 466,142 ± 6566 | 1.4 | 458,471 ± 1060 | 0.3 |
3 a | 349,255 ± 12,118 | 3.5 | 351,746 ± 9758 | 2.8 |
4 a | 243,968 ± 7600 | 3.1 | 246,544 ± 4891 | 2.0 |
5 a | 166,790 ± 1453 | 0.9 | 168,844 ± 3538 | 2.1 |
6 b | 729,834 ± 6381 | 0.9 | 875,931 ± 53,582 | 6.1 |
7 b | 564,003 ± 8427 | 1.5 | 656,737 ± 45,050 | 6.9 |
8 b | 441,203 ± 18,290 | 4.2 | 352,904 ± 6763 | 1.9 |
9 b | 271,532 ± 7782 | 2.9 | 115,738 ± 9328 | 8.1 |
10 b | 154,402 ± 5820 | 3.8 | 29,086 ± 2098 | 7.2 |
Methods | Samples | Bru-CLIA | |||
---|---|---|---|---|---|
PS.N | NS.N | Total | Coincidence Rate | ||
ID-VET ELISA a | PS.N | 24 | 6 | 30 | 80.00% |
NS.N | 4 | 47 | 51 | 92.16% | |
Total | 28 | 53 | 81 | 87.65% | |
Kappa: 0.732 | |||||
ID-VET ELISA b | PS.N | 27 | 2 | 29 | 93.10% |
NS.N | 4 | 63 | 67 | 94.03% | |
Total | 31 | 65 | 96 | 93.75% | |
Kappa: 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Chen, M.; Liu, Y.; Sun, M.; Huang, M.; Jin, J.; Li, J.; Sun, X.; Liu, M.; Zhang, H.; et al. Development of a Chemiluminescence Immunoassay for the Serological Diagnosis of Sheep and Bovine Brucellosis. Microorganisms 2025, 13, 2214. https://doi.org/10.3390/microorganisms13092214
Yan X, Chen M, Liu Y, Sun M, Huang M, Jin J, Li J, Sun X, Liu M, Zhang H, et al. Development of a Chemiluminescence Immunoassay for the Serological Diagnosis of Sheep and Bovine Brucellosis. Microorganisms. 2025; 13(9):2214. https://doi.org/10.3390/microorganisms13092214
Chicago/Turabian StyleYan, Xin, Mingze Chen, Yuning Liu, Mingjun Sun, Mengkun Huang, Jihui Jin, Jiaqi Li, Xiangxiang Sun, Mengda Liu, Haobo Zhang, and et al. 2025. "Development of a Chemiluminescence Immunoassay for the Serological Diagnosis of Sheep and Bovine Brucellosis" Microorganisms 13, no. 9: 2214. https://doi.org/10.3390/microorganisms13092214
APA StyleYan, X., Chen, M., Liu, Y., Sun, M., Huang, M., Jin, J., Li, J., Sun, X., Liu, M., Zhang, H., Shao, W., Sun, S., Fan, X., & Nan, W. (2025). Development of a Chemiluminescence Immunoassay for the Serological Diagnosis of Sheep and Bovine Brucellosis. Microorganisms, 13(9), 2214. https://doi.org/10.3390/microorganisms13092214