Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. HZ-011 Spore Suspension Preparation
2.2.2. HZ-011 Spore Suspension Inoculation of Weed Seedlings
2.2.3. RNA Extraction, Library Construction, and Sequencing
2.2.4. Clean Reads Filtering and Data Assembly
- Remove reads containing adapters from reverse transcription.
- Remove reads with an N proportion greater than 10%.
- Remove reads consisting entirely of A bases.
- Remove low-quality reads (where bases with a quality score of Q ≤ 20 account for more than 50% of the entire read)
2.2.5. Single-Gene Expression Analysis and Basic Annotation
2.2.6. Reference Sequence Alignment
2.2.7. Differentially Expressed Genes (DEGs) Screening and Enrichment Analysis
2.2.8. qRT-PCR Validation of Differentially Expressed Genes in the Transcriptome
3. Results
3.1. Data Quality Control
3.2. Mapping Statistics
3.3. Gene Expression Profilin
3.4. Sample Correlation Analysis
3.5. Inter-Group Difference Gene Statistics
3.6. Venn Analysis
3.7. Trend Analysis
3.8. GO Enrichment of Downregulated DEGs
3.9. KEGG Pathway Analysis of Downregulated DEGs
3.10. Photosynthesis-Related Metabolic Pathway Analysis
3.11. Validation of Differentially Expressed Genes in the Transcriptome by qRT-PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poonia, A.; Upadhayay, A. Chenopodium album Linn: Review of nutritive value and biological properties. J. Food Sci. Technol. 2015, 52, 3977–3985. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Zulfiqar, U.; Sadia, S.; Bhowmik, P.; Chauhan, B.S. A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: Two troublesome agricultural and environmental weeds. Environ. Sci. Pollut. Res. 2019, 26, 5357–5371. [Google Scholar] [CrossRef] [PubMed]
- Krak, K.; Vít, P.; Belyayev, A.; Douda, J.; Hreusová, L.; Mandák, B.; Hörandl, E. Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): A molecular and cytogenetic insight. PLoS ONE 2016, 11, e0161063. [Google Scholar] [CrossRef]
- Ma, X.Y.; Wu, H.W.; Jiang, W.L.; Ma, Y.; Ma, Y. Interference between redroot pigweed (Amaranthus retroflexus L.) and cotton (Gossypium hirsutum L.): Growth analysis. PLoS ONE 2015, 10, e0130475. [Google Scholar] [CrossRef]
- Koocheki, A.; Nassiri, M.; Alimoradi, L.; Ghorbani, R. Effect of cropping systems and crop rotations on weeds. Agron. Sustain. Dev. 2009, 29, 401–408. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Alqarawi, A.A.; Abd Allah, E.F. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef]
- Duke, S.O.; Dayan, F.E.; Rimando, A.M.; Schrader, K.K.; Aliotta, G.; Oliva, A.; Romagni, J.G. Chemicals from nature for weed management. Weed Sci. 2002, 50, 138–151. [Google Scholar] [CrossRef]
- Cheung, N.; Tian, L.; Liu, X.; Li, X. The Destructive Fungal Pathogen Botrytis cinerea—Insights from Genes Studied with Mutant Analysis. Pathogens 2020, 9, 923. [Google Scholar] [CrossRef]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef]
- Collado, I.G.; Viaud, M. Secondary metabolism in Botrytis cinerea: Combining genomic and metabolomic approaches. In Botrytis—The Fungus, the Pathogen and its Management in Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2015; pp. 291–313. [Google Scholar] [CrossRef]
- Leisen, T.; Werner, J.; Pattar, P.; Safari, N.; Ymeri, E.; Sommer, F.; Schroda, M.; Suárez, I.; Collado, I.G.; Scheuring, D.; et al. Multiple knockout mutants reveal a high redundancy of phytotoxic compounds contributing to necrotrophic pathogenesis of Botrytis cinerea. PLoS Pathog. 2022, 18, e1010367. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.Y.; Dong, J.G.; Shang, H.S. The bioassay of Botrytis cinerea and its metabolite. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2003, 31, 119–122. [Google Scholar] [CrossRef]
- Li, C.G. Studies on Herbicidal Activity of Metabolites from Botrytis cinerea and Isolation of Active Substance. Ph.D. Thesis, Hebei Agricultural University, Baoding, China, 2003. [Google Scholar]
- Zhang, J.L.; Xu, K.; Li, C.; Ma, J.; Dong, J.G. The Bioactivity of Mutant Isolates from Botrytis cinerea. Sci. Agric. Sin. 2005, 38, 1174–1181. [Google Scholar]
- Aybeke, M. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp. Microbiol. Res. 2017, 201, 46–51. [Google Scholar]
- Aybeke, M. Fusarium infection causes phenolic accumulations and hormonal disorders in Orobanche spp. Indian J. Microbiol. 2017, 57, 416–421. [Google Scholar] [CrossRef]
- Harding, D.P.; Raizada, M.N. Controlling weeds with fungi, bacteria and viruses: A review. Front. Plant Sci. 2015, 6, 659. [Google Scholar] [CrossRef]
- Song, F.J.; Yang, R.S.; Lü, X.R.; Liu, Z.Y.; Wang, H.Y.; Meng, Y.Y. Full-length transcriptome analysis of Paris polyphylla Smith var. chinensis based on PacBio platform. J. South-Cent. Univ. Natl. Nat. Sci. Ed. 2022, 41, 153–160. [Google Scholar]
- Zhang, K.; Jin, A.; Fan, S.C.; Zeng, H.M. Analysis of plant-pathogen interaction based on transcriptome of Rhizoctonia solani infecting Zoysia japonica. Mol. Plant Breed. 2023, 21, 3572–3578. [Google Scholar]
- Liu, X.F.; Yang, Y.; Gao, H.F.; Cheng, L.; Zhu, H.X.; Guo, Q.Y. Transcriptome analysis of Chenopodium album leaves infected by Aureobasidium pullulans strain PA-2. Mol. Plant Breed. 2023, 21, 1521–1534. [Google Scholar]
- Zhu, H.X.; Cheng, L.; Ma, Y.Q. Evaluation of the biocontrol potential of the fungus Botrytis euroamericana strain HZ-011 for herbicidal activity. Egypt. J. Biol. Pest Control. 2023, 33, 51. [Google Scholar] [CrossRef]
- Zhu, H.X.; Cheng, L.; Ma, Y.Q. Isolation and identification of herbicidal active substances of Botrytis strain HZ-011. Plant Prot. Sci. 2023, 33, 51. [Google Scholar] [CrossRef]
- Varoquaux, N.; Cole, B.; Gao, C.; Pierroz, G.; Baker, C.R.; Patel, D.; Madera, M.; Jeffers, T.; Hollingsworth, J.; Sievert, J.; et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl. Acad. Sci. USA 2019, 116, 27124–27132. [Google Scholar]
- Zeng, F.S.; Menardo, F.; Xue, M.F.; Zhang, X.J.; Gong, S.J.; Yang, L.J.; Shi, W.Q.; Yu, D.Z. Transcriptome analyses shed new insights into primary metabolism and regulation of Blumeria graminis f. sp. tritici during Conidiation. Front. Plant Sci. 2017, 8, 1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, H.; Li, J.; Shu, H.; Zhang, X.; Wang, Y.; Tyler, B.M.; Dong, S. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Res. 2020, 48, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.C.; Wang, L.D.; Zhao, X.M.; Liu, Y.; Lan, Y.; Liu, Y.; Han, Y.H.; Wang, L.X. Effects of 0.003% propionyl brassinolide on growth, yield and quality of rice. Heilongjiang Agric. Sci. 2023, 38–44. [Google Scholar]
- Zhang, Y.; Wang, X.F.; Ding, Z.G.; Ma, Q.; Zhang, G.R.; Zhang, S.L.; Li, Z.K.; Wu, L.Q.; Ma, Z.Y. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genom. 2013, 14, 637. [Google Scholar] [CrossRef]
- Zhao, X.L.; Niu, Y.C.; Deng, H.; Luo, D.Q. Characterization and phytotoxicity of ophiobolins produced by Bipolaris setariae. Mycoscience 2021, 62, 64–70. [Google Scholar] [CrossRef]
- Treiber, L.; Pezolt, C.; Zeng, H.; Schrey, H.; Jungwirth, S.; Shekhar, A.; Stadler, M.; Bilitewski, U.; Erb-Brinkmann, M.; Schobert, R. Dual agents: Fungal macrocidins and synthetic analogues with herbicidal and antibiofilm activities. Antibiotics 2021, 10, 1022. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int. J. Mol. Sci. 2018, 19, 3900. [Google Scholar] [CrossRef]
- Dario, L. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. Mol. Plant 2023, 16, 4–22. [Google Scholar] [CrossRef]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Plant Biol. 2005, 56, 165–185. [Google Scholar]
- Finkelstein, R. Abscisic acid synthesis and response. Arabidopsis Book 2013, 11, e0166. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Gao, H.F.; Zhu, H.X.; Li, J.; Wang, X.; Guo, Q.Y. Selection of reference genes and expression analysis of photosynthesis-related genes responding to Aureobasidium pullulans in Chenopodium album. Southwest China J. Agric. Sci. 2024, 37, 1752–1762. [Google Scholar]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef]
- Camargo, A.F.; Stefanski, F.S.; Scapini, T.; Weirich, S.N.; Ulkovski, C.; Carezia, C.; Bordin, E.R.; Rossetto, V.; Júnior, F.R.; Galon, L.; et al. Resistant weeds were controlled by the combined use of herbicides and bioherbicides. Environ. Qual. Manag. 2019, 29, 37–42. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Fuchs, B.; Nissinen, R.; Puigbò, P.; Rainio, M.; Saikkonen, K.; Helander, M. Ecosystem consequences of herbicides: The role of microbiome. Trends Ecol. Evol. 2023, 38, 35–43. [Google Scholar] [CrossRef]
Reagents | Dosage (μL) |
---|---|
2× FastReal qPCR PreMix | 12.5 μL |
PCR Forward Primer (10 μM) | 1.0 μL |
PCR Reverse Primer (10 μM) | 1.0 μL |
cDNA | 1 μL |
50× ROX Reference Dye | 1 μL |
ddH2O up to | 25 μL |
Unigene ID | Forward Primer (5′→3′) | Reverse Primer (5′→3′) | Size |
---|---|---|---|
Unigene 0058827 | GATGTGTATTCCCTGAAATCCTGTCC | TTCCTAAGTAGTCGAGTCCACCTTC | 111 |
Unigene 0031621 | TTACCTCGCCCTTCGTGTCG | CAGCAGCCACAACCAACTTCC | 117 |
Unigene 0024359 | ACAGAAGCACATAAGCGATTGAGC | GTGTAAGCGGATTTGGTTAAGTGATTC | 117 |
Unigene 0093448 | GCTTGGCTTGGCTCTTCTTGG | AGCGAAATCTAGTCTGAAGTTGTCTG | 110 |
Unigene 0073990 | GCCGTCGCCGTCCCATC | GGATGCCTTGACTGACATTCTTGG | 114 |
Unigene 0069442 | CGAATACGATGAGCAGGACAACTAC | GCAGCCACGGCATTGAAGAG | 117 |
Unigene 0051155 | CGCTGCCGCTATTTCTCCTG | TTCCATTGTTGCTGCCCTCTTG | 119 |
Unigene 0092477 | GATGATGCTCCTGTGGTCTTATGTG | CTGAAACCTTGTCTCTGTCTACTTCTG | 118 |
Unigene 0008059 | AGTGGTTGCTAAGTATGGTGACAAG | CTGAAGAGAGTTGTAAGGTGAAGGAG | 118 |
Unigene 0014874 | CTCCTTGGTGGTGCTGAATACTAC | GCTGCTTGGTCTGGGTCATTG | 116 |
Unigene 0020154 | CGCCACTGCTGCTGCTATTG | CTGCCTCGTCCAATCTCAAGTG | 120 |
Unigene 0057427 | GGTAACGAGACTGCTGGTTCATAC | TCAATGGATGTTCCTGGCAAGTTAG | 110 |
Unigene 0052136 | CGGTCCATCAATAAGGCGTGTAG | ATCCTCCGCTAGTAATTTCACCAATG | 113 |
Unigene 0012369 | GCATCAACAACCTTCTTACAACAACC | ACTCTACCAGCACCAGAATCTACAC | 119 |
Unigene 0062583 | CCTCATCTGGGCTGGGCTTAG | CCTACTCTAATGGCTGCTTTCTCTG | 115 |
Unigene 0089933 | TGCGGACATCATTCAGGTTTCAG | GGGTCTGGTTGGTTTCTGTAAGTC | 116 |
Unigene 0067080 | GCAGCCGAGACTACCGAGAC | TCCTCAATAACCCACCTGTGCTAC | 115 |
Unigene 0013750 | GCAAGCCTATCAAGGTTGTCTCTG | TGCCAGCACCAGGACCATC | 117 |
Unigene 0016767 | CATCAAAGATAGTATGCCAGCAACAAG | GGACAGTAGCACCGAGGATAGAG | 113 |
Unigene 0053709 | GAGATTAAGAACGGTAGGTTGGCTATG | GGGTCGGCAAGGTGGTCAG | 110 |
Actin | CACGGCTTACTGGAGGAATGAAGTC | CTCAGGAGTTGAAGCAAGTACGGATC | 113 |
Sample | Raw Data | Clean Reads | Clean Bases (bp) | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
SC0-1 | 39,919,152 | 39,711,448 | 5,899,769,754 | 97.16% | 94.84% | 44.66% |
SC0-2 | 41,376,190 | 41,174,526 | 6,122,274,191 | 97.17% | 94.83% | 44.60% |
SC0-3 | 47,152,598 | 46,930,324 | 6,968,056,372 | 97.17% | 94.82% | 44.68% |
STC1-1 | 49,926,622 | 49,769,036 | 7,370,058,700 | 98.18% | 96.65% | 43.41% |
STC1-2 | 44,475,938 | 44,273,224 | 6,501,022,117 | 98.03% | 96.31% | 43.36% |
STC1-3 | 36,015,926 | 35,866,336 | 5,303,369,524 | 98.10% | 96.43% | 43.37% |
STC4-1 | 40,086,282 | 39,923,870 | 5,865,940,888 | 98.14% | 96.53% | 43.78% |
STC4-2 | 48,348,462 | 48,172,514 | 7,162,947,827 | 98.29% | 96.75% | 44.31% |
STC4-3 | 41,019,236 | 40,876,836 | 6,007,706,583 | 98.19% | 96.62% | 43.77% |
STC5-1 | 40,641,004 | 40,469,252 | 5,985,931,564 | 98.20% | 96.57% | 43.84% |
STC5-2 | 47,536,780 | 47,355,332 | 7,018,085,006 | 98.21% | 96.63% | 43.75% |
STC5-3 | 46,767,836 | 46,594,110 | 6,902,075,112 | 98.23% | 96.64% | 43.74% |
Average | 43,605,502 | 43,426,401 | 6,425,603,137 | 97.92% | 96.14% | 43.94% |
Total | 523,266,026 | 521,116,808 | 77,107,237,638 |
Sample | Total | Unmapped (%) | Unique—Mapped (%) | Total—Mapped (%) |
---|---|---|---|---|
STC0-1 | 39,711,448 | 7,557,650 (19.03%) | 30,892,390 (77.79%) | 32,153,798 (80.97%) |
STC0-2 | 41,174,526 | 7,783,910 (18.90%) | 32,100,278 (77.96%) | 33,390,616 (81.10%) |
STC0-3 | 46,930,324 | 8,766,495 (18.68%) | 36,637,247 (78.07%) | 38,163,829 (81.32%) |
STC1-1 | 49,769,036 | 8,095,692 (16.27%) | 39,509,100 (79.38%) | 41,673,344 (83.73%) |
STC1-2 | 44,273,224 | 7,311,350 (16.51%) | 35,103,000 (79.29%) | 36,961,874 (83.49%) |
STC1-3 | 35,866,336 | 6,028,367 (16.81%) | 28,368,882 (79.10%) | 29,837,969 (83.19%) |
STC4-1 | 39,923,870 | 6,866,114 (17.20%) | 31,175,109 (78.09%) | 33,057,756 (82.80%) |
STC4-2 | 48,172,514 | 8,280,096 (17.19%) | 37,938,523 (78.76%) | 39,892,418 (82.81%) |
STC4-3 | 40,876,836 | 6,974,451 (17.06%) | 31,953,261 (78.17%) | 33,902,385 (82.94%) |
STC5-1 | 40,469,252 | 6,651,150 (16.44%) | 32,073,452 (79.25%) | 33,818,102 (83.56%) |
STC5-2 | 47,355,332 | 7,825,710 (16.53%) | 37,526,212 (79.24%) | 39,529,622 (83.47%) |
STC5-3 | 46,594,110 | 7,594,067 (16.30%) | 36,997,679 (79.40%) | 39,000,043 (83.70%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhang, L.; Ma, Y.; Hou, L. Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011. Microorganisms 2025, 13, 2177. https://doi.org/10.3390/microorganisms13092177
Zhu H, Zhang L, Ma Y, Hou L. Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011. Microorganisms. 2025; 13(9):2177. https://doi.org/10.3390/microorganisms13092177
Chicago/Turabian StyleZhu, Haixia, Le Zhang, Yongqiang Ma, and Lu Hou. 2025. "Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011" Microorganisms 13, no. 9: 2177. https://doi.org/10.3390/microorganisms13092177
APA StyleZhu, H., Zhang, L., Ma, Y., & Hou, L. (2025). Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011. Microorganisms, 13(9), 2177. https://doi.org/10.3390/microorganisms13092177