Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Soil Sample Collection and Preservation
2.3. Determination of Soil Physical and Chemical Properties
2.4. DNA Extraction and PCR Amplification
2.5. Data Processing and Analysis
3. Results
3.1. Analysis of Soil Physical and Chemical Properties of Different Land Use Types
3.2. Effect of Different Land Use Types on the Distribution of ASVs in Soil Microbial Communities
3.3. The Impact of Different Land Use Types on Soil Microbial Community Diversity
3.4. Analysis of Soil Microbial Community Structure in Different Land Use Types
3.5. Analysis of Differences in Soil Microbial Community Structure Across Different Land Use Types
3.6. Correlation Analysis Between Soil Physical and Chemical Properties and Soil Microbial Community Structure
3.7. Analysis of Differences in Soil Microbial Functions Across Land Use Types
4. Discussion
4.1. Effects of Different Land Use Types on Soil Physicochemical Properties as Well as Alpha Diversity
4.2. Effects of Different Land Use Types on Soil Microbial Community Structure
4.3. Influence of Soil Physical and Chemical Properties on Microbial Community Structure
4.4. Effects of Different Land Use Types on Soil Microbial Metabolic Functional Pathways
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P. Soils as carbon sinks: The global context. Soil Use Manag. 2004, 20, 212–218. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Q.P.; Wang, S.S.; Zhang, T.; Wang, Y.M.; Cai, Q.F.; Geng, X.D.; Yang, Y.; Miao, C.; Dai, L.; et al. Sex-Dependent rhizosphere microbial dynamics and function in Idesia polycarpa through floral and fruit development. Microorganisms 2024, 12, 2022. [Google Scholar] [CrossRef]
- Liu, X.; Pang, R.Y.; Zhao, J.; Si, T.; Wang, Y.F.; Zou, X.X.; Jiao, Y.L. Effects of different rotation modes on the concentrations of soil activate carbon fractions and characteristics of carbon mineralization. J. Agro Environ. Sci. 2023, 42, 1768–1777. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, M.S.; Cao, X.X.; Zhao, S.M.; Jiang, D.Q.; Wang, B.X.; Wang, S.Y.; Fan, Y.D.; Guo, M.; Lin, H.P. Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models. Biodivers. Sci. 2018, 26, 611–619. [Google Scholar] [CrossRef][Green Version]
- Xu, Z.X.; Wang, X.; Li, H.M.; Li, X.R.; Feng, L.; Li, L. Correlative analysis of soil factors and soil bacteria in Casuarina equisetifolia woodlands at different stand ages. Genom. Appl. Biol. 2018, 37, 780–788. [Google Scholar] [CrossRef]
- Pang, D.B.; Wu, M.Y.; Zhao, Y.R.; Yang, J.; Dong, L.G.; Wu, X.D.; Chen, L.; Li, X.B.; Ni, X.L.; Li, J.Y.; et al. Soil microbial community characteristics and the influencing factors at different elevations on the eastern slope of Helan Mountain, northwest China. Chin. J. Appl. Ecol. 2023, 34, 1957–1967. [Google Scholar] [CrossRef]
- Deng, X.Y.; Wang, K.Q.; Wang, Z.C.; Zhu, W.J.; Xiang, J.D.; Zhao, F.Y.Y. Soil microbial community structure of different vegetation types in the Dry-Hot valley of Jinsha river. J. Sichuan Agric. Univ. 2024, 42, 1328–1338. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, F.X.; Cong, W.Q.; Wei, M.; Wang, J.Q.; Cui, L.J.; Wang, Z.H. Microbial community structure and environmental response of desert soil in Hexi Corridor. Acta Pedol. Sin. 2022, 59, 1718–1728. [Google Scholar] [CrossRef]
- Phillips, R.P.; Meier, I.C.; Bernhardt, E.S.; Grandy, A.S.; Wickings, K.; Finzi, A.C. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 2012, 15, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.G.; Shen, R.F.; He, J.Z.; Wang, Y.F.; Han, X.G.; Jia, Z.J. China soil microbiome initiative: Progress and perspective. Bull. Chin. Acad. Sci. 2017, 32, 554–565+542. [Google Scholar] [CrossRef]
- Li, Y.T.; Wang, Z.M.; Yang, Q.S.; Zhang, Z.L.; Dong, A.X.; Zhou, J.; Cao, Q.Q.; Zhang, J. Soil microbial community structure and diversity in Tamarix chinensis plantations in the Yellow River Delta. J. Cent. South Univ. For. Technol. 2024, 44, 80–93. [Google Scholar] [CrossRef]
- Zhang, S.N.; Yan, D.R.; Huang, H.G.; Hu, X.L.; Gao, H.Y. The soil microbial community structure in the Pinus sylvestris var. mongolica plantations of different ages. J. Cent. South Univ. For. Technol. 2023, 43, 123–131+143. [Google Scholar] [CrossRef]
- Ma, Y.S.; Cao, Y.X.; Niu, M.; Zhang, M.G.; Cheng, M.; Wen, Y.L. Investigation of soil microbial characteristics during stand development in Pinus tabuliformis forest in Taiyue mountain. Environ. Sci. 2024, 45, 2406–2416. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Secondi, L.; Marabottini, R.; Papp, R.; Stazi, S.R.; Mania, E.; Marinari, S. Assessment of soil microbial functional diversity: Land use and soil properties affect CLPP-MicroResp and enzymes responses. Pedobiologia 2018, 66, 36–42. [Google Scholar] [CrossRef]
- Xie, B.; Chen, Y.H.; Cheng, C.A.; Ma, R.P.; Zhao, D.Y.; Li, Z.; Li, Y.Q.; An, X.H.; Yang, X.Z. Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil. Appl. Soil Ecol. 2022, 180, 104627. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.R.; Huang, Y.T.; Fu, S.L. Changes on community structure and diversity of soil bacterial community during the succession of Quercus wutaishanica. Sci. Silvae Sin. 2019, 55, 193–202. [Google Scholar]
- Sadeghi, S.H.; Jafarpoor, A.; Homaee, M.; Gharemahmudli, S. Controllability of soil loss and runoff using soil microorganisms: A review. Ecohydrol. Hydrobiol. 2025, 25, 23–33. [Google Scholar] [CrossRef]
- Lasa, A.V.; Angeles Guevara, M.; Villadas, P.J.; Vélez, M.D.; Fernández-González, A.J.; de María, N.; López-Hinojosa, M.; Díaz, L.; Cervera, M.T.; Fernández-López, M. Correlating the above- and belowground genotype of Pinus pinaster trees and rhizosphere bacterial communities under drought conditions. Sci. Total Environ. 2022, 832, 155007. [Google Scholar] [CrossRef]
- Crow, S.E.; Lajtha, K.; Bowden, R.D.; Yano, Y.; Brant, J.B.; Caldwell, B.A.; Sulzman, E.W. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For. Ecol. Manag. 2009, 258, 2224–2232. [Google Scholar] [CrossRef]
- Lee, M.H.; Chang, E.H.; Lee, C.H.; Chen, J.Y.; Jien, S.H. Effects of Biochar on Soil Aggregation and Distribution of Organic Carbon Fractions in Aggregates. Processes 2021, 9, 1431. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Hale, S.E.; Nurida, N.L.; Cornelissen, G. The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS ONE 2018, 13, 5. [Google Scholar] [CrossRef]
- Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira, J.D.; da Lue, J.M.R. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Kassie, A.A.; Fetene, E.M.; Tilahun, Z.A. Effect of land use types on selected soil properties in the Asabla watershed, northern highlands of Ethiopia. Soil Use Manag. 2025, 41, e70035. [Google Scholar] [CrossRef]
- Thakur, M.P.; Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019, 27, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.Y.; Zhang, Z.M.; Fu, Z.; Liu, W.J. Distribution characteristics of soil microbial communities of different vegetation restoration models and their correlation with soil physical and chemical properties in desert steppe. Acta Agrrestia Sin. 2021, 29, 655–663. [Google Scholar]
- Qiu, H.S.; Liu, J.Y.; Boorboori, M.R.; Li, D.; Chen, S.; Ma, X.; Cheng, P.; Zhang, H.Y. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time. Sci. Total Environ. 2023, 855, 158876. [Google Scholar] [CrossRef]
- Wang, L.Y.; Sun, H.Z.; Yang, X. Structure and functional diversity of bacterial community in rhizosphere soil of typical vegetation in the riparian zone along the downstream of Songhua river. Environ. Sci. 2022, 43, 2182–2191. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, S.; Hua, Z.; Niu, B.; Xu, Q.; Ren, D.; Gao, M. Effects of different media on the culturability of soil bacteria. J. Shenyang Norm. Univ. (Nat. Sci. Ed.) 2022, 40, 48–53. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.; Zhu, L.; Zhang, T.; Zhang, F. Effect of Different Land Use Types on the Diversity of Soil Bacterial Community in the Coastal Zone of Jialing River. Environ. Sci. 2021, 43, 1620–1629. [Google Scholar] [CrossRef]
- Hu, T.; Liu, H.; Zhang, Y.; Wang, H.; Lin, X.; Xie, Z. Effects of Land Use on Soil Bacterial Community Structure and Assembly Process. Soil 2024, 56, 1262–1273. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y.; Shi, Z.T. Structure and characteristics of geomorphology in the area between Huanghe River and Luohe River in Henan province. J. Lanzhou Univ. (Nat. Sci.) 2010, 46, 40–47. [Google Scholar] [CrossRef]
- Yuan, M.Y.; Guo, X.M.; Liu, Y.; Yu, Y.; Wang, B.B.; Zhao, T.Q. Spatial distribution characteristics of hydro-chemistry in Stem Stream of Luo River during dry Season. Environ. Sci. Technol. 2024, 47, 118–126. [Google Scholar] [CrossRef]
- He, H. Landslide Susceptibility Assessment Based GIS in Luoning County of Henan Province. Soil Water Conserv. China 2025, 1, 81–85. [Google Scholar] [CrossRef]
- Bao, S. Soil Agricultural Chemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Dennis, K.L.; Wang, Y.W.; Blatner, N.R.; Wang, S.Y.; Saadalla, A.; Trudeau, E.; Roers, A.; Weaver, C.T.; Lee, J.; Gilbert, J.A.; et al. Adenomatous Polyps Are Driven by Microbe-Instigated Focal Inflammation and Are Controlled by IL-10-Producing T Cells. Cancer Res. 2013, 73, 5905–5913. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.C.; Li, Y.J.; Wang, D.L.; Yu, Y.Q.; Wang, D. Comparative analysis of soil aggregates and organic carbon distribution in grassland and cultivated land—A Case Study in Siziwang Banner of Inner Mongolia. Bull. Soil Water Conserv. 2019, 39, 50–54+60. [Google Scholar] [CrossRef]
- Yan, B.; Lu, Q.; Xia, S.; Li, S. An overview of advances in soil microbial diversity of urban environment. Biodivers. Sci. 2022, 30, 191–204. [Google Scholar] [CrossRef]
- Ding, Z.J.; Jiang, S.C.; Ren, B.H.; Bai, L.; Qin, S.J.; Li, J.H. Effects of land use patterns on soil physical and chemical properties and microbial communities in low hilly land. Acta Agrrestia Sin. 2024, 32, 426–435. [Google Scholar] [CrossRef]
- Su, T.Q.; Cui, T.T.; Zhang, J.B.; Luo, W.Q.; Hu, B.Q. Effect of land utilization patterns on total and easy-to-use components of soil carbon, nitrogen and phosphorus in the karst area of Pingguo, Guangxi. Carsologica Sin. 2023, 42, 311–320. [Google Scholar] [CrossRef]
- Sokol, N.W.; Slessarev, E.; Marschmann, G.L.; Nicolas, A.; Blazewicz, S.J.; Brodie, E.L.; Firestone, M.K.; Foley, M.M.; Hestrin, R.; Hungate, B.A. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, L.M. Toichiometric characteristics and influencing factors of soil nutrients under different land use types in an Alpine Mountain Region. Acta Ecol. Sin. 2022, 42, 4415–4427. [Google Scholar] [CrossRef]
- Yin, N.; Koide, R.T. Microbial activity, microarthropods and the phenomenon of positive, nonadditive decomposition of mixed litter. Pedobiologia 2019, 76, 103892. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Y.; Yang, W.Q.; Gao, Y.H. Effect of desertification on soil carbon and nitrogen, enzyme activity, and bacterial diversity in alpine grassland. J. Soil Water Conserv. 2021, 35, 350–358. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Zhang, Y.L.; Zhao, X.Y.; Yang, J.H.; Li, Z.W. Characteristics of soil bacterial diversity in agro-pastoral ecotone of Inner Mongolia. Chin. J. Ecol. 2023, 42, 862–868. [Google Scholar] [CrossRef]
- Qin, H.; Li, C.X.; Ren, Q.S. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir region. Acta Ecol. Sin. 2017, 37, 3494–3504. [Google Scholar] [CrossRef][Green Version]
- Zhang, S.S.; Jin, Z.J.; Jia, Y.H.; Li, Q. Community structure of co2-fixing soil bacteria from different land use types in karst areas. Environ. Sci. 2019, 40, 412–420. [Google Scholar] [CrossRef]
- Uroz, S.; Buée, M.; Deveau, A.; Mieszkin, S.; Martin, F. Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems. Soil Biol. Biochem. 2016, 103, 471–488. [Google Scholar] [CrossRef]
- Sun, M.X.; Liu, X.L.; Shi, K.W.; Peng, F.T.; Xiao, Y.S. Effects of root zone aeration on soil microbes species in a peach tree rhizosphere and root growth. Microorganisms 2022, 10, 1879. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.R.; Mannisto, M.K.; Bromberg, Y.; Haeggblom, M.M. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol. Ecol. 2012, 82, 341–355. [Google Scholar] [CrossRef]
- Kanokratana, P.; Uengwetwanit, T.; Rattanachomsri, U.; Bunterngsook, B.; Nimchua, T.; Tangphatsornruang, S.; Plengvidhya, V.; Champreda, V.; Eurwilaichitr, L. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 2011, 61, 518–528. [Google Scholar] [CrossRef]
- Araujo, R.; Gupta, V.V.S.R.; Reith, F.; Bissett, A.; Mele, P.; Franco, C.M.M. Biogeography and emerging significance of actinobacteria in Australia and Northern Antarctica soils. Soil Biol. Biochem. 2020, 146, 107805. [Google Scholar] [CrossRef]
- Zhen, L.N.; Li, X.; Li, Z.; Liu, L.Z.; Wei, Z.H.; Guo, T.T.; Wang, R.M. The culturable rhizosphere microorganism dynamics of different vegetation types in coal gangue dump. Acta Agrrestia Sin. 2021, 29, 1224–1233. [Google Scholar] [CrossRef]
- Xu, J.Y.; He, X.L.; Shao, M.C.; Wan, Y.L.; Guo, W.J.; Shi, S.P.; Yang, Z.H.; Pan, M.R.; Guo, S.Q. Effects of different planting patterns on microbial community diversity in rhizosphere soil of Trichosanthes kirilowii Maxim. J. South. Agric. 2024, 55, 920–931. [Google Scholar] [CrossRef]
- Wang, S.; Rana, S.; Zhang, T.; Wang, Y.; Liu, Z.; Cai, Q.; Geng, X.; Yuan, Q.; Yang, Y.; Miao, C.; et al. Influence of Varied Phosphorus Fertilizer Ratios on the Rhizosphere Soil Microbial Community in Idesia polycarpa Seedlings. Forests 2024, 15, 1686. [Google Scholar] [CrossRef]
- Hong, S.B.; Piao, S.L.; Chen, A.P.; Liu, Y.W.; Liu, L.L.; Peng, S.S.; Sardans, J.; Sun, Y.; Penuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.S.; Dechow, R.; Flessa, H. Inventory and assessment of pH in cropland and grassland soils in Germany. J. Plant Nutr. Soil Sci. 2022, 185, 145–158. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, S.S.; Rana, S.; Wang, Y.M.; Liu, Z.; Cai, Q.F.; Geng, X.D.; Yuan, Q.P.; Yang, Y.; Miao, C. Analysis of leaf and soil nutrients, microorganisms and metabolome in the growth period of Idesia polycarpa maxim. Microorganisms 2024, 12, 746. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Yuan, H.; Badgley, B.D.; He, Z. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics. Water Res. 2017, 125, 298–308. [Google Scholar] [CrossRef]
- Marhan, S.; Kandeler, E.; Rein, S.; Fangmeier, A.; Niklaus, P.A. Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO2. Glob. Change Biol. 2009, 16, 469–483. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Badalucco, L.; Palazzolo, E. Effects of compost input and tillage intensity on soil microbial biomass and activity under Mediterranean conditions. Biol. Fertil. Soils 2011, 47, 63–70. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Z.; Shen, B.; Yang, X.; Xiao, X.; Zhang, T. The Impact of Straw Biochar on Corn Rhizospheric and Non-rhizospheric Soil Microbial Community Structure. Ecol. Environ. Sci. 2018, 27, 1870–1877. [Google Scholar] [CrossRef]
Indexes | NGD | CD | LHD | ZL |
---|---|---|---|---|
pH | 7.06 ± 0.14 a | 6.97 ± 0.11 a | 6.97 ± 0.14 a | 6.95 ± 0.08 a |
SOM g/kg−1 | 17.36 ± 2.56 a | 14.36 ± 0.83 ab | 14.60 ± 1.87 ab | 11.08 ± 5.30 b |
AN mg/kg−1 | 64.46 ± 22.48 ab | 60.91 ± 5.94 ab | 73.03 ± 4.02 a | 42.16 ± 15.47 b |
AP mg/kg−1 | 32.96 ± 4.17 a | 22.30 ± 8.19 ab | 17.74 ± 5.58 b | 25.76 ± 7.98 ab |
AK mg/kg−1 | 77.46 ± 10.64 b | 96.35 ± 15.31 ab | 115.86 ± 6.35 a | 79.38 ± 17.00 b |
SWC/% | 13.40 ± 0.75 a | 10.72 ± 1.82 a | 7.58 ± 1.76 b | 11.55 ± 1.25 a |
SBD g/cm3 | 1.15 ± 0.12 a | 1.01 ± 0.25 a | 1.16 ± 0.30 a | 0.94 ± 0.10 a |
Land Use Type | Chao1 Exponents | Pielou_e Exponents | Shannon Exponents |
---|---|---|---|
NGD | 5154.20 ± 663.60 a | 0.9139 ± 0.0101 a | 11.2219 ± 0.2966 a |
CD | 4770.29 ± 526.29 a | 0.8865 ± 0.0064 b | 10.7851 ± 0.1998 a |
LHD | 5144.56 ± 601.07 a | 0.9027 ± 0.0073 ab | 11.0919 ± 0.2577 a |
ZL | 4982.52 ± 589.12 a | 0.9071 ± 0.162 ab | 11.1026 ± 0.3480 a |
Parameter | r2 | p-Value |
---|---|---|
pH | 0.6351 | 0.0040 |
AP | 0.3749 | 0.1164 |
AK | 0.0630 | 0.7656 |
AN | 0.0116 | 0.9380 |
SWC | 0.0732 | 0.7356 |
SBD | 0.3334 | 0.1509 |
SOM | 0.1705 | 0.4108 |
Metabolic Pathways | NGD | CD | LHD | ZL |
---|---|---|---|---|
Biosynthesis | 0.6799 ± 0.0089 a | 0.6884 ± 0.0060 a | 0.6817 ± 0.0155 a | 0.6800 ± 0.0086 a |
Degradation/Utilization/Assimilation | 0.1280 ± 0.0089 a | 0.1202 ± 0.0049 a | 0.1276 ± 0.0135 a | 0.1278 ± 0.0074 a |
Detoxification | 0.0005 ± 0.0002 a | 0.0003 ± 0.00004 a | 0.0004 ± 0.0003 a | 0.0004 ± 0.0002 a |
Generation of Precursor Metabolite and Energy | 0.1489 ± 0.0010 a | 0.1476 ± 0.0012 a | 0.1480 ± 0.0028 a | 0.1492 ± 0.0024 a |
Glycan Pathways | 0.0088 ± 0.0001 bc | 0.0090 ± 0.0002 a | 0.0086 ± 0.00003 c | 0.0089 ± 0.0001 ab |
Macromolecule Modification | 0.0073 ± 0.0004 a | 0.0076 ± 0.0004 a | 0.0074 ± 0.0005 a | 0.0071 ± 0.0002 a |
Metabolic Clusters | 0.0266 ± 0.0007 a | 0.0269 ± 0.0001 a | 0.0263 ± 0.0006 a | 0.0267 ± 0.0009 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Hao, X.; Niu, T.; Liu, Z.; Wang, Y.; Geng, X.; Cai, Q.; Wang, J.; Ren, Y.; Liu, F.; et al. Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin. Microorganisms 2025, 13, 2173. https://doi.org/10.3390/microorganisms13092173
Dai L, Hao X, Niu T, Liu Z, Wang Y, Geng X, Cai Q, Wang J, Ren Y, Liu F, et al. Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin. Microorganisms. 2025; 13(9):2173. https://doi.org/10.3390/microorganisms13092173
Chicago/Turabian StyleDai, Li, Xiaolong Hao, Tong Niu, Zhen Liu, Yanmei Wang, Xiaodong Geng, Qifei Cai, Juan Wang, Yongyu Ren, Fangming Liu, and et al. 2025. "Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin" Microorganisms 13, no. 9: 2173. https://doi.org/10.3390/microorganisms13092173
APA StyleDai, L., Hao, X., Niu, T., Liu, Z., Wang, Y., Geng, X., Cai, Q., Wang, J., Ren, Y., Liu, F., Liu, H., & Li, Z. (2025). Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin. Microorganisms, 13(9), 2173. https://doi.org/10.3390/microorganisms13092173