Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Bacterial Screening, Isolation, and Qualitative Assay
2.3. Identification of the Cellulase-Producing Bacteria by 16S rDNA Sequencing
2.4. Effects of pH, Temperature, and Incubation Period
2.5. Effects of Organic Solvents and Surfactants on Cellulase Production
2.6. PCR Amplification of Possible Cellulase and Hemi-Cellulase Gene Fragments on KC94
2.7. Statistical Analysis
3. Results
3.1. Qualitative Assay of Cellulase-Producing Bacteria
3.2. Bacterial Identification
3.3. Optimization Studies
3.3.1. The Effect of pH
3.3.2. The Effects of Temperature
3.3.3. The Effects of the Incubation Period
3.4. The Effects of Organic Solvents, Surfactants, and Oxidizing Agent on Cellulase Production
3.4.1. Solvents
3.4.2. Surfactants and Oxidizing Agent
3.5. Diversity of Possible Cellulase and Hemi-Cellulase Gene Fragments in KC94
4. Discussion
4.1. Cellulase Activity Identified by Qualitative Assay
4.2. The Effects of pH, Temperature, and Incubation Period
4.2.1. pH
4.2.2. Temperature
4.2.3. Incubation Period
4.3. Response of Cellulase Production to Organic Solvents, Surfactants, and Oxidizing Agent
4.3.1. Organic Solvents
4.3.2. Surfactants and Oxidizing Agent
4.4. Diversity of Possible Cellulase and Hemicellulase Gene Fragments in KC94
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crop. Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Alokika; Anu; Kumar, A.; Kumar, V.; Singh, B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int. J. Biol. Macromol. 2021, 169, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Negrão, D.R.; Grandis, A.; Buckeridge, M.S.; Rocha, G.J.; Leal, M.R.L.; Driemeier, C. Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renew. Sustain. Energy Rev. 2021, 148, 111268. [Google Scholar] [CrossRef]
- Konde, K.S.; Nagarajan, S.; Kumar, V.; Patil, S.V.; Ranade, V.V. Sugarcane bagasse based biorefineries in India: Potential and challenges. Sustain. Energy Fuels 2021, 5, 52–78. [Google Scholar] [CrossRef]
- Sarker, T.C.; Azam, S.M.G.G.; Bonanomi, G. Recent advances in sugarcane industry solid by-products valorization. Waste Biomass Valorization 2016, 8, 241–266. [Google Scholar] [CrossRef]
- Liang, B.; Liang, Y.; Chen, J.; Zhu, Y.; Fu, F.; Gan, T.; Huang, Z.; Hu, H.; Zhang, Y. Stepwise processing strategy for efficient and comprehensive utilization of sugarcane bagasse via enzymatic hydrolysis and catalytic conversion to produce 5-hydroxymethylfurfural. Ind. Crop. Prod. 2024, 214, 118592. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, S.-C.; Cho, Y.-Y.; Oh, H.-J.; Ko, Y.H. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiol. 2012, 2012, 650563. [Google Scholar] [CrossRef]
- Yin, L.-J.; Lin, H.-H.; Xiao, Z.-R. Purification and characterization of a cellulase from Bacillus subtilis YJ1. J. Mar. Sci. Technol. 2010, 18, 19. [Google Scholar] [CrossRef]
- Mushtaq, Q.; Ishtiaq, U.; Joly, N.; Qazi, J.I.; Martin, P. Amylase and cellulase production from newly isolated Bacillus subtilis using acid treated potato peel waste. Microorganisms 2024, 12, 1106. [Google Scholar] [CrossRef]
- Bhatt, B.; Bhatt, K.; Lal, S.; Srinivasan, R.; Bhatt, V. Production of a novel cellulase by Bacillus amyloliquefaciens OKB3 isolated from soil: Purification and characterization. Int. J. Biol. Macromol. 2024, 282, 137454. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wu, S.; Zhou, G.; Mei, S.; Yang, Z.; Li, S.; Jin, Z.; Deng, Y.; Wen, M.; Yang, Y.; et al. Cellulolytic Bacillus cereus produces a variety of short-chain fatty acids and has potential as a probiotic. Microbiol. Spectr. 2024, 12, e0326723. [Google Scholar] [CrossRef] [PubMed]
- Pană, A.-M.; Ordodi, V.; Gherman, V.; Sfîrloagă, P.; Dumitrel, G.-A. Study on the Biodegradation Process of D-Mannose Glycopolymers in Liquid Media and Soil. Polymers 2023, 15, 3194. [Google Scholar] [CrossRef] [PubMed]
- Araki, Y.; Mukaisho, K.; Sugihara, H.; Fujiyama, Y.; Hattori, T. Proteus mirabilis sp. intestinal microflora grow in a dextran sulfate sodium-rich environment. Int. J. Mol. Med. 2009, 25, 203–208. [Google Scholar] [CrossRef]
- Mahapatra, S.; Vickram, A.S.; Sridharan, T.B.; Parameswari, R.; Pathy, M.R. Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. 3 Biotech 2016, 6, 213. [Google Scholar] [CrossRef]
- Patel, D.D.; Patel, A.K.; Parmar, N.R.; Shah, T.M.; Patel, J.B.; Pandya, P.R.; Joshi, C.G. Microbial and Carbohydrate Active Enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene 2014, 545, 88–94. [Google Scholar] [CrossRef]
- Patel, V.; Patel, A.K.; Parmar, N.R.; Patel, A.B.; Reddy, B.; Joshi, C.G. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl. Microbiol. Biotechnol. 2014, 98, 9749–9761. [Google Scholar] [CrossRef]
- Rabapane, K.J.; Matambo, T.S. Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats. Heliyon 2024, 10, e37508. [Google Scholar] [CrossRef]
- Sarsan, S.; Merugu, R. Role of bioprocess parameters to improve cellulase production: Part II. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–97. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, U.; Krishna, R.; Sinha, K. Screening and molecular characterization of cellulase producing actinobacteria from Litchi Orchard. Curr. Chem. Biol. 2019, 13, 90–101. [Google Scholar] [CrossRef]
- Gaur, R.; Tiwari, S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 2015, 15, 19. [Google Scholar] [CrossRef]
- Hussain, A.A.; Abdel-Salam, M.S.; Abo-Ghalia, H.H.; Hegazy, W.K.; Hafez, S.S. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J. Genet. Eng. Biotechnol. 2017, 15, 77–85. [Google Scholar] [CrossRef]
- Irfan, M.; Mushtaq, Q.; Tabssum, F.; Shakir, H.A.; Qazi, J.I. Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express 2017, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, N.-W.; Chen, Y.; Kuan, Y.-C.; Lee, Y.-C.; Lee, S.-K.; Chan, H.-H.; Kao, C.-H. Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electron. J. Biotechnol. 2014, 17, 89–94. [Google Scholar] [CrossRef]
- Usman, A.; Mohammed, S.; Mamo, J.; Muleta, D. Production, Optimization, and Characterization of an Acid Protease from a Filamentous Fungus by Solid-State Fermentation. Int. J. Microbiol. 2021, 2021, 6685963. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.H.; Blitchington, R.B.; Greene, R.C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol. 1990, 28, 1942–1946. [Google Scholar] [CrossRef]
- Irfan, M.; Tayyab, A.; Hasan, F.; Khan, S.; Badshah, M.; Shah, A.A. Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Appl. Biochem. Biotechnol. 2017, 182, 1390–1402. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Nucleic Acids Symposium Series; Information Retrieval Ltd.: London, UK, 1999. [Google Scholar]
- Waheeb, M.S.; Elkhatib, W.F.; Yassien, M.A.; Hassouna, N.A. Optimized production and characterization of a thermostable cellulase from Streptomyces thermodiastaticus strain. AMB Express 2024, 14, 129. [Google Scholar] [CrossRef]
- Potprommanee, L.; Wang, X.-Q.; Han, Y.-J.; Nyobe, D.; Peng, Y.-P.; Huang, Q.; Liu, J.-Y.; Liao, Y.-L.; Chang, K.-L.; Yang, S. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 2017, 12, e0175004. [Google Scholar] [CrossRef]
- Nkuna, R.; Matambo, T.S. Determining the metabolic processes of metal-tolerant fungi isolated from mine tailings for bioleaching. Minerals 2024, 14, 235. [Google Scholar] [CrossRef]
- Bernfeld, P. Amylases, alpha and beta. Methods Enzymol. 1955, 1, 149–158. [Google Scholar] [CrossRef]
- Alamri, S.A.; Mostafa, Y.; Alrumman, S.A. Isolation, Screening and Optimization of Geobacillus stearothermophilus Cellulase Production using Date Palm Cellulosic Wastes. J. Pure Appl. Microbiol. 2016, 10, 39–48. [Google Scholar]
- Demissie, M.S.; Legesse, N.H.; Tesema, A.A. Isolation and characterization of cellulase producing bacteria from forest, cow dung, Dashen brewery and agro-industrial waste. PLoS ONE 2024, 19, e0301607. [Google Scholar] [CrossRef]
- Gebbie, L.; Dam, T.T.; Ainscough, R.; Palfreyman, R.; Cao, L.; Harrison, M.; O’hAra, I.; Speight, R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol. 2020, 20, 12. [Google Scholar] [CrossRef]
- Shareef, I.; Gopinath, S.M.; Satheesh, M.; Christopher, S.X. Isolation and identification of cellulose degrading microbes. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 8, 6788–6793. [Google Scholar] [CrossRef]
- Singh, S.; Jaiswal, D.K.; Sivakumar, N.; Verma, J.P. Developing efficient thermophilic cellulose degrading consortium for glucose production from different agro-residues. Front. Energy Res. 2019, 7, 61. [Google Scholar] [CrossRef]
- Barman, D.; Dkhar, M.S. Characterization and purification of esterase from Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its possible role in diesel biodegradation. Arch. Microbiol. 2022, 204, 580. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Li, Y.; Marshall, S.D.G.; Zhang, H. High genetic diversity of microbial cellulase and hemicellulase genes in the hindgut of Holotrichia parallela larvae. Int. J. Mol. Sci. 2015, 16, 16545–16559. [Google Scholar] [CrossRef]
- Islam, M.; Sarkar, P.K.; Suzauddula, M.; Mohiuddin, A. Optimization of fermentation condition for cellulase enzyme production from Bacillus sp. Malays. J. Halal Res. 2019, 2, 19–24. [Google Scholar] [CrossRef]
- El-Khamisi, E.F.; Soliman, E.A.M.; El-Sayed, G.M.; Nour, S.A.; Abdel-Monem, M.O.; Hassan, M.G. Optimization, gene cloning, expression, and molecular docking insights for enhanced cellulase enzyme production by Bacillus amyloliquefaciens strain elh1. Microb. Cell Factories 2024, 23, 191. [Google Scholar] [CrossRef] [PubMed]
- Malik, W.A.; Khan, H.M.; Javed, S. Bioprocess optimization for enhanced production of bacterial cellulase and hydrolysis of sugarcane bagasse. BioEnergy Res. 2021, 15, 1116–1129. [Google Scholar] [CrossRef]
- Mobley, H.L.T. Proteus mirabilis overview. In Proteus Mirabilis: Methods and Protocols; Pearson, M., Ed.; Methods in Molecular Biology; Humana: New York, NY, USA, 2019; Volume 2021, pp. 1–4. [Google Scholar] [CrossRef]
- Patakova, P.; Kolek, J.; Sedlar, K.; Koscova, P.; Branska, B.; Kupkova, K.; Paulova, L.; Provaznik, I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. 2018, 36, 721–738. [Google Scholar] [CrossRef] [PubMed]
- Russmayer, H.; Marx, H.; Sauer, M. Microbial 2-butanol production with Lactobacillus diolivorans. Biotechnol. Biofuels 2019, 12, 262. [Google Scholar] [CrossRef] [PubMed]
- Zaks, A.; Klibanov, A.M. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 1988, 263, 3194–3201. [Google Scholar] [CrossRef]
- Skovgaard, P.A.; Jørgensen, H. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes. J. Ind. Microbiol. Biotechnol. 2013, 40, 447–456. [Google Scholar] [CrossRef]
- Saini, A.; Aggarwal, N.K.; Yadav, A. IIsolation and screening of cellulose hydrolyzing bacteria from different ecological niches. Bioeng. Biosci. 2017, 5, 7–13. [Google Scholar] [CrossRef]
- Asha, B.M.; Sakthivel, N. Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Ann. Microbiol. 2014, 64, 1839–1848. [Google Scholar] [CrossRef]
- Rabapane, K.J.; Ijoma, G.N.; Matambo, T.S. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front. Genet. 2022, 13, 946449. [Google Scholar] [CrossRef]
- Zhang, Q.; Jian, L.; Yao, D.; Rao, B.; Xia, Y.; Hu, K.; Li, S.; Shen, Y.; Cao, M.; Qin, A.; et al. The structural basis of the pH-homeostasis mediated by the Cl−/HCO3− exchanger, AE2. Nat. Commun. 2023, 14, 1812. [Google Scholar] [CrossRef]
- Wasfi, R.; Hamed, S.M.; Amer, M.A.; Fahmy, L.I. Proteus mirabilis biofilm: Development and therapeutic strategies. Front. Cell. Infect. Microbiol. 2020, 10, 414. [Google Scholar] [CrossRef]
- Chakkour, M.; Hammoud, Z.; Farhat, S.; El Roz, A.; Ezzeddine, Z.; Ghssein, G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front. Microbiol. 2024, 15, 1383618. [Google Scholar] [CrossRef]
- Yang, W.; Beauchemin, K. Physically effective fiber: Method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. J. Dairy Sci. 2006, 89, 2618–2633. [Google Scholar] [CrossRef]
- Hossain, E. Sub-acute ruminal acidosis in dairy cows: Its causes, consequences and preventive measures. Online J. Anim. Feed. Res. 2020, 10, 302–312. [Google Scholar] [CrossRef]
- Lian, H.; Zhang, C.; Liu, Y.; Li, W.; Fu, T.; Gao, T.; Zhang, L. In Vitro Gene Expression Responses of Bovine Rumen Epithelial Cells to Different pH Stresses. Animals 2022, 12, 2621. [Google Scholar] [CrossRef]
- Russell, J.B.; Wilson, D.B. Why Are Ruminal Cellulolytic Bacteria Unable to Digest Cellulose at Low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Hyder, I.; Reddy, R.K.; Raju, J.; Manjari, P.; Prasad, S.; Kumar, A.; Sejian, V. Alteration in rumen functions and diet digestibility during heat stress in sheep. In Sheep Production Adapting to Climate Change; Springer: Berlin/Heidelberg, Germany, 2017; pp. 235–265. [Google Scholar] [CrossRef]
- Castro-Costa, A.; Salama, A.; Moll, X.; Aguiló, J.; Caja, G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in nonlactating dairy goats. J. Dairy Sci. 2015, 98, 4646–4658. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cen, Y.-K.; Zou, S.-P.; Xue, Y.-P.; Zheng, Y.-G. Recent advances in the improvement of enzyme thermostability by structure modification. Crit. Rev. Biotechnol. 2019, 40, 83–98. [Google Scholar] [CrossRef]
- Rahban, M.; Zolghadri, S.; Salehi, N.; Ahmad, F.; Haertlé, T.; Rezaei-Ghaleh, N.; Sawyer, L.; Saboury, A.A. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int. J. Biol. Macromol. 2022, 214, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, Q.; Zhang, W.; Mu, W. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Crit. Rev. Food Sci. Nutr. 2021, 63, 2057–2073. [Google Scholar] [CrossRef] [PubMed]
- Günel, G.; İnce, O.; Uzun, Ö.; Erdem, E.I.; İnce, B. Enhancing biomethane production from cattle manure by integrating rumen bacteria: A microbial analyses with next-generation sequencing and quantitative PCR. Biomass Convers. Biorefinery 2025, 1–15. [Google Scholar] [CrossRef]
- Oztat, K.; Yavuz, A.A.; Işçen, C.F. Optimization studies on laccase activity of Proteus mirabilis isolated from treatment sludge of textile industry factories. Braz. J. Microbiol. 2024, 55, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Kobayashi, Y. Fibrolytic Rumen Bacteria: Their Ecology and Functions. Asian-Australasian J. Anim. Sci. 2009, 22, 131–138. [Google Scholar] [CrossRef]
- Cheng, B.; Wu, S.; Liu, S.; Rodriguez-Aliaga, P.; Yu, J.; Cui, S. Protein denaturation at a single-molecule level: The effect of nonpolar environments and its implications on the unfolding mechanism by proteases. Nanoscale 2015, 7, 2970–2977. [Google Scholar] [CrossRef]
- Thomas, L.; Ram, H.; Kumar, A.; Singh, V.P. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111. Appl. Biochem. Biotechnol. 2016, 179, 863–879. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Silva, É.B.R.d.; Silva, J.A.R.d.; Silva, W.C.d.; Belo, T.S.; Sousa, C.E.L.; Santos, M.R.P.d.; Neves, K.A.L.; Rodrigues, T.C.G.d.C.; Camargo-Júnior, R.N.C.; Lourenço-Júnior, J.d.B. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals 2024, 14, 1448. [Google Scholar] [CrossRef] [PubMed]
- Celi, P. Oxidative stress in ruminants. In Studies on Veterinary Medicine; Mandelker, L., Vajdovich, P., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 191–231. [Google Scholar] [CrossRef]
- Celi, P.; Chauhan, S.S.; Cottrell, J.J.; Dunshea, F.R.; Lean, I.J.; Leury, B.J.; Liu, F. Oxidative stress in ruminants: Enhancing productivity through antioxidant supplementation. Feed. Broadening Horiz. 2014, 13. [Google Scholar] [CrossRef]
- Hua, M.; Yu, S.; Ma, Y.; Chen, S.; Li, F. Genetic diversity detection and gene discovery of novel glycoside hydrolase family 48 from soil environmental genomic DNA. Ann. Microbiol. 2018, 68, 163–174. [Google Scholar] [CrossRef]
- Singh, K.; Richa, K.; Bose, H.; Karthik, L.; Kumar, G.; Bhaskara Rao, K.V. Statistical media optimization and cellulase production from marine Bacillus VITRKHB. 3 Biotech 2014, 4, 591–598. [Google Scholar] [CrossRef]
- Wei, Z.-J.; Zhou, L.-C.; Chen, H.; Chen, G.-H. Optimization of the fermentation conditions for 1-deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. Int. J. Food Eng. 2011, 7. [Google Scholar] [CrossRef]
Isolate | Colony Diameter (mm) | Clear Zone Diameter (mm) | Relative Enzyme Activity |
---|---|---|---|
KC40 | 7.33 ± 0.12 | 16.21 ± 0.12 | 2.21 ± 0.03 |
KC50 | 62.16 ± 0.12 | 78.62 ± 0.11 | 1.26 ± 0.01 |
KC70 | 8.81 ± 0.10 | 23.41 ± 0.10 | 2.66 ± 0.02 |
KC94 | 5.99 ± 0.10 | 24.86 ± 0.15 | 4.15 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabapane, K.J.; Matambo, T.S. Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems. Microorganisms 2025, 13, 2170. https://doi.org/10.3390/microorganisms13092170
Rabapane KJ, Matambo TS. Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems. Microorganisms. 2025; 13(9):2170. https://doi.org/10.3390/microorganisms13092170
Chicago/Turabian StyleRabapane, Kgodiso J., and Tonderayi S. Matambo. 2025. "Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems" Microorganisms 13, no. 9: 2170. https://doi.org/10.3390/microorganisms13092170
APA StyleRabapane, K. J., & Matambo, T. S. (2025). Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems. Microorganisms, 13(9), 2170. https://doi.org/10.3390/microorganisms13092170