Uncovering DENV, CHIKV, and ZIKV in Urban Wastewater in Brazil Through Genomic and Molecular Screening
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT-qPCR | reverse transcription quantitative polymerase chain reaction |
WGS | Whole Genome Sequencing |
WWTP | Waste Water Treatment Plant |
References
- Centro de Operações de Emergência (COE). Informe Semanal. Edição nº 16, SE 01 a 21/2024. Indicadores de Dengue. 2024. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/arboviroses/informe-semanal/informe-semanal-no-16.pdf (accessed on 10 June 2025).
- Chandra, F.; Armas, F.; Kwok, G.; Chen, H.; Desmond Chua, F.J.; Leifels, M.; Amir-Hamzah, N.; Gu, X.; Wuertz, S.; Lee, W.L.; et al. Comparing Recovery Methods for Wastewater Surveillance of Arthropod-Borne and Enveloped Viruses. Environ. Sci. Technol. Water 2023, 4, 974–983. [Google Scholar] [CrossRef]
- Muirhead, A.; Zhu, K.; Brown, J.; Basu, M.; Brinton, M.A.; Costa, F.; Hayat, M.J.; Stauber, C.E. Zika Virus RNA Persistence in Sewage. Environ. Sci. Technol. Lett. 2020, 7, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Gu, X.; Armas, F.; Leifels, M.; Wu, F.; Chandra, F.; Chua, F.J.D.; Syenina, A.; Chen, H.; Cheng, D.; et al. Monitoring Human Arboviral Diseases through Wastewater Surveillance: Challenges, Progress and Future Opportunities. Water Res. 2022, 223, 118904. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Hill, C.; Muirhead, A.; Basu, M.; Brown, J.; Brinton, M.A.; Hayat, M.J.; Venegas-Vargas, C.; Reis, M.G.; Casanovas-Massana, A.; et al. Zika Virus RNA Persistence and Recovery in Water and Wastewater: An Approach for Zika Virus Surveillance in Resource-Constrained Settings. Water Res. 2023, 241, 120116. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Bibby, K. A Model-Based Framework to Assess the Feasibility of Monitoring Zika Virus with Wastewater-Based Epidemiology. ACS EST Water 2023, 3, 1071–1081. [Google Scholar] [CrossRef]
- de Araujo, J.C.; Mota, V.T.; Teodoro, A.; Leal, C.; Leroy, D.; Madeira, C.; Machado, E.C.; Dias, M.F.; Souza, C.C.; Coelho, G.; et al. Long-Term Monitoring of SARS-CoV-2 RNA in Sewage Samples from Specific Public Places and STPs to Track COVID-19 Spread and Identify Potential Hotspots. Sci. Total Environ. 2022, 838, 155959. [Google Scholar] [CrossRef]
- de Araújo, J.C.; Madeira, C.L.; Bressani, T.; Leal, C.; Leroy, D.; Machado, E.C.; Fernandes, L.A.; Espinosa, M.F.; Freitas, G.T.O.; Leão, T.; et al. Quantification of SARS-CoV-2 in Wastewater Samples from Hospitals Treating COVID-19 Patients during the First Wave of the Pandemic in Brazil. Sci. Total Environ. 2023, 856, 160498. [Google Scholar] [CrossRef]
- Zavala-Mendes, M.; Sanchez-Pajaro, A.; Schilmann, A.; De Araújo, J.; Buitron, G.; Carrillo-Reyes, J. The Potential of Long-Term Wastewater-Based Surveillance to Predict COVID-19 Waves Peak in Mexico. Water Environ. Res. 2025, 97, e70095. [Google Scholar] [CrossRef]
- Chettleburg, C.; McDougall, H.; Parreira, V.; Goodridge, L.; Habash, M. Seasonality of Enteric Viruses and Correlation of Hepatitis A Virus in Wastewater with Clinical Cases. Sci. Total Environ. 2025, 967, 178862. [Google Scholar] [CrossRef]
- Fantilli, A.; Di Cola, G.; Castro, G.; Sicilia, P.; Cachi, A.M.; de los Ángeles Marinzalda, M.; Ibarra, G.; López, L.; Valduvino, C.; Barbás, G.; et al. Hepatitis A Virus Monitoring in Wastewater: A Complementary Tool to Clinical Surveillance. Water Res. 2023, 241, 120102. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Enterovirus Surveillance Guidelines: Guidelines for Enterovirus Surveillance in Support of the Polio Eradication Initiative; WHO: Geneva, Switzerland, 2021; p. 46. Available online: https://iris.who.int/bitstream/handle/10665/344375/9789289050814-eng.pdf (accessed on 30 August 2025).
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- McQuaig, S.M.; Scott, T.M.; Lukasik, J.O.; Paul, J.H.; Harwood, V.J. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples. Appl. Environ. Microbiol. 2009, 75, 3379–3388. [Google Scholar] [CrossRef]
- Diamond, M.; Yee, E.; Bhinge, M.; Scarpino, S.V. Wastewater Surveillance Facilitates Climate Change-Resilient Pathogen Monitoring. Sci. Transl. Med. 2023, 15, e7831. [Google Scholar] [CrossRef]
- Chandra, F.; Lee, W.L.; Armas, F.; Leifels, M.; Gu, X.; Chen, H.; Wuertz, S.; Alm, E.J.; Thompson, J. Persistence of Dengue (Serotypes 2 and 3), Zika, Yellow Fever, and Murine Hepatitis Virus RNA in Untreated Wastewater. Environ. Sci. Technol. Lett. 2021, 8, 785–791. [Google Scholar] [CrossRef]
- Thakali, O.; Raya, S.; Malla, B.; Tandukar, S.; Tiwari, A.; Sherchan, S.P.; Sherchand, J.B.; Haramoto, E. Pilot Study on Wastewater Surveillance of Dengue Virus RNA: Lessons, Challenges, and Implications for Future Research. Environ. Chall. 2022, 9, 100614. [Google Scholar] [CrossRef]
- Monteiro, S.; Pimenta, R.; Nunes, F.; Cunha, M.V.; Santos, R. Detection of Dengue Virus and Chikungunya Virus in Wastewater in Portugal: An Exploratory Surveillance Study. Lancet Microbe 2024, 5, 100911. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Paulos, A.H.; Zulli, A.; Duong, D.; Shelden, B.; White, B.J.; Boehm, A.B. Wastewater Detection of Emerging Arbovirus Infections: Case Study of Dengue in the United States. Environ. Sci. Technol. Lett. 2024, 11, 9–15. [Google Scholar] [CrossRef]
- Calabria de Araujo, J.; Carvalho, A.P.A.; Leal, C.D.; Natividade, M.; Borin, M.; Guerra, A.; Carobin, N.; Sabino, A.; Almada, M.; Costa, M.C.M.; et al. Detection of Multiple Human Viruses, Including Mpox, Using a Wastewater Surveillance Approach in Brazil. Pathogens 2024, 13, 589. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Belo Horizonte. 2024. Available online: https://www.ibge.gov.br/cidades-e-estados/mg/belo-horizonte.html (accessed on 27 August 2024).
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.M.; et al. Genome Detective: An Automated System for Virus Identification from High-Throughput Sequencing Data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef]
- Xavier, J.; Alcantara, L.C.J.; Fonseca, V.; Lima, M.; Castro, E.; Fritsch, H.; Oliveira, C.; Guimarães, N.; Adelino, T.; Evaristo, M.; et al. Increased Inter-Regional Virus Exchange and Nucleotide Diversity Outline the Expansion of Chikungunya Virus in Brazil. Nat. Commun. 2023, 14, 4413. [Google Scholar] [CrossRef] [PubMed]
- Adelino, T.É.R.; Giovanetti, M.; Fonseca, V.; Xavier, J.; de Abreu, Á.S.; do Nascimento, V.A.; Demarchi, L.H.F.; Oliveira, M.A.A.; da Silva, V.L.; de Mello, A.L.E.S.; et al. Field and Classroom Initiatives for Portable Sequence-Based Monitoring of Dengue Virus in Brazil. Nat. Commun. 2021, 12, 2296. [Google Scholar] [CrossRef]
- Brown, B.L.; Watson, M.; Minot, S.S.; Rivera, M.C.; Franklin, R.B. MinION™ Nanopore Sequencing of Environmental Metagenomes: A Synthetic Approach. GigaScience 2017, 6, gix007. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya Virus in US Travelers Returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.W.; Russell, B.J.; Lanciotti, R.S. Serotype-Specific Detection of Dengue Viruses in a Fourplex Real-Time Reverse Transcriptase PCR Assay. J. Clin. Microbiol. 2005, 43, 4977–4983. [Google Scholar] [CrossRef] [PubMed]
- Brasil Ministério da Saúde. Zika—Minas Gerais: Cases by Municipality. Belo Horizonte: DATASUS. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/zikamg.def (accessed on 10 June 2025).
- Prefeitura de Belo Horizonte. Vigilância Epidemiológica—Dengue. Balanço de Dengue 05.01.24. 2024. Available online: https://prefeitura.pbh.gov.br/saude/informacoes/vigilancia/vigilancia-epidemiologica/doencas-transmissiveis/dengue (accessed on 7 June 2024).
- Prefeitura de Belo Horizonte. Balanço de Dengue. Google Drive. Available online: https://drive.google.com/drive/folders/1THxa-PSoWf-Ca-defnpPp8tcY46-qn4c (accessed on 10 June 2025).
- Brasil Ministério da Saúde. Dengue—Minas Gerais: Cases per Municipality. Belo Horizonte: DATASUS. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/denguebmg.def (accessed on 9 June 2025).
Sample Type | WGS + MinION | RT-PCR * | ||||
---|---|---|---|---|---|---|
DENV | CHIKV | ZIKV | DENV | CHIKV | ZIKV | |
WWTP A | 3/18 = 16.7% | 4/18 = 22.2% | 0/17 | ND | 1/18 = 5.5% | 10/18 = 55.5% |
WWTP B | 3/15 = 20.0% | 2/15 = 13.3% | 0/15 | ND | ND | 9/15 = 60.0% |
WWTP C | 1/2 = 50.0% | 1/2 = 50.0% | 0/2 | ND | ND | 1/2 = 50.0% |
Hospital A | 5/14 = 35.5% | 3/14 = 21.4% | 1/14 = 7.1% | ND | 1/14 = 7.1% | 12/14 = 85.7% |
Hospital B | 3/14 = 21.4% | 2/14 = 14.3% | 0/14 | ND | 1/14 = 7.1% | 9/14 = 64.3% |
Total WWTP | 7/35 = 20% | 7/35 = 20% | 0/35 = 0% | ND | 1/35 = 2.8% | 20/35 = 57.1% |
Total Hospital | 8/28 = 28.6% | 5/28 = 17.8% | 1/28 = 3.6% | ND | 2/28 = 7.1% | 21/28 = 75.0% |
Total | 15/63 = 23.8% | 12/63 = 19.0% | 1/63 = 1.6% | ND | 3/63 = 4.7% ** | 41/63= 65.1% *** |
Sample ID/Date | WGS (N. Reads/% Coverage) | MinION | RT-qPCR * | Dengue Cases ** |
---|---|---|---|---|
47-HA (07/23/22) | 42/9.0% | ND | - | 31 |
49-HA (08/12/22) | ND | ND | - | 23 |
50-HB (08/12/22) | 30/4.3% | ND | - | 23 |
51-HA (09/01/22) | 14/3.2% | NT | - | 19 |
52-HB (09/01/22) | ND | ND | - | 19 |
54-WWA (02/08/23) | ND | ND | - | 161 |
55-HA (02/08/23) | 8/3.9% | NT | - | 161 |
56-WWB (02/08/23) | 50/9.5% | NT | - | 161 |
59-WWA (02/23/23) | ND | NT | - | 267 |
61-HA (02/23/22) | 10/3.3% | NT | - | 267 |
65-WWA (03/01/23) | 68/9.4% | 5863/80.1% | - | 430 |
66-WWA (03/01/23) | 10/3.3% | ND | - | 430 |
67-HA (03/01/23) | 12/4.5% | ND | - | 430 |
68-WWB-I (03/01/23) | 82/7.2% | ND | - | 430 |
69-WWB-E (03/01/23) | 61/5.5% | ND | - | 430 |
70-HB (03/01/23) | 97/13.1% | ND | - | 430 |
71-WWA (03/15/23) | 12/5.0% | NT | - | 604 |
72-WWA (03/15/23) | 28/1.3% | NT | - | 604 |
74/75-WWB (03/15/23) | ND | ND | - | 604 |
77-WWC-I (03/15/23) | 34/10.9% | NT | - | 604 |
78-WWC-E (03/15/23) | ND | ND | - | 604 |
79-WWA (02/23/23) 1 | 2/1.36% | 3/79.3% | - | 267 |
81-HA (02/23/22) 2 | 8/1.22% | NT | - | 267 |
82-WWA (02/23/23) 1 | 12/4.6% | NT | - | 267 |
62/83-WWB (02/23/23) | 70/3.99% | ND | - | 267 |
84-HA (02/24/23) 2 | ND | NT | - | 267 |
87/34-HB (12/01/22) | 2/1.33% | NT | - | 22 |
320-HB (03/14/23) | ND | NT | - | 604 |
323-HA (04/11/23) | ND | NT | - | 1415 |
329-WWA (05/2023) | ND | NT | - | 883 |
Total Detection | 20/30 = 66.6% | 2/15 = 13.3% | 0% |
Sample ID (Month/Day/Year) | WGS | MinION (N. Reads/Coverage) | RT-qPCR * (Cq Number) | Chikungunya Cases ** |
---|---|---|---|---|
47-HA (07/23/22) | ND | 32,123/7.2% | - | 3 |
49-HA (08/12/22) | ND | 477/25.5% | - | 6 |
50- HB (08/12/22) | ND | ND | - | 6 |
51- HA (09/01/22) | ND | NT | - | 5 |
52- HB (09/01/22) | ND | 2853/17.7% | - | 5 |
54-WWA (02/08/23) | ND | 84/61.8% | - | 117 |
55- HA (02/08/23) | ND | NT | - | 117 |
56-WWB (02/08/23) | ND | NT | - | 117 |
59- WWA (02/23/23) 1 | ND | NT | - | 148 |
61-HA (02/23/22) 2 | ND | NT | - | 148 |
65- WWA (03/01/23) | ND | 1781/12.8% | - | 253 |
66- WWA (03/01/23) | ND | 22,640/33.4% | - | 253 |
67- HA (03/01/23) | ND | 19,788/6.5% | - | 253 |
68-WWB (03/01/23) | ND | NT | - | 253 |
69-WWB (03/01/23) | 61/2.8% | 84/40.4% | - | 253 |
70- HB (03/01/23) | ND | 5423/26.4% | - | 253 |
71-WWA (03/15/23) | ND | NT | - | 414 |
72-WWA (03/15/23) | ND | NT | - | 414 |
74/75-WWB (03/15/23) | ND | ND | - | 414 |
77-WWC-I(03/15/23) | ND | NT | - | 414 |
78-WWC-E(03/15/23) | ND | 63/19.6% | - | 414 |
79-WWA (02/23/23) 1 | 76/6.8% | 70/7.4% | - | 148 |
81-HA (02/23/23) 2 | ND | NT | - | 148 |
82-WWA (02/23/23) 1 | ND | NT | - | 148 |
62/83-WWB (02/23/23) | ND | 26,495/15.4% | - | 148 |
84-HA (02/24/23) 2 | ND | NT | - | 148 |
87/34-HB (12/01/22) | ND | NT | - | 1 |
320-HB (03/14/23) | ND | NT | +(27.0) *** | 414 |
323-HA (04/11/23) | ND | NT | +(29.0) *** | 719 |
329-WWA (05/10/23) | ND | NT | +(28.0) *** | 479 |
Total detection | 2/30 = 6.7% | 12/14 = 85.7% | 3/30 = 10% |
Sample ID/Date | WGS | RT-qPCR (Cq Number) |
---|---|---|
47-HA (07/23/22) | ND | +(29.0) |
49-HA (08/12/22) | ND | +(26.6) |
50-HB (08/12/22) | ND | − |
51-HA (09/01/22) | ND | +(34.0) * |
52-HB (09/01/22) | ND | +(26.9) |
54-WWA (02/08/23) | ND | +(26.8) |
55-HA (02/08/23) | 215 reads/1.40% coverage | +(34.7) * |
56-WWB (02/08/23) | ND | +(35.8) * |
59-WWA (02/23/23) 1 | ND | +(37.6) |
61-HA (02/24/23) 2 | ND | − * |
65-WWA (03/01/23) | ND | +(24.6) |
66- WWA (03/01/23) | ND | +(25.9) ** |
67- HA (03/01/23) | ND | +(27.4) |
68- WWB (03/01/23) | ND | +(21.3) |
69- WWB (03/01/23) | ND | +(25.4) |
70- HB (03/01/23) | ND | +(26.8) |
71-WWA (03/15/23) | ND | NT |
72-WWA (03/15/23) | ND | − * |
74/75-WWB (03/15/23) | ND | +(28.0) |
77- WWC-I (03/15/23) | ND | − * |
78-WWC-E (03/15/23) | ND | +(21.0) |
79-WWA (02/23/23) 1 | ND | +(19.8) |
81-HA (02/24/23) 2 | ND | − |
82-WWA (02/23/23) 1 | ND | NT |
62/83-WWB (02/23/23) | ND | +(20.7) |
84-HA (02/24/23) 2 | ND | +(31.3) * |
87/34-HB (12/01/22) | ND | − * |
320-HB (03/14/23) | ND | +(23.0) *** |
323-HA (04/11/23) | ND | +(26.0) *** |
329-WWA (05/2023) | ND | +(23.0) *** |
Detection | 1/30 = 3.3% | 22/28 = 78.6% (false positive) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araujo, J.C.; Carvalho, A.P.A.; Adelino, T.; Iani, F.C.M.; Guimaraes, N.R.; Santos, S.C.F.; Leal, C.D.; Natividade, M.; Lima, M.; Almada, M.; et al. Uncovering DENV, CHIKV, and ZIKV in Urban Wastewater in Brazil Through Genomic and Molecular Screening. Microorganisms 2025, 13, 2164. https://doi.org/10.3390/microorganisms13092164
de Araujo JC, Carvalho APA, Adelino T, Iani FCM, Guimaraes NR, Santos SCF, Leal CD, Natividade M, Lima M, Almada M, et al. Uncovering DENV, CHIKV, and ZIKV in Urban Wastewater in Brazil Through Genomic and Molecular Screening. Microorganisms. 2025; 13(9):2164. https://doi.org/10.3390/microorganisms13092164
Chicago/Turabian Stylede Araujo, Juliana Calabria, Ana Paula A. Carvalho, Talita Adelino, Felipe Campos M. Iani, Natalia Rocha Guimaraes, Sara Candida F. Santos, Cintia D. Leal, Manuelle Natividade, Mauricio Lima, Mariana Almada, and et al. 2025. "Uncovering DENV, CHIKV, and ZIKV in Urban Wastewater in Brazil Through Genomic and Molecular Screening" Microorganisms 13, no. 9: 2164. https://doi.org/10.3390/microorganisms13092164
APA Stylede Araujo, J. C., Carvalho, A. P. A., Adelino, T., Iani, F. C. M., Guimaraes, N. R., Santos, S. C. F., Leal, C. D., Natividade, M., Lima, M., Almada, M., Bertuce, A. C., Guerra, A., Costa, M. C. M., Saia, F., Fonseca, V., Giovanetti, M., Frutuoso, L. V., & Alcantara, L. C. J. (2025). Uncovering DENV, CHIKV, and ZIKV in Urban Wastewater in Brazil Through Genomic and Molecular Screening. Microorganisms, 13(9), 2164. https://doi.org/10.3390/microorganisms13092164