The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Samples and Viral Genome Sequencing
2.3. Viral Sequences
2.4. Phylogenetic Analyses
3. Results
3.1. Epidemiological Features of Collected Samples
3.2. Variant Assignment
3.3. Distribution Timeline of the Omicron SARS-CoV-2 Subvariants
3.4. Recombinant Epidemiology
3.5. Major Omicron Recombinant Mutations
3.6. Phylogenetic Analysis
3.6.1. BA.1
3.6.2. BA.2
3.6.3. BA.5
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
WHO | World Health Organization |
COVID-19 | Coronavirus Disease 2019 |
VOC | Variant of Concern |
VOI | Variant of Interest |
VUM | Variant Under Monitoring |
Pango | Phylogenetic Assignment of Named Global Outbreak Lineages |
ACE2 | Angiotensin-Converting Enzyme 2 |
RBD | Receptor Binding Domain |
FCS | Furin-like Cleavage Site |
GISAID | Global Initiative on Sharing All Influenza Data |
NGS | Next-Generation Sequencing |
IZS-Te | Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo |
NCBI | National Center for Biotechnology Information |
MAFFT | Multiple Alignment using Fast Fourier Transform |
IQ-TREE | Efficient Phylogenetic Software for Maximum Likelihood Analysis |
Re | Effective Reproduction Number |
NPIs | Non-Pharmaceutical Interventions |
PIs | Pharmaceutical Interventions |
PIP | Pharmaceutical Intervention Period |
References
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Cases|WHO COVID-19 Dashboard. 2024. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 2 June 2024).
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A Novel Coronavirus Outbreak of Global Health Concern. Lancet 2020, 395, 470–473, Erratum in Lancet 2020, 395, 496. [Google Scholar] [CrossRef] [PubMed]
- Rouzine, I.M. Evolutionary mechanisms of the emergence of the variants of concern of SARS-CoV-2. Viruses 2025, 17, 197. [Google Scholar] [CrossRef]
- World Health Organization. Tracking SARS-CoV-2 Variants. 2025. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 13 November 2024).
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef]
- Das, S.; Samanta, S.; Banerjee, J.; Pal, A.; Giri, B.; Kar, S.S.; Dash, S.K. Is Omicron the End of Pandemic or Start of a New Innings? Travel Med. Infect. Dis. 2022, 48, 102332. [Google Scholar] [CrossRef]
- He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS-CoV-2 Omicron Variant: Characteristics and Prevention. MedComm 2021, 2, 838–845. [Google Scholar] [CrossRef]
- Shah, M.; Woo, H.G. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. Front. Immunol. 2022, 12, 830527. [Google Scholar] [CrossRef]
- Wang, L.; Møhlenberg, M.; Wang, P.; Zhou, H. Immune Evasion of Neutralizing Antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev. 2023, 70, 13–25, Erratum in Cytokine Growth Factor Rev. 2024, 77, 117. [Google Scholar] [CrossRef]
- Thakur, P.; Thakur, V.; Kumar, P.; Patel, S.K.S. Emergence of Novel Omicron Hybrid Variants: BA(x), XE, XD, XF More Than Just Alphabets. Int. J. Surg. 2022, 104, 106727. [Google Scholar] [CrossRef] [PubMed]
- Chouikha, A.; Fares, W.; Laamari, A.; Haddad-Boubaker, S.; Belaiba, Z.; Ghedira, K.; Kammoun Rebai, W.; Ayouni, K.; Khedhiri, M.; Ben Halima, S.; et al. Molecular epidemiology of SARS-CoV-2 in Tunisia (North Africa) through several successive waves of COVID-19. Viruses 2022, 14, 624. [Google Scholar] [CrossRef]
- Haddad-Boubaker, S.; Arbi, M.; Souiai, O.; Chouikha, A.; Fares, W.; Edington, K.; Sims, S.; Camma, C.; Lorusso, A.; Diagne, M.M.; et al. The Delta Variant Wave in Tunisia: Genetic Diversity, Spatio-Temporal Distribution, and Evidence of the Spread of a Divergent AY.122 Sub-Lineage. Front. Public Health 2023, 10, 990832. [Google Scholar] [CrossRef]
- Khemiri, H.; Mangone, I.; Gdoura, M.; Mefteh, K.; Chouikha, A.; Fares, W.; Lorusso, A.; Ancora, M.; Pasquale, A.D.; Cammà, C.; et al. Dynamic of SARS-CoV-2 Variants Circulation in Tunisian Pediatric Population, During Successive Waves, from March 2020 to September 2022. Virus Res. 2024, 344, 199353. [Google Scholar] [CrossRef]
- GISAID Initiative. 2025. Available online: https://www.epicov.org/epi3/frontend#d95e5 (accessed on 9 April 2025).
- NCBI VirusBethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 2004. Available online: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/ (accessed on 16 June 2025).
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. 2010. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 9 April 2025).
- González-Candelas, F.; Shaw, M.A.; Phan, T.; Kulkarni-Kale, U.; Paraskevis, D.; Pybus, O.G.; Kraemer, M.U.G. One Year into the Pandemic: Short-Term Evolution of SARS-CoV-2 and Emergence of New Lineages. Infect. Genet. Evol. 2021, 92, 104869. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, Z.; Ferjani, S.; Kanzari, L.; Ben Ali, R.; Charaa, L.; Landolsi, I.; Medini, I.; Chammam, S.; Abid, S.; Ferjani, A.; et al. Unveiling the Emergence of SARS-CoV-2 JN.1 Sub-Variant: Insights from the First Cases at Charles Nicolle Hospital, Tunisia. Acta Microbiol. Immunol. Hung. 2024, 71, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, R.; Saritha, K. Exploratory Analysis of SARS-CoV-2 Omicron Variant and Its Subvariant Propagation: Global Predominance of BA.1, BA.2, BA.5, BE.1, and BQ.1. Proc. Indian Natl. Sci. Acad. Part A Phys. Sci. 2023, 89, 664–672. [Google Scholar] [CrossRef]
- Bergna, A.; Lai, A.; Sagradi, F.; Menzo, S.; Mancini, N.; Bruzzone, B.; Rusconi, S.; Marchegiani, G.; Clementi, N.; Francisci, D.; et al. Genomic Epidemiology of the Main SARS-CoV-2 Variants Circulating in Italy During the Omicron Era. J. Med. Virol. 2025, 97, e70215. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike Protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Menasria, T.; Aguilera, M. Genomic Diversity of SARS-CoV-2 in Algeria and North African Countries: What We Know So Far and What We Expect? Microorganisms 2022, 10, 467. [Google Scholar] [CrossRef]
- Abroug, H.; Ouanes-Besbes, L.; Dachraoui, F.; Ouanes, I.; Addad, F.; Hdiji, A.; Ben Romdhane, H. Impact of Pharmaceutical and Non-Pharmaceutical Interventions on COVID-19 in Tunisia. BMC Public Health 2024, 24, 2803. [Google Scholar] [CrossRef]
- Tort, L.F.L.; Naveca, M.M.; Nascimento, V.A.; Souza, V.C.; Fernandes, L.T.; Gomes, K.R.; Costa, A.J. SARS-CoV-2 Omicron XBB Infections Boost Cross-Variant Neutralizing Antibodies, Potentially Explaining the Observed Delay of the JN.1 Wave in Some Brazilian Regions. IJID Reg. 2024, 14, 100503. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Lu, J.; Chen, Y.; Huang, X.; Zhang, L.; Wang, Q. Molecular Epidemiology and Population Immunity of SARS-CoV-2 in Guangdong (2022–2023) Following a Pivotal Shift in the Pandemic. Nat. Commun. 2024, 15, 7033. [Google Scholar] [CrossRef] [PubMed]
- Yajima, H.; Ito, J.; Ueno, T.; Sato, K. Molecular and Structural Insights into SARS-CoV-2 Evolution: From BA.2 to XBB Subvariants. mBio 2024, 15, e03220–e03223. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
- Nakakubo, S.; Kishida, N.; Okuda, K.; Kamada, K.; Iwama, M.; Suzuki, M.; Yokota, I.; Ito, Y.M.; Nasuhara, Y.; Boucher, R.C.; et al. Associations of COVID-19 Symptoms with Omicron Subvariants BA.2 and BA.5, Host Status, and Clinical Outcomes: A registry-based observational study in Sapporo, Japan. Lancet Infect. Dis. 2023, 23, 1244–1256. [Google Scholar] [CrossRef]
- Focosi, D.; Maggi, F. Recombination in Coronaviruses, with a Focus on SARS-CoV-2. Viruses 2022, 14, 1239. [Google Scholar] [CrossRef]
- Wang, Q.; Iketani, S.; Li, Z.; Liu, L.; Guo, Y.; Huang, Y.; Bowen, A.D.; Liu, M.; Wang, M.; Yu, J.; et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023, 186, 279–286.e8. [Google Scholar] [CrossRef]
- Tamura, T.; Ito, J.; Uriu, K.; Zahradnik, J.; Kida, I.; Nasser, H.; Shofa, M.; Oda, Y.; Lytras, S.; Nao, N.; et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat. Commun. 2023, 14, 2800. [Google Scholar] [CrossRef]
- Chia, T.R.T.; Young, B.E.; Chia, P.Y. The Omicron-Transformer: Rise of the Subvariants in the Age of Vaccines. Annals Singapore. Available online: https://annals.edu.sg/the-omicron-transformer-rise-of-the-subvariants-in-the-age-of-vaccines/ (accessed on 1 April 2025).
- Focosi, D.; Quiroga, R.; McConnell, S.; Johnson, M.C.; Casadevall, A. Convergent evolution in SARS-CoV-2 spike creates a variant soup from which new COVID-19 waves emerge. Int. J. Mol. Sci. 2023, 24, 2264. [Google Scholar] [CrossRef]
- Sil, D.; Gautam, S.; Saxena, S.; Joshi, S.; Kumar, D.; Mehta, A.; Jindal, P.; Sharma, S.; Pandey, P.; Diksha; et al. Comprehensive Analysis of Omicron Subvariants: EG.5 Rise, Vaccination Strategies, and Global Impact. EurekaSelect. Available online: https://www.eurekaselect.com/article/140269 (accessed on 25 March 2025).
- Şimşek-Yavuz, S. COVID-19: An Update on Epidemiology, Prevention and Treatment, September-2023. Infect. Dis. Clin. Microbiol. 2023, 5, 165–187. [Google Scholar] [CrossRef]
- Chakraborty, A.K. Rapid Worldwide Spread of 17MPLF Spike Insertion Mutants (JN.1-JN.1.25, KP.1, KP.2, KQ.1, KR.1, XDD, XDP, XDK, XDQ Subvariants) of Omicron Coronaviruses and Spike Gene 5′-End Sequencing Problem. SciTe.ai. ResearchSquare 2024, 1–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaari, Y.; Haddad-Boubaker, S.; Khemiri, H.; Fares, W.; Chouikha, A.; Camma, C.; Lorusso, A.; Smaoui, H.; Meftah, K.; Kallala, O.; et al. The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses. Microorganisms 2025, 13, 2162. https://doi.org/10.3390/microorganisms13092162
Chaari Y, Haddad-Boubaker S, Khemiri H, Fares W, Chouikha A, Camma C, Lorusso A, Smaoui H, Meftah K, Kallala O, et al. The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses. Microorganisms. 2025; 13(9):2162. https://doi.org/10.3390/microorganisms13092162
Chicago/Turabian StyleChaari, Yasmine, Sondes Haddad-Boubaker, Haifa Khemiri, Wasfi Fares, Anissa Chouikha, Cesare Camma, Alessio Lorusso, Hanen Smaoui, Khaoula Meftah, Ouafa Kallala, and et al. 2025. "The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses" Microorganisms 13, no. 9: 2162. https://doi.org/10.3390/microorganisms13092162
APA StyleChaari, Y., Haddad-Boubaker, S., Khemiri, H., Fares, W., Chouikha, A., Camma, C., Lorusso, A., Smaoui, H., Meftah, K., Kallala, O., Trabelsi, A., Chtourou, A., Taktak, A., Bahri, O., Hamdoun, M., Chaabouni, Y., Touzi, H., Sadraoui, A., Meddeb, Z., ... Triki, H. (2025). The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses. Microorganisms, 13(9), 2162. https://doi.org/10.3390/microorganisms13092162