Carrot Rhamnogalacturonan-I Supplementation Shapes Gut Microbiota and Immune Responses: A Randomised Trial in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Dietary Intervention
2.1.1. Study Design and Allocation Procedure
2.1.2. Test Articles
2.1.3. Procedures
- Anthropometric measurements
- Faecal samples
- Targeted qPCR
- Faecal SCFA and BCFA analysis
- Metabolic fingerprinting using laser-assisted rapid evaporative ionisation mass spectrometry (LA-REIMS)
- Inflammation marker
- Blood samples and PBMC isolation
- FACS analysis
- Questionnaires
2.1.4. Outcomes
2.2. Preclinical Biological Function Assays
Gut Barrier Function
- Colonic biopsies
- Caco-2/immune cell co-culture challenge model
2.3. Statistical Analyses
- Dietary intervention study:
- Pre-clinical studies:
3. Results
3.1. Human Dietary Intervention—Study Subjects
3.2. Safety and Tolerability
3.3. Effect of cRG-I Supplementation on Numbers of Bifidobacteria
3.4. Effect of cRG-I on Production of Microbial Metabolites
3.5. Effect of cRG-I on Health Parameters
3.6. Effects of cRG-I on Immune Cell Activation
3.7. Preclinical Gut Barrier Function Assays Using In Vitro and Ex Vivo Challenge Models
3.7.1. Effects of cRG-I in a Co-Culture Caco-2/THP-1 Challenge Model
3.7.2. Effects of cRG-I in a Colonic Biopsy Challenge Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riccardi, G.; Costabile, G. Carbohydrate quality is key for a healthy and sustainable diet. Nat. Rev. Endocrinol. 2019, 15, 257–258. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrate Intake for Adults and Children: WHO Guideline Summary; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Deehan, E.; Walter, J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends Endocrinol. Metab. 2016, 27, 239–242. [Google Scholar] [CrossRef]
- Sonnenburg, E.; Sonnenburg, J. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.; Bulut, N.; Chambry, E.; Ruthes, A.; Iacomini, M.; Keshavarzian, A.; Johnson, T.; Hamaker, B. Dietary fiber hierarchical specificity: The missing link for predictable and strong shifts in gut bacterial communities. mBio 2021, 12, e0102821. [Google Scholar] [CrossRef]
- Jian, C.; Sorensen, N.; Lutter, R.; Albers, R.; de Vos, W.; Salonen, A.; Mercenier, A. The impact of daily supplementation with rhamnogalacturonan-I on the gut microbiota in healthy adults: A randomized controlled trial. Biomed. Pharmacother. 2024, 174, 116561. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.; Unno, T.; Shin, J. Butyrate producers, “the sentinel of gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, K.; Abbar, F.; Dobranowski, P.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Spragge, F.; Bakkeren, E.; Jahn, M.; Araujo, E.; Pearson, C.; Wang, X.; Pankhurst, L.; Cunrath, O.; Foster, K. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023, 382, eadj3502. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.; Chen, X.; Wang, J.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Venter, C.; Meyer, R.; Greenhawt, M.; Pali-Schöll, I.; Nwaru, B.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; et al. Role of dietary fiber in promoting immune health—An EAACI position paper. Allergy 2022, 77, 3185–3198. [Google Scholar] [CrossRef]
- Beukema, M.; Faas, M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Abdulqadir, R.; Engers, J.; Al-Sadi, R. Role of Bifidobacterium in modulating the intestinal epithelial tight junction barrier: Current knowledge and perspectives. Curr. Dev. Nutr. 2023, 7, 102026. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-Y.; Osaka, T.; Moriyama, E.; Date, Y.; Kikuchi, J.; Tsuneda, S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol. Rep. 2015, 3, e12327. [Google Scholar] [CrossRef] [PubMed]
- Gavzy, S.; Kensiski, A.; Lee, Z.; Mongodin, E.; Ma, B.; Bromberg, J. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023, 15, 2291164. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, I.; Schofield, Z.; Hall, L. Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases. Emerg. Top. Life Sci. 2017, 1, 333–349. [Google Scholar] [CrossRef]
- Aw, W.; Fukuda, S. Protective effects of bifidobacteria against enteropathogens. Microb. Biotechnol. 2019, 12, 1097–1100. [Google Scholar] [CrossRef]
- Schroeder, B.; Birchenough, G.; Ståhlman, M.; Arike, L.; Johansson, M.; Hansson, G.; Bäckhed, F. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018, 23, 27–40. [Google Scholar] [CrossRef]
- Oriach, C.; Robertson, R.; Stanton, C.; Cryan, J.; Dinan, T. Food for thought: The role of nutrition in the microbiota–gut–brain axis. Clin. Nutr. Exp. 2016, 6, 25–38. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.; Godneva, A.; Kalka, I.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Nehmi-Filho, V.; Santamarina, A.; de Freitas, J.; Trarbach, E.; de Oliveira, D.; Palace-Berl, F.; de Souza, E.; de Miranda, D.; Escamilla-Garcia, A.; Otoch, J.; et al. Novel nutraceutical supplements with yeast β-glucan, prebiotics, minerals, and Silybum marianum (silymarin) ameliorate obesity-related metabolic and clinical parameters: A double-blind randomized trial. Front. Endocrinol. 2023, 13, 1089938. [Google Scholar] [CrossRef] [PubMed]
- Romo, E.; Hong, B.; Agus, J.; Jin, Y.; Kang, J.; Zivkovic, A. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr. Res. 2025, 133, 138–147. [Google Scholar] [CrossRef]
- Medawar, E.; Beyer, F.; Thieleking, R.; Haange, S.-B.; Rolle-Kampczyk, U.; Reinicke, M.; Chakaroun, R.; von Bergen, M.; Stumvoll, M.; Villringer, A.; et al. Prebiotic diet changes neural correlates of food decision-making in overweight adults: A randomised controlled within-subject cross-over trial. Gut 2024, 73, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Lutter, R.; Teitsma-Jansen, A.; Floris, E.; Lone-Latif, S.; Ravi, A.; Sabogal Pineros, Y.; Dekker, T.; Smids, B.; Khurshid, R.; Aparicio-Vergara, M.; et al. The dietary intake of carrot-derived rhamnogalacturonan-I accelerates and augments the innate immune and anti-viral interferon response to rhinovirus infection and reduces duration and severity of symptoms in humans in a randomized trial. Nutrients 2021, 13, 4395. [Google Scholar] [CrossRef]
- McKay, S.; Teitsma-Jansen, A.; Floris, E.; Dekker, T.; Smids, B.; Khurshid, R.; Calame, W.; Kardinaal, A.; Lutter, R.; Albers, R. Effects of dietary supplementation with carrot-derived rhamnogalacturonan-I (cRG-I) on accelerated protective immune responses and quality of life in healthy volunteers challenged with rhinovirus in a randomized trial. Nutrients 2022, 14, 4258. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Verstrepen, L.; Ghyselinck, J.; Albers, R.; Marzorati, M.; Mercenier, A. A novel non-digestible, carrot-derived polysaccharide (cRG-I) selectively modulates the human gut microbiota while promoting gut barrier integrity: An integrated in vitro approach. Nutrients 2020, 12, 1917. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Duysburgh, C.; Cleenwerck, I.; Albers, R.; Marzorati, M.; Mercenier, A. Consistent prebiotic effects of carrot RG-I on the gut microbiota of four human adult donors in the SHIME®®® model despite baseline individual variability. Microorganisms 2021, 9, 2142. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Deyaert, S.; Albers, R.; Baudot, A.; Mercenier, A. Carrot RG-I reduces interindividual differences between 24 adults through consistent effects on gut microbiota composition and function ex vivo. Nutrients 2023, 15, 2090. [Google Scholar] [CrossRef]
- Mercenier, A.; Vu, L.; Poppe, J.; Albers, R.; McKay, S.; Van den Abbeele, P. Carrot-derived rhamnogalacturonan-I consistently increases the microbial production of health-promoting indole-3-propionic acid ex vivo. Metabolites 2024, 14, 722. [Google Scholar] [CrossRef]
- McKay, S.; Oranje, P.; Helin, J.; Koek, J.; Kreijveld, E.; Van den Abbeele, P.; Pohl, U.; Bothe, G.; Tzoumaki, M.; Aparicio-Vergara, M.; et al. Development of an affordable, sustainable and efficacious plant-based immunomodulatory food ingredient based on bell pepper or carrot RG-I pectic polysaccharides. Nutrients 2021, 13, 963. [Google Scholar] [CrossRef]
- Hofman, D.; van Buul, V.; Brouns, F. Nutrition, health, and regulatory aspects of digestible maltodextrins. Crit. Rev. Food Sci. Nutr. 2015, 56, 2091–2100. [Google Scholar] [CrossRef]
- De Weirdt, R.; Possemiers, S.; Vermeulen, G.; Moerdijk-Poortvliet, T.; Boschker, H.; Verstraete, W.; Van de Wiele, T. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol. Ecol. 2010, 74, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Plekhova, V.; Van Meulebroek, L.; De Graeve, M.; Perdones-Montero, A.; De Spiegeleer, M.; De Paepe, E.; Van de Walle, E.; Takats, Z.; Cameron, S.; Vanhaecke, L. Rapid ex vivo molecular fingerprinting of biofluids using laser-assisted rapid evaporative ionization mass spectrometry. Nat. Protoc. 2021, 16, 4327–4354. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Zierold, C.; Rode, A.; Blocki, F.; Vaughn, B. Clinical performance of a novel LIAISON fecal calprotectin assay for differentiation of inflammatory bowel disease from irritable bowel syndrome. J. Clin. Gastroenterol. 2020, 55, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Lentjes, M.; Lönnström, S.; Palmér, K.; Alsammarraie, Z.; Lindroos, A.; Sipinen, J.; Koochek, A.; Brummer, R.; Montgomery, S. Development of dietary assessment instruments which can take cultural diversity and dietary acculturation into account: Eating in Sweden (‘Mat i Sverige’). J. Nutr. Sci. 2024, 13, e70. [Google Scholar] [CrossRef] [PubMed]
- Kulich, K.; Madisch, A.; Pacini, F.; Piqué, J.; Regula, J.; Van Rensburg, C.; Ujszászy, L.; Carlsson, J.; Halling, K.; Wiklund, I. Reliability and validity of the gastrointestinal symptom rating scale (GSRS) and quality of life in reflux and dyspepsia (QOLRAD) questionnaire in dyspepsia: A six-country study. Health Qual. Life Outcomes 2008, 31, 12. [Google Scholar] [CrossRef]
- Craig, C.; Marshall, A.; Sjöström, M.; Bauman, A.; Booth, M.; Ainsworth, B.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Stolk, E.; Ludwig, K.; Rand, K.; Van Hout, B.; Ramos-Goñi, J. Overview, update, and lessons learned from the international EQ-5D-5L valuation work: Version 2 of the EQ-5D-5L valuation protocol. Value Health 2019, 22, 23–30. [Google Scholar] [CrossRef]
- Clarke, L. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1151–G1166. [Google Scholar] [CrossRef]
- Kerezoudi, E.; Zervakis, G.; Pletsa, V.; Kyriacou, A.; Brummer, R.; Rangel, I. Pleurotus eryngii mushrooms fermented with human fecal microbiota protect intestinal barrier integrity: Immune modulation and signalling pathways counter deoxycholic acid-induced disruption in healthy colonic tissue. Nutrients 2025, 17, 694. [Google Scholar] [CrossRef]
- Kerezoudi, E.; Vlasopoulou, M.; Mitsou, E.; Saxami, G.; Koutrotsios, G.; Taflampa, I.; Mountzouris, K.; Rangel, I.; Brummer, R.; Zervakis, G.; et al. In vitro fermentation of whole matrix, digested products and β-glucan enriched extract of Pleurotus eryngii mushrooms distinctively impact the fecal microbiota of healthy older adults. Hum. Nutr. Metab. 2025, 40, 200314. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Taminiau, B.; Pinheiro, I.; Duysburgh, C.; Jacobs, H.; Pijls, L.; Marzorati, M. Arabinoxylo-oligosaccharides and inulin impact inter-individual variation on microbial metabolism and composition, which immunomodulates human cells. J. Agric. Food Chem. 2018, 66, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Daguet, D.; Pinheiro, I.; Verhelst, A.; Possemiers, S.; Marzorati, M. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J. Funct. Foods 2016, 20, 369–379. [Google Scholar] [CrossRef]
- Carlsen, H.; Pajari, A. Dietary fiber—A scoping review for Nordic nutrition recommendations 2023. Food Nutr. Res. 2023, 67, 10. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.; Prescott, S.; Reimer, R.; Salminen, S.; Scott, K.; Stanton, C.; Swanson, K.; Cani, P.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Looijesteijn, E.; Schoemaker, M.; Van den Belt, M.; Hester, E.; Kortman, G.; Viskaal van Dongen, M.; Nauta, A. A double-blind intervention trial in healthy women demonstrates the beneficial impact on Bifidobacterium with low dosages of prebiotic galacto-oligosaccharides. Front. Nutr. 2024, 11, 1440319. [Google Scholar] [CrossRef]
- Gutierrez, A.; Pucket, B.; Engevik, M. Bifidobacterium and the intestinal mucus layer. Microbiome Res. Rep. 2023, 2, 36. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Gonçalves, P.; Araújo, J.; Di Santo, J. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm. Bowel Dis. 2018, 24, 558–572. [Google Scholar] [CrossRef]
- Wong, C.; Odamaki, T.; Xiao, J.-Z. Insights into the reason of human-residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol. Rev. 2020, 44, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Rodiño-Janeiro, B.; Vicario, M.; Alonso-Cotoner, C.; Pascua-García, R.; Santos, J. A review of microbiota and irritable bowel syndrome: Future in therapies. Adv. Ther. 2018, 35, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, R.; Nakamura, K.; Kitada, N.; Aizawa, T.; Shimizu, Y.; Nakamura, K.; Ayabe, T.; Kimura, T.; Tamakoshi, A. Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids. Biosci. Microbiota Food Health 2020, 39, 11–17. [Google Scholar] [CrossRef]
- Engelhardt, W.V.; Rönnau, K.; Rechkemmer, G.; Sakata, T. Absorption of short-chain fatty acids and their role in the hindgut of monogastric animals. Anim. Feed Sci. Technol. 1989, 23, 43–53. [Google Scholar] [CrossRef]
- Desai, K.; Van den Abbeele, P.; Duysburgh, C.; Albers, R.; Wennekes, T.; Schols, H.; Mercenier, A. Structure dependent fermentation kinetics of dietary carrot rhamnogalacturonan-I in an in vitro gut model. Food Hydrocoll. 2024, 153, 110036. [Google Scholar] [CrossRef]
- Ngo, C.; Garrec, C.; Tomasello, E.; Dalod, M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell. Mol. Life Sci. 2024, 21, 1008–1035. [Google Scholar] [CrossRef]
- Wang, L.; He, L.; Xu, L.; Li, S. Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J. Gastroenterol. Hepatol. 2024, 39, 1728–1736. [Google Scholar] [CrossRef]
- Van Splunter, M.; Perdijk, O.; Fick-Brinkhof, H.; Feitsma, A.; Floris-Vollenbroek, E.; Meijer, B.; Brugman, S.; Savelkoul, H.; Van Hoffen, E.; Van Neerven, R. Bovine lactoferrin enhances TLR7-mediated responses in plasmacytoid dendritic cells in elderly women: Results from a nutritional intervention study with bovine lactoferrin, GOS and vitamin D. Front. Immunol. 2018, 9, 2677. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, T.; Jounai, K.; Ohshio, K.; Tanaka, T.; Suwa, M.; Fujiwara, D. Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin. Immunol. 2013, 149, 509–518. [Google Scholar] [CrossRef]
- Shibata, T.; Kanayama, M.; Haida, M.; Fujimoto, S.; Oroguchi, T.; Sata, K.; Mita, N.; Kutsuzawa, T.; Ikeuchi, M.; Kondo, M.; et al. Lactococcus lactis JCM5805 activates anti-viral immunity and reduces symptoms of common cold and influenza in healthy adults in a randomized controlled trial. J. Funct. Foods 2016, 24, 492–500. [Google Scholar] [CrossRef]
- Fasano, A.; Shea-Donohue, T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005, 2, 416–422. [Google Scholar] [CrossRef]
- Baggio, C.; Shang, J.; Gordon, M.; Stephens, M.; Von der Weid, P.; Nascimento, A.; Román, Y.; Cipriani, T.; MacNaughton, W. The dietary fibre rhamnogalacturonan improves intestinal epithelial barrier function in a microbiota-independent manner. Br. J. Pharmacol. 2022, 179, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.; Sahasrabudhe, N.; Ramasamy, U.; Meyer, D.; Pullens, G.; Faas, M.; Venema, K.; Schols, H.; De Vos, P. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. J. Funct. Foods 2016, 22, 398–407. [Google Scholar] [CrossRef]
- Wu, C.; Pan, L.; Niu, W.; Fang, X.; Liang, W.; Li, J.; Li, H.; Pan, X.; Chen, W.; Zhang, H.; et al. Modulation of gut microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Front. Immunol. 2019, 30, 1733. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, S.; Ye, X.; Ahmadi, S.; Hu, W.; Yu, C.; Zhu, K.; Cheng, H.; Linhardt, R.; He, Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll. 2022, 127, 107209. [Google Scholar] [CrossRef]
Parameter | Statistic | Placebo | cRG-I | p-Value |
---|---|---|---|---|
N | 28 | 26 | ||
Age (y) | Mean ± SD | 48.4 ± 12.1 | 46.4 ± 17.0 | p = 0.815 |
Female sex | N (%) | 19 (67.9%) | 21 (80.8%) | p = 0.279 |
BMI (kg*m−2) | Mean ± SD | 26.20 ± 3.45 | 24.71 ± 3.46 | p = 0.200 |
Bifidobacteria counts a at baseline | Mean ± SD | 1.09 ± 0.89 | 1.00 ± 0.07 b | p = 0.539 |
Energy (kcal/day) | Mean ± SD | 1904.75 ± 644.69 | 2214.49 ± 915.88 | p = 0.402 |
Protein (%/day) | Mean ± SD | 18.62 ± 2.62 | 17.27 ± 2.93 | p = 0.121 |
Carbohydrates (%/day) | Mean ± SD | 39.08 ± 7.49 | 43.76 ± 7.55 | p = 0.098 |
Fibre intake (%/day) | Mean ± SD | 2.48 ± 0.84 | 2.52 ± 0.94 | p = 0.972 |
Fibre intake (g/day) | Mean ± SD | 25.25 ± 12.25 | 28.28 ± 20.94 | p = 0.640 |
Fat (%/day) | Mean ± SD | 38.40 ± 6.15 | 35.06 ± 6.10 | p = 0.109 |
Dietary supplements consumption | N (%) | 8 (28.6%) | 9 (34.6%) | p = 0.633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerezoudi, E.N.; McKay, S.; Kurt, S.; De Kreek, M.; De Medts, J.; Verstrepen, L.; Ghyselinck, J.; Van Meulebroek, L.; Calame, W.; Mercenier, A.; et al. Carrot Rhamnogalacturonan-I Supplementation Shapes Gut Microbiota and Immune Responses: A Randomised Trial in Healthy Adults. Microorganisms 2025, 13, 2156. https://doi.org/10.3390/microorganisms13092156
Kerezoudi EN, McKay S, Kurt S, De Kreek M, De Medts J, Verstrepen L, Ghyselinck J, Van Meulebroek L, Calame W, Mercenier A, et al. Carrot Rhamnogalacturonan-I Supplementation Shapes Gut Microbiota and Immune Responses: A Randomised Trial in Healthy Adults. Microorganisms. 2025; 13(9):2156. https://doi.org/10.3390/microorganisms13092156
Chicago/Turabian StyleKerezoudi, Evangelia N., Sue McKay, Seta Kurt, Maaike De Kreek, Jelle De Medts, Lynn Verstrepen, Jonas Ghyselinck, Lieven Van Meulebroek, Wim Calame, Annick Mercenier, and et al. 2025. "Carrot Rhamnogalacturonan-I Supplementation Shapes Gut Microbiota and Immune Responses: A Randomised Trial in Healthy Adults" Microorganisms 13, no. 9: 2156. https://doi.org/10.3390/microorganisms13092156
APA StyleKerezoudi, E. N., McKay, S., Kurt, S., De Kreek, M., De Medts, J., Verstrepen, L., Ghyselinck, J., Van Meulebroek, L., Calame, W., Mercenier, A., Albers, R., Brummer, R. J., & Rangel, I. (2025). Carrot Rhamnogalacturonan-I Supplementation Shapes Gut Microbiota and Immune Responses: A Randomised Trial in Healthy Adults. Microorganisms, 13(9), 2156. https://doi.org/10.3390/microorganisms13092156