Photoendosymbiosis of the Blue Subtropical Montipora Corals of Norfolk Island, South Pacific
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Ecological Surveys and Sampling
2.3. PAM Fluorometry
2.4. Symbiodiniaceae Counts for Density
2.5. DNA Extraction, PCR and Sequencing of the ITS2 Region
2.6. Statistical Analyses
3. Results
3.1. Ecological Observations
3.2. PAM Fluorometry and Symbiodiniaceae Counts for Density
3.3. Characterisation of the Symbiodiniaceae Community
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SST | Sea Surface Temperature(s) |
PAM | Pulse Amplitude Modulation Fluorometry |
References
- Harriott, V.; Banks, S. Latitudinal variation in coral communities in eastern Australia: A qualitative biophysical model of factors regulating coral reefs. Coral Reefs 2002, 21, 83–94. [Google Scholar] [CrossRef]
- Eddy, T.D.; Lam, V.W.; Reygondeau, G.; Cisneros-Montemayor, A.M.; Greer, K.; Palomares, M.L.D.; Bruno, J.F.; Ota, Y.; Cheung, W.W. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 2021, 4, 1278–1285. [Google Scholar] [CrossRef]
- Beger, M.; Sommer, B.; Harrison, P.L.; Smith, S.D.; Pandolfi, J.M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 2014, 20, 245–257. [Google Scholar] [CrossRef]
- Baird, A.H.; Hoogenboom, M.O.; Huang, D. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys 2017, 662, 49–66. [Google Scholar] [CrossRef]
- Schmidt-Roach, S.; Miller, K.J.; Andreakis, N. Pocillopora aliciae: A new species of scleractinian coral (Scleractinia, Pocilloporidae) from subtropical Eastern Australia. Zootaxa 2013, 3626, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Cairns, S.D. Species Richness of Recent Scleractinia; National Museum of Natural History: Washington, DC, USA, 1999. [Google Scholar]
- Vuleta, S.; Nakagawa, S.; Ainsworth, T. The global significance of Scleractinian corals without photoendosymbiosis. Sci. Rep. 2024, 14, 10161. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, S.A. Is the coral-algae symbiosis really ‘mutually beneficial’for the partners? BioEssays 2010, 32, 615–625. [Google Scholar] [CrossRef]
- Baker, A.C. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 661–689. [Google Scholar] [CrossRef]
- LaJeunesse, T.C.; Bonilla, H.R.; Warner, M.; Wills, M.; Schmidt, G.; Fitt, W. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol. Oceanogr. 2008, 53, 719–727. [Google Scholar] [CrossRef]
- Ho, M.L.; Lagisz, M.; Nakagawa, S.; Perkins-Kirkpatrick, S.; Sawyers, P.; Page, C.; Leggat, B.; Gaston, T.; Hobday, A.J.; Richards, Z.; et al. What is the evidence for the impact of ocean warming on subtropical and temperate corals and coral reefs? A systematic map. Environ. Evid. 2024, 13, 25. [Google Scholar] [CrossRef]
- Cant, J.; Salguero-Gómez, R.; Kim, S.W.; Sims, C.A.; Sommer, B.; Brooks, M.; Malcolm, H.A.; Pandolfi, J.M.; Beger, M. The projected degradation of subtropical coral assemblages by recurrent thermal stress. J. Anim. Ecol. 2021, 90, 233–247. [Google Scholar] [CrossRef]
- Wilkinson, S.P.; Pontasch, S.; Fisher, P.L.; Davy, S.K. The distribution of intra-genomically variable dinoflagellate symbionts at Lord Howe Island, Australia. Coral Reefs 2016, 35, 565–576. [Google Scholar] [CrossRef]
- Correa, A.; Baker, A. Understanding diversity in coral-algal symbiosis: A cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 2009, 28, 81–93. [Google Scholar] [CrossRef]
- Dimond, J.; Carrington, E. Symbiosis regulation in a facultatively symbiotic temperate coral: Zooxanthellae division and expulsion. Coral Reefs 2008, 27, 601–604. [Google Scholar] [CrossRef]
- Silverstein, R.N.; Correa, A.M.; Baker, A.C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 2012, 279, 2609–2618. [Google Scholar] [CrossRef]
- Dimond, J.; Carrington, E. Temporal variation in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar. Ecol. Prog. Ser. 2007, 348, 161–172. [Google Scholar] [CrossRef]
- Leal, M.C.; Ferrier-Pagès, C.; Calado, R.; Brandes, J.A.; Frischer, M.E.; Nejstgaard, J. Trophic ecology of the facultative symbiotic coral Oculina arbuscula. Mar. Ecol. Prog. Ser. 2014, 504, 171–179. [Google Scholar] [CrossRef]
- Chan, A.N.; González-Guerrero, L.A.; Iglesias-Prieto, R.; Burmester, E.M.; Rotjan, R.D.; Finnerty, J.R.; Baums, I.B. An algal symbiont (Breviolum psygmophilum) responds more strongly to chronic high temperatures than its facultatively symbiotic coral host (Astrangia poculata). bioRxiv 2021. [Google Scholar] [CrossRef]
- Wuitchik, D.M.; Aichelman, H.E.; Atherton, K.F.; Brown, C.M.; Chen, X.; DiRoberts, L.; Pelose, G.E.; Tramonte, C.A.; Davies, S.W. Photosymbiosis reduces the environmental stress response under a heat challenge in a facultatively symbiotic coral. Sci. Rep. 2024, 14, 15484. [Google Scholar] [CrossRef]
- Madin, J.S.; Anderson, K.D.; Andreasen, M.H.; Bridge, T.C.; Cairns, S.D.; Connolly, S.R.; Darling, E.S.; Diaz, M.; Falster, D.S.; Franklin, E.C.; et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 2016, 3, 160017. [Google Scholar] [CrossRef]
- Rivera, H.E.; Davies, S.W. Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity. Sci. Rep. 2021, 11, 21226. [Google Scholar] [CrossRef]
- Ainsworth, T.; Heron, S.; Lantz, C.; Leggat, W. Norfolk Island Lagoonal Reef Health. Ecosystem Health Assessment 2020–2021. Available online: https://australianmarineparks.gov.au/science/scientific-publications/norfolk-island-lagoonal-reef-ecosystem-health-2021/ (accessed on 16 April 2024).
- Baird, A.H.; Prior, S.; Bridge, T.; Cowman, P. First records of coral spawning on Norfolk Island. Galaxea J. Coral Reef Stud. 2023, 25, 3–4. [Google Scholar] [CrossRef]
- Heather, F.; Stuart-Smith, R.; Cooper, A.; Edgar, G. Reef Life Survey Assessment of Marine Biodiversity in the Norfolk Marine Park; Reef Life Survey: Hobart, Australia, 2022. [Google Scholar]
- Leggat, W.; Gaston, T.; Page, C.; Ainsworth, T. Reef Health Survey Report for Emily and Slaughter Bay, Norfolk Island (January 2022–April 2023); Reef Life Survey: Hobart, Australia, 2023. [Google Scholar]
- Page, C.E.; Leggat, W.; Egan, S.; Ainsworth, T.D. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors. iScience 2023, 26, 106205. [Google Scholar] [CrossRef]
- Ainsworth, T.; Page, C.; Gaston, T.; Leggat, W. Norfolk Island Lagoonal Reef Ecosystem Health Assessment 2023–2024; Parks Australia: Parkes, Australia, 2024.
- Salih, A.; Larkum, A.; Cox, G.; Kühl, M.; Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 2000, 408, 850–853. [Google Scholar] [CrossRef]
- NOAA. National Oceanic and Atmospheric Administration. Available online: https://coralreefwatch.noaa.gov/product/vs/gauges/norfolk_island.php (accessed on 16 April 2024).
- Baird, A. (James Cook University, Townsville, QLD, Australia). Personal communication, 2024.
- Siebeck, U.; Logan, D.; Marshall, N. CoralWatch: A flexible coral bleaching monitoring tool for you and your group. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, FL, USA, 7–11 July 2008. [Google Scholar]
- Stimson, J.; Kinzie, R.A., III. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 1991, 153, 63–74. [Google Scholar] [CrossRef]
- Stimson, J. The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 1997, 214, 35–48. [Google Scholar] [CrossRef]
- Hume, B.C.; Ziegler, M.; Poulain, J.; Pochon, X.; Romac, S.; Boissin, E.; De Vargas, C.; Planes, S.; Wincker, P.; Voolstra, C.R. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 2018, 6, e4816. [Google Scholar] [CrossRef] [PubMed]
- Aichelman. Local Adaptation Signatures in Thermal Performance of the Temperate Coral Astrangia poculata; Old Dominion University: Norfolk, VA, USA, 2018. [Google Scholar]
- Hoegh-Guldberg, O.; Fine, M. Low temperatures cause coral bleaching. Coral Reefs 2004, 23, 444. [Google Scholar] [CrossRef]
- Rich, W.A.; Carvalho, S.; Berumen, M.L. Coral bleaching due to cold stress on a central Red Sea reef flat. Ecol. Evol. 2022, 12, e9450. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.S.; Deheyn, D.D. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci. Rep. 2013, 3, 1421. [Google Scholar] [CrossRef]
- Saxby, T.; Dennison, W.C.; Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 2003, 248, 85–97. [Google Scholar] [CrossRef]
- Takeuchi, I.; Takaichi, D.; Katsumata, M.; Ishibashi, H. Succession of delayed fluorescence correlated with coral bleaching in the hermatypic coral Acropora tenuis. Mar. Pollut. Bull. 2020, 154, 111008. [Google Scholar] [CrossRef]
- Johnston, E.C.; Counsell, C.W.; Sale, T.L.; Burgess, S.C.; Toonen, R.J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 2020, 34, 2315–2325. [Google Scholar] [CrossRef]
- Roth, M.S. The engine of the reef: Photobiology of the coral–algal symbiosis. Front. Microbiol. 2014, 5, 422. [Google Scholar] [CrossRef]
- Grace, S. Winter quiescence, growth rate, and the release from competition in the temperate scleractinian coral Astrangia poculata (Ellis & Solander 1786). Northeast. Nat. 2017, 24, B119–B134. [Google Scholar] [CrossRef]
- Schuhmacher, H.; Zibrowius, H. What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 1985, 4, 1–9. [Google Scholar] [CrossRef]
- Nitschke, M.R.; Rosset, S.L.; Oakley, C.; Gardner, S.G.; Camp, E.F.; Suggett, D.J.; Davy, S.K. The diversity and ecology of Symbiodiniaceae: A traits-based review. Adv. Mar. Biol. 2022, 92, 55–127. [Google Scholar] [PubMed]
- Davies, S.W.; Gamache, M.H.; Howe-Kerr, L.I.; Kriefall, N.G.; Baker, A.C.; Banaszak, A.T.; Bay, L.K.; Bellantuono, A.J.; Bhattacharya, D.; Chan, C.X.; et al. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023, 11, e15023. [Google Scholar] [CrossRef]
- Grol, M.G.; Vercelloni, J.; Kenyon, T.M.; Bayraktarov, E.; Van Den Berg, C.P.; Harris, D.; Loder, J.A.; Mihaljević, M.; Rowland, P.I.; Roelfsema, C.M. Conservation value of a subtropical reef in south-eastern Queensland, Australia, highlighted by citizen-science efforts. Mar. Freshw. Res. 2020, 72, 1–13. [Google Scholar] [CrossRef]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 2018, 28, 2570–2580.e6. [Google Scholar] [CrossRef]
- Chen, B.; Yu, K.; Liang, J.; Huang, W.; Wang, G.; Su, H.; Qin, Z.; Huang, X.; Pan, Z.; Luo, W. Latitudinal variation in the molecular diversity and community composition of Symbiodiniaceae in coral from the South China Sea. Front. Microbiol. 2019, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- De Palmas, S.; Denis, V.; Ribas-Deulofeu, L.; Loubeyres, M.; Woo, S.; Hwang, S.; Song, J.; Chen, C. Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea. Coral Reefs 2015, 34, 919–925. [Google Scholar] [CrossRef]
- Wicks, L.; Sampayo, E.; Gardner, J.; Davy, S. Local endemicity and high diversity characterise high-latitude coral–Symbiodinium partnerships. Coral Reefs 2010, 29, 989–1003. [Google Scholar] [CrossRef]
- Buzzoni, D.; Cunning, R.; Baker, A.C. The role of background algal symbionts as drivers of shuffling to thermotolerant Symbiodiniaceae following bleaching in three Caribbean coral species. Coral Reefs 2023, 42, 1285–1295. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, X.; Zhu, M.; Li, X.; Yin, H.; Huang, J.; Wang, A.; Li, X. Responses of symbiodiniaceae shuffling and microbial community assembly in thermally stressed acropora hyacinthus. Front. Microbiol. 2022, 13, 832081. [Google Scholar] [CrossRef]
- Loya, Y.; Sakai, K.; Yamazato, K.; Nakano, Y.; Sambali, H.; Van Woesik, R. Coral bleaching: The winners and the losers. Ecol. Lett. 2001, 4, 122–131. [Google Scholar] [CrossRef]
- Nunn, B.L.; Brown, T.; Timmins-Schiffman, E.; Mudge, M.; Riffle, M.; Axworthy, J.B.; Dilwort, J.; Kenkel, C.; Zaneveld, J.; Rodrigues, L.J.; et al. Resilience in a time of stress: Revealing the molecular underpinnings of coral survival following thermal bleaching events. bioRxiv 2024. [Google Scholar] [CrossRef]
- McIlroy, S.E.; Thompson, P.D.; Yuan, F.L.; Bonebrake, T.C.; Baker, D.M. Subtropical thermal variation supports persistence of corals but limits productivity of coral reefs. Proc. R. Soc. B 2019, 286, 20190882. [Google Scholar] [CrossRef]
Reagent | µL |
---|---|
10x PCR buffer (QIAGEN, Hilden, Germany) | 5 |
SYM_VAR_5.8S2 (Forward primer) (Ramaciotti, Sydney, Australia) | 1 |
SYM_VAR_REV (Reverse primer) (Ramaciotti) | 1 |
dNTP Mix, PCR Grade (10 mM each) (QIAGEN) | 1 |
HotStarTaq DNA Polymerase (QIAGEN) | 0.5 |
DNase/RNase free water (Invitrogen, Thermofisher Scientific) | 39.5 |
Extracted DNA (>10 ng/µL) | 2 |
Temperature (°C) | Time |
---|---|
95 | 15 min |
98 | 10 s |
56 | 30 s |
72 | 1 min |
75 | 1 min |
10 | Holding temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuleta, S.; Leggat, W.P.; Ainsworth, T.D. Photoendosymbiosis of the Blue Subtropical Montipora Corals of Norfolk Island, South Pacific. Microorganisms 2025, 13, 2155. https://doi.org/10.3390/microorganisms13092155
Vuleta S, Leggat WP, Ainsworth TD. Photoendosymbiosis of the Blue Subtropical Montipora Corals of Norfolk Island, South Pacific. Microorganisms. 2025; 13(9):2155. https://doi.org/10.3390/microorganisms13092155
Chicago/Turabian StyleVuleta, Sophie, William P. Leggat, and Tracy D. Ainsworth. 2025. "Photoendosymbiosis of the Blue Subtropical Montipora Corals of Norfolk Island, South Pacific" Microorganisms 13, no. 9: 2155. https://doi.org/10.3390/microorganisms13092155
APA StyleVuleta, S., Leggat, W. P., & Ainsworth, T. D. (2025). Photoendosymbiosis of the Blue Subtropical Montipora Corals of Norfolk Island, South Pacific. Microorganisms, 13(9), 2155. https://doi.org/10.3390/microorganisms13092155