From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses
Abstract
1. Introduction
2. Empedocles’ Theory of Evolution
3. From Empedocles to Endosymbiosis
4. Endosymbiotic Origin of Mitochondria
5. Mitochondrial Endosymbiosis
6. Mitochondria as a Key Regulator of Immune Responses
6.1. Mitochondria and Inflammation
6.2. Mitochondria and Autoimmunity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deichmann, U. The idea of constancy in development and evolution—Scientific and philosophical perspectives. Biosystems 2022, 221, 104773. [Google Scholar] [CrossRef]
- Rigby, H. History Matters: A Survey of Ideas about Evolution in Western Legal Theory from Antiquity to the Present Day in order to Propound a Theory of Evolutionary Jurisprudence. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 2017. [Google Scholar]
- Costa, A. L’Empédocle de Strasbourg. Let. Clássicas 1999, 3, 319–325. [Google Scholar] [CrossRef]
- Ray, D.F. The Malaria Zone. Cal. State J. Med. 1909, 7, 254. [Google Scholar]
- Shaw, M.M. Architecture and Eternity: Physis in Nietzsche and Empedocles. Contrib. Phenomenol. 2017, 92, 3–26. [Google Scholar] [CrossRef]
- Hladký, V. Empedocles’ Sphairos. Rhizomata 2017, 5, 1–24. [Google Scholar] [CrossRef]
- Caetano-Anollés, G.; Janko, R. The rise of hierarchy and modularity in biological networks explained by empedocles’ double tale ∼2,400 years before darwin and systems biology. Front. Genet. 2022, 13, 973233. [Google Scholar] [CrossRef]
- Moret, M.A.; Pereira, H.B.B.; Monteiro, S.L.; Galeão, A.C. Evolution of species from Darwin theory: A simple model. Phys. A Stat. Mech. Appl. 2012, 391, 2803–2806. [Google Scholar] [CrossRef]
- Darwin, L. Natural selection. Eugen. Rev. 1927, 18, 285. [Google Scholar]
- Sagan, D. From Empedocles to Symbiogenetics: Lynn Margulis’s revolutionary influence on evolutionary biology. Biosystems 2021, 204, 104386. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Ribatti, D. History of Neuroscience Soul, mind, brain: Greek philosophy and the birth of neuroscience. Brain Res. Bull. 2007, 71, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Mittenthal, J.; Caetano-Anollés, D.; Caetano-Anollés, G. Biphasic patterns of diversification and the emergence of modules. Front. Genet. 2012, 3, 30442. [Google Scholar] [CrossRef] [PubMed]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 225–274, IN1–IN6. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.W. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol. Biol. Cell 2017, 28, 1285–1287. [Google Scholar] [CrossRef] [PubMed]
- Kowallik, K.V.; Martin, W.F. The origin of symbiogenesis: An annotated English translation of Mereschkowsky’s 1910 paper on the theory of two plasma lineages. Biosystems 2021, 199, 104281. [Google Scholar] [CrossRef]
- Archibald, J.M.; Keeling, P.J. Recycled plastids: A “green movement” in eukaryotic evolution. Trends Genet. 2002, 18, 577–584. [Google Scholar] [CrossRef]
- Mills, D.B.; Boyle, R.A.; Daines, S.J.; Sperling, E.A.; Pisani, D.; Donoghue, P.C.J.; Lenton, T.M. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 2022, 6, 520–532. [Google Scholar] [CrossRef]
- Oikawa, K.; Imai, T.; Thagun, C.; Toyooka, K.; Yoshizumi, T.; Ishikawa, K.; Kodama, Y.; Numata, K. Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana. Commun. Biol. 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Bennett, G.M.; Kwak, Y.; Maynard, R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol. Evol. 2024, 16, evae112. [Google Scholar] [CrossRef]
- Poole, A.M.; Gribaldo, S. Eukaryotic origins: How and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 2014, 6, a015990. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, X.; Li, M.; Liu, Y.; Liu, M.; Hou, L.J.; Dong, H.P. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 2025, 642, 990–998. [Google Scholar] [CrossRef]
- Albers, S.; Ashmore, J.; Pollard, T.; Spang, A.; Zhou, J. Origin of eukaryotes: What can be learned from the first successfully isolated Asgard archaeon. Fac. Rev. 2022, 11, 3. [Google Scholar] [CrossRef]
- Martin, W.; Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 1998, 392, 37–41. [Google Scholar] [CrossRef]
- CAVALIER-SMITH, T. The Simultaneous Symbiotic Origin of Mitochondria, Chloroplasts, and Microbodies. Ann. N. Y. Acad. Sci. 1987, 503, 55–71. [Google Scholar] [CrossRef]
- Koumandou, V.L.; Wickstead, B.; Ginger, M.L.; Van Der Giezen, M.; Dacks, J.B.; Field, M.C. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 373–396. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.; Martin, W. The energetics of genome complexity. Nature 2010, 467, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.; Martin, W.F. Mitochondria, complexity, and evolutionary deficit spending. Proc. Natl. Acad. Sci. USA 2016, 113, E666. [Google Scholar] [CrossRef] [PubMed]
- Boguszewska, K.; Szewczuk, M.; Kazmierczak-Baranska, J.; Karwowski, B.T. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020, 25, 2857. [Google Scholar] [CrossRef]
- Vringer, E.; Tait, S.W.G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2022, 30, 304–312. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Nishida, K.; Yoshida, Y.; Fujiwara, T.; Mori, T.; Kuroiwa, H.; Misumi, O. Structure, function and evolution of the mitochondrial division apparatus. Biochim. Biophys. Acta—Mol. Cell Res. 2006, 1763, 510–521. [Google Scholar] [CrossRef]
- Booth, A.; Doolittle, W.F. Eukaryogenesis, how special really? Proc. Natl. Acad. Sci. USA 2015, 112, 10278–10285. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, R.; Wang, X.; Qi, Y.; Sandai, D.; Wang, W.; Song, Z.; Liang, Q. Interruption of mitochondrial symbiosis is associated with the development of osteoporosis. Front. Endocrinol. 2025, 16, 1488489. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ming, Z.; Gong-Hua, H.; Lan, G.; Lu, D.; Peng, L.; Feng, J.; Cai-Gao, Z. Cr(vi) induces the decrease of atp level and the increase of apoptosis rate mediated by ros or vdac1 in l-02 hepatocytes. Environ. Toxicol. Pharmacol. 2012, 34, 579–587. [Google Scholar] [CrossRef]
- Jiang, W.; Li, R.; Zhang, Y.; Wang, P.; Wu, T.; Lin, J.; Yu, J.; Gu, M. Mitochondrial DNA Mutations Associated with Type 2 Diabetes Mellitus in Chinese Uyghur Population. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Larsson, N.G. Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 2010, 79, 683–706. [Google Scholar] [CrossRef]
- Foti, S.C.; Hargreaves, I.; Carrington, S.; Kiely, A.P.; Houlden, H.; Holton, J.L. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson’s disease. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Miller, D.M.; Archer, S.L.; Dunham-Snary, K.J. Preclinical models of mitochondrial dysfunction: mtDNA and nuclear-encoded regulators in diverse pathologies. Front. Aging 2025, 6, 1585508. [Google Scholar] [CrossRef]
- Archer, S.L. Mitochondrial Dynamics—Mitochondrial Fission and Fusion in Human Diseases. N. Engl. J. Med. 2013, 369, 2236–2251. [Google Scholar] [CrossRef]
- Archer, S.L.; Weir, E.K.; Wilkins, M.R. Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation 2010, 121, 2045–2066. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.L.; Chourasia, A.H.; Macleod, K.F. Mitochondrial dysfunction in cancer. Front. Oncol. 2013, 3, 292. [Google Scholar] [CrossRef] [PubMed]
- Weidling, I.W.; Swerdlow, R.H. Mitochondria in Alzheimer’s disease and their potential role in Alzheimer’s proteostasis. Exp. Neurol. 2020, 330, 113321. [Google Scholar] [CrossRef]
- Vivian, C.J.; Brinker, A.E.; Graw, S.; Koestler, D.C.; Legendre, C.; Gooden, G.C.; Salhia, B.; Welch, D.R. Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Res. 2017, 77, 6202–6214. [Google Scholar] [CrossRef]
- Ma, H.; Marti Gutierrez, N.; Morey, R.; Van Dyken, C.; Kang, E.; Hayama, T.; Lee, Y.; Li, Y.; Tippner-Hedges, R.; Wolf, D.P.; et al. Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metab. 2016, 24, 283–294. [Google Scholar] [CrossRef]
- Rusecka, J.; Kaliszewska, M.; Bartnik, E.; Tońska, K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J. Appl. Genet. 2018, 59, 43–57. [Google Scholar] [CrossRef]
- San-Millán, I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants 2023, 12, 782. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; St. Clair, D.K. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Farge, G.É.R.; Falkenberg, M. Organization of DNA in mammalian mitochondria. Int. J. Mol. Sci. 2019, 20, 2770. [Google Scholar] [CrossRef] [PubMed]
- West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015, 520, 553–557. [Google Scholar] [CrossRef]
- Mechta, M.; Ingerslev, L.R.; Fabre, O.; Picard, M.; Barrès, R. Evidence suggesting absence of mitochondrial DNA methylation. Front. Genet. 2017, 8, 166. [Google Scholar] [CrossRef]
- Bellizzi, D.; D’aquila, P.; Scafone, T.; Giordano, M.; Riso, V.; Riccio, A.; Passarino, G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013, 20, 537–547. [Google Scholar] [CrossRef]
- Riley, J.S.; Tait, S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020, 21, e49799. [Google Scholar] [CrossRef]
- Mankan, A.K.; Schmidt, T.; Chauhan, D.; Goldeck, M.; Höning, K.; Gaidt, M.; Kubarenko, A.V.; Andreeva, L.; Hopfner, K.; Hornung, V. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J. 2014, 33, 2937–2946. [Google Scholar] [CrossRef]
- Stoccoro, A.; Coppedè, F. Mitochondrial dna methylation and human diseases. Int. J. Mol. Sci. 2021, 22, 4594. [Google Scholar] [CrossRef]
- Hong, E.E.; Okitsu, C.Y.; Smith, A.D.; Hsieh, C.-L. Regionally Specific and Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG Methylation in Human Mitochondrial DNA. Mol. Cell. Biol. 2013, 33, 2683–2690. [Google Scholar] [CrossRef]
- Carvalho, G.; Repolês, B.M.; Mendes, I.; Wanrooij, P.H. Mitochondrial DNA Instability in Mammalian Cells. Antioxid. Redox Signal. 2022, 36, 885–905. [Google Scholar] [CrossRef]
- Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond—Mitochondrial performance in apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Patrushev, M.; Kasymov, V.; Patrusheva, V.; Ushakova, T.; Gogvadze, V.; Gaziev, A. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell. Mol. Life Sci. 2004, 61, 3100–3103. [Google Scholar] [CrossRef]
- Supinski, G.S.; Schroder, E.A.; Callahan, L.A. Mitochondria and Critical Illness. Chest 2020, 157, 310–322. [Google Scholar] [CrossRef]
- Matsui, H.; Ito, J.; Matsui, N.; Uechi, T.; Onodera, O.; Kakita, A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson’s disease. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- De Leo, M.G.; Staiano, L.; Vicinanza, M.; Luciani, A.; Carissimo, A.; Mutarelli, M.; Di Campli, A.; Polishchuk, E.; Di Tullio, G.; Morra, V.; et al. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat. Cell Biol. 2016, 18, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Lepelley, A.; Della Mina, E.; van Nieuwenhove, E.; Waumans, L.; Fraitag, S.; Rice, G.I.; Dhir, A.; Frémond, M.L.; Rodero, M.P.; Seabra, L.; et al. Enhanced cGAS-STING–dependent interferon signaling associated with mutations in ATAD3A. J. Exp. Med. 2021, 218, e20201560. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.M.; Shu, H.B. Mitochondrial DNA-triggered innate immune response: Mechanisms and diseases. Cell. Mol. Immunol. 2023, 20, 1403–1412. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Wu, J.; Zhang, X.; Sun, L.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP containing mixed Phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 2013, 51, 226–235. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016, 17, 1142–1149. [Google Scholar] [CrossRef]
- Prather, E.R.; Gavrilin, M.A.; Wewers, M.D. The central inflammasome adaptor protein ASC activates the inflammasome after transition from a soluble to an insoluble state. J. Biol. Chem. 2022, 298, 102024. [Google Scholar] [CrossRef]
- Man, S.M.; Kanneganti, T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 2012, 36, 401–414. [Google Scholar] [CrossRef]
- Jabir, M.S.; Hopkins, L.; Ritchie, N.D.; Ullah, I.; Bayes, H.K.; Li, D.; Tourlomousis, P.; Lupton, A.; Puleston, D.; Simon, A.K.; et al. Mitochondrial damage contributes to pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 2015, 11, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Steinert, E.M.; Vasan, K.; Chandel, N.S. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity. Annu. Rev. Immunol. 2021, 39, 395–416. [Google Scholar] [CrossRef]
- Ravi, S.; Mitchell, T.; Kramer, P.A.; Chacko, B.; Darley-Usmar, V.M. Mitochondria in monocytes and macrophages-implications for translational and basic research. Int. J. Biochem. Cell Biol. 2014, 53, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Traba, J.; Roesler, A.S.; Miozzo, P.; Akkaya, B.; Theall, B.P.; Sohn, H.; Pena, M.; Smelkinson, M.; Kabat, J.; et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 2018, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.J.; Everts, B. Dendritic cell metabolism. Nat. Rev. Immunol. 2015, 15, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol. 2017, 17, 608–620. [Google Scholar] [CrossRef]
- Palma, F.R.; Gantner, B.N.; Sakiyama, M.J.; Kayzuka, C.; Shukla, S.; Lacchini, R.; Cunniff, B.; Bonini, M.G. ROS production by mitochondria: Function or dysfunction? Oncogene 2024, 43, 295–303. [Google Scholar] [CrossRef]
- Rambold, A.S.; Pearce, E.L. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends Immunol. 2018, 39, 6–18. [Google Scholar] [CrossRef]
- Lewis, L.; Valvi, D.; Gedaly, R.; Marti, F. Mitochondrial unfolded protein response in regulatory T cell function: A protective mechanism in immune aging. Front. Immunol. 2025, 16, 1621759. [Google Scholar] [CrossRef]
- Weinberg, S.E.; Singer, B.D.; Steinert, E.M.; Martinez, C.A.; Mehta, M.M.; Martínez-Reyes, I.; Gao, P.; Helmin, K.A.; Abdala-Valencia, H.; Sena, L.A.; et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 2019, 565, 495–499. [Google Scholar] [CrossRef]
- Alissafi, T.; Kalafati, L.; Lazari, M.; Filia, A.; Kloukina, I.; Manifava, M.; Lim, J.H.; Alexaki, V.I.; Ktistakis, N.T.; Doskas, T.; et al. Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity. Cell Metab. 2020, 32, 591–604.e7. [Google Scholar] [CrossRef]
- Cai, W.; Yu, Y.; Zong, S.; Wei, F. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm. Res. 2020, 69, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Weiyao, J.; Chenghong, S.; Limei, L.; Xinghua, Z.; Bo, Y.; Xiaozheng, D.; Haidong, W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front. Med. 2022, 9, 1017650. [Google Scholar] [CrossRef]
- Buang, N.; Tapeng, L.; Gray, V.; Sardini, A.; Whilding, C.; Lightstone, L.; Cairns, T.D.; Pickering, M.C.; Behmoaras, J.; Ling, G.S.; et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.R.; Shin, S.K.; Lee, J.Y.; Ko, Y.J.; Kim, S.; Young, H.A.; Kwon, E.Y. Chronic Low-Level IFN-γ Expression Disrupts Mitochondrial Complex I Activity in Renal Macrophages: An Early Mechanistic Driver of Lupus Nephritis Pathogenesis. Int. J. Mol. Sci. 2025, 26, 63. [Google Scholar] [CrossRef]
- Halfon, M.; Tankeu, A.T.; Ribi, C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int. J. Mol. Sci. 2024, 25, 6162. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. The Immunology of Rheumatoid Arthritis. Nat. Immunol. 2020, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Picard, M. Blood mitochondrial DNA copy number: What are we counting? Mitochondrion 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Liu, M.; Long, X.; Fu, S.; Zhang, Y.; Liu, Z.; Xu, X.; Wu, M. Mitochondrial DNA copy number and the risk of autoimmune diseases: A Mendelian randomization study with meta-analysis. J. Transl. Autoimmun. 2024, 9, 100251. [Google Scholar] [CrossRef]
- Giaglis, S.; Daoudlarian, D.; Voll, R.E.; Kyburz, D.; Venhoff, N.; Walker, U.A. Circulating mitochondrial DNA copy numbers represent a sensitive marker for diagnosis and monitoring of disease activity in systemic lupus erythematosus. RMD Open 2021, 7, e002010. [Google Scholar] [CrossRef]
- Lehmann, J.; Giaglis, S.; Kyburz, D.; Daoudlarian, D.; Walker, U.A. Plasma mtDNA as a possible contributor to and biomarker of inflammation in rheumatoid arthritis. Arthritis Res. Ther. 2024, 26, 1–8. [Google Scholar] [CrossRef]
- De Benedittis, G.; Latini, A.; Morgante, C.; Perricone, C.; Ceccarelli, F.; Novelli, G.; Novelli, L.; Ciccacci, C.; Borgiani, P. The dysregulation of mitochondrial homeostasis–related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients. Immunol. Res. 2024, 72, 1384–1392. [Google Scholar] [CrossRef]
- Movassaghi, S.; Jafari, S.; Falahati, K.; Ataei, M.; Sanati, M.H.; Jadali, Z. Quantification of mitochondrial DNA damage and copy number in circulating blood of patients with systemic sclerosis by a qPCR-based assay. An. Bras. Dermatol. 2020, 95, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Al-Kafaji, G.; Bakheit, H.F.; Alharbi, M.A.; Farahat, A.A.; Jailani, M.; Ebrahin, B.H.; Bakhiet, M. Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. NeuroMol. Med. 2020, 22, 304–313. [Google Scholar] [CrossRef] [PubMed]
- De Benedittis, G.; Latini, A.; Colafrancesco, S.; Priori, R.; Perricone, C.; Novelli, L.; Borgiani, P.; Ciccacci, C. Alteration of Mitochondrial DNA Copy Number and Increased Expression Levels of Mitochondrial Dynamics-Related Genes in Sjögren’s Syndrome. Biomedicines 2022, 10, 2699. [Google Scholar] [CrossRef] [PubMed]
Historical Period/Date | Key Figure(s) | Main Concept/Contribution | Relevance to Endosymbiosis |
---|---|---|---|
~495–435 BC | Empedocles of Acragas | Four elements (‘rhizomata’), forces of attraction (Philotis) and repulsion (Neikos), aggregation of parts with differential survival | First conceptual link between merging of distinct units and evolution of new forms |
4th century BC | Aristotle | Criticism of Empedocles’ views; emphasized the soul as driver of growth and organization | Highlighted philosophical debate on life origins |
1859 | Charles Darwin | Natural selection and common descent | Parallel to Empedocles’ concept of survival of certain combinations |
1880s–1920s | Anton de Bary, Konstantin Mereschkowsky, Boris Kozo-Polyansky | Early symbiosis theories | Paved the way for endosymbiotic hypothesis |
1967 | Lynn Margulis | Formalized the endosymbiotic theory for mitochondria and plastids | Established modern scientific basis for mitochondrial origin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpakosi, A.; Kaliouli-Antonopoulou, C.; Cholevas, V.; Cholevas, S.; Tzouvelekis, I.; Mironidou-Tzouveleki, M.; Tsantes, E.A.; Tsakri, D.; Vlachaki, M.; Baliou, S.; et al. From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses. Microorganisms 2025, 13, 2149. https://doi.org/10.3390/microorganisms13092149
Mpakosi A, Kaliouli-Antonopoulou C, Cholevas V, Cholevas S, Tzouvelekis I, Mironidou-Tzouveleki M, Tsantes EA, Tsakri D, Vlachaki M, Baliou S, et al. From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses. Microorganisms. 2025; 13(9):2149. https://doi.org/10.3390/microorganisms13092149
Chicago/Turabian StyleMpakosi, Alexandra, Christiana Kaliouli-Antonopoulou, Vasileios Cholevas, Stamatios Cholevas, Ioannis Tzouvelekis, Maria Mironidou-Tzouveleki, Emmanuel A. Tsantes, Deny Tsakri, Marianna Vlachaki, Stella Baliou, and et al. 2025. "From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses" Microorganisms 13, no. 9: 2149. https://doi.org/10.3390/microorganisms13092149
APA StyleMpakosi, A., Kaliouli-Antonopoulou, C., Cholevas, V., Cholevas, S., Tzouvelekis, I., Mironidou-Tzouveleki, M., Tsantes, E. A., Tsakri, D., Vlachaki, M., Baliou, S., Ioannou, P., Sokou, R., Bonovas, S., & Tsantes, A. G. (2025). From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses. Microorganisms, 13(9), 2149. https://doi.org/10.3390/microorganisms13092149