Molecular Characterization of Streptococcus pyogenes Isolates Recovered from Hospitalized Patients During the Years 2023–2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Cultivation and Identification of GAS
2.3. DNA Extraction
2.4. Determination of Antibiotic Susceptibility
2.5. Molecular Detection of Antimicrobial Resistance Genes
2.6. emm Typing
2.7. Statistical Analysis
3. Results
3.1. Molecular Emm Typing
3.2. Emm-Typing Cluster System
3.3. Antimicrobial Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, S.S.; Yuen, K.Y. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg. Microbes Infect. 2012, 1, e2. [Google Scholar] [CrossRef]
- Walker, M.J.; Barnett, T.C.; McArthur, J.D.; Cole, J.N.; Gillen, C.M.; Henningham, A.; Nizet, V. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin. Microbiol. Rev. 2014, 27, 264–301. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Eisen, J.A.; Jospin, G.; Coil, D.A.; Khazen, G.; Tokajian, S. Genome analysis of Streptococcus pyogenes associated with pharyngitis and skin infections. PLoS ONE 2016, 11, e0168177. [Google Scholar] [CrossRef]
- Avire, N.J.; Whiley, H.; Ross, K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Hassan, S.; Vithlani, A.; Ahmed, T.; Kavish, S.; Geli Blacknell, N.M.; Alqahtani, A.; Pugazhendhi, A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2024, 28, 111677. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Imöhl, M.; Reinert, R.R.; Ocklenburg, C.; van der Linden, M. Epidemiology of invasive Streptococcus pyogenes disease in Germany during 2003-2007. FEMS Immunol. Med. Microbiol. 2010, 58, 389–396. [Google Scholar] [CrossRef]
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A review of the impact of streptococcal infections and antimicrobial resistance on human health. Antibiot 2024, 13, 360. [Google Scholar] [CrossRef]
- Girlando, V.; De Angelis, L.; D’Egidio, G.; Di Ludovico, A.; Breda, L. From infection to autoimmunity: S. pyogenes as a model pathogen. Microorganisms 2025, 13, 1398. [Google Scholar] [CrossRef]
- Abo, Y.N.; Oliver, J.; McMinn, A.; Osowicki, J.; Baker, C.; Clark, J.E.; Steer, A.C. Increase in invasive group A streptococcal disease among Australian children coinciding with northern hemisphere surges. Lancet Reg. Health West. Pac. 2023, 41, 100873. [Google Scholar] [CrossRef]
- de Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; de Melker, H.E.; GAS Study Group. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022. Eurosurveillance 2023, 28, 2200941. [Google Scholar] [CrossRef]
- Guy, R.; Henderson, K.L.; Coelho, J.; Hughes, H.; Mason, E.L.; Gerver, S.M.; Lamagni, T. Increase in invasive group A streptococcal infection notifications, England, 2022. Eurosurveillance 2023, 28, 2200942. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, B.V.; Cyr, P.R.; Bentdal, Y.E.; Watle, S.V.; Wester, A.L.; Strand, Å.M.W.; Bøås, H. Increase in invasive group A streptococcal infections (iGAS) in children and older adults, Norway, 2022 to 2024. Eurosurveillance 2024, 29, 2400242. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef]
- Khan, R.M.A.; Anwar, S.; Pirzada, Z.A. Streptococcus pyogenes strains associated with invasive and non-invasive infections present possible links with emm types and superantigens. Iran J. Basic. Med. Sci. 2020, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Handique, S.; Rajkhowa, S.; Das, A.; Panda, D.; Al-Hussain, S.A.; Zaki, M.E.A. Targeting Streptococcus pyogenes atpF protein for multi-epitope vaccine development: A genomics-driven immunoinformatics strategy. J. Genet. Eng. Biotechnol. 2025, 23, 100546. [Google Scholar] [CrossRef]
- Friães, A.; Melo-Cristino, J.; Ramirez, M. Portuguese Group for the Study of Streptococcal Infections. Changes in emm types and superantigen gene content of Streptococcus pyogenes causing invasive infections in Portugal. Sci. Rep. 2019, 9, 18051. [Google Scholar] [CrossRef]
- Sanson, M.A.; Macias, O.R.; Shah, B.J.; Hanson, B.; Vega, L.A.; Alamarat, Z.; Flores, A.R. Unexpected relationships between frequency of antimicrobial resistance, disease phenotype and emm type in group A Streptococcus. Microb. Genom. 2019, 5, e000316. [Google Scholar] [CrossRef]
- Johnson, A.F.; LaRock, C.N. Antibiotic treatment, mechanisms for failure, and adjunctive therapies for infections by Group A Streptococcus. Front. Microbiol. 2021, 12, 760255. [Google Scholar] [CrossRef]
- Sartelli, M.; Malangoni, M.A.; May, A.K.; Viale, P.; Kao, L.S.; Catena, F.; Yuan, K.C. World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections. World J. Emerg. Surg. 2014, 9, 1–18. [Google Scholar] [CrossRef]
- Kapatai, G.; Coelho, J.; Platt, S.; Chalker, V.J. Whole genome sequencing of group A Streptococcus: Development and evaluation of an automated pipeline for emmgene typing. PeerJ 2017, 5, e3226. [Google Scholar] [CrossRef]
- Smeesters, P.R.; Botteaux, A. The emm-cluster typing system. In Group A Streptococcus: Methods and Protocols; Proft, T., Loh, J., Eds.; Humana: New York, NY, USA, 2020; Volume 2136, pp. 25–31. [Google Scholar]
- Jespersen, M.G.; Lacey, J.A.; Tong, S.Y.C.; Davies, M.R. Global genomic epidemiology of Streptococcus pyogenes. Infect. Genet. Evol. 2020, 86, 104609. [Google Scholar] [CrossRef]
- Bonomo, C.; Mannino, E.; Bongiorno, D.; Vocale, C.; Amicucci, A.; Bivona, D.; Guariglia, D.; Nicitra, E.; Privitera, G.F.; Sangiorgio, G.; et al. Molecular and clinical characterization of invasive Streptococcus pyogenes isolates: Insights from two Northern-Italy centers. Pathogens 2025, 14, 152. [Google Scholar] [CrossRef]
- Li, Y.; Rivers, J.; Mathis, S.; Li, Z.; Velusamy, S.; Nanduri, S.A.; Van Beneden, C.A.; Snippes-Vagnone, P.; McGee, L.; Chochua, s.; et al. Genomic surveillance of Streptococcus pyogenes strains causing invasive disease, United States, 2016-2017. Front. Microbiol. 2020, 11, 1547. [Google Scholar] [CrossRef] [PubMed]
- Beres, S.B.; Zhu, L.; Pruitt, L.; Olsen, R.J.; Faili, A.; Kayal, S.; Musser, J.M. Integrative reverse genetic analysis identifies polymorphisms contributing to decreased antimicrobial agent susceptibility in Streptococcus pyogenes. mBio 2022, 13, e0361821. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and Zone di-370 Ameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 30 March 2025).
- Malhotra-Kumar, S.; Lammens, C.; Piessens, J.; Goossens, H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob. Agents Chemother. 2005, 49, 4798–4800. [Google Scholar] [CrossRef]
- Gergova, R.; Muhtarova, A.; Mitov, I.; Setchanova, L.; Mihova, K.; Kaneva, R.; Markovska, R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect. Dis. 2019, 51, 668–675. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Li, M.; Gao, X.; Wu, H.; Dong, W.; Wei, L. Streptococcus pyogenes: Pathogenesis and the current status of vaccines. Vaccines 2023, 11, 1510. [Google Scholar] [CrossRef]
- Gherardi, G.; Vitali, L.A.; Creti, R. Prevalent emm Types among invasive GAS in Europe and North America since year 2000. Front. Public Health. 2018, 6, 59. [Google Scholar] [CrossRef]
- Dale, J.B.; Penfound, T.A.; Chiang, E.Y.; Walton, W.J. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 2011, 29, 8175–8178. [Google Scholar] [CrossRef]
- Dale, J.B.; Walker, M.J. Update on group A streptococcal vaccine development. Curr. Opin. Infect. Dis. 2020, 33, 244–250. [Google Scholar] [CrossRef]
- Bertram, R.; Itzek, A.; Marr, L.; Manzke, J.; Voigt, S.; Chapot, V.; Steinmann, J. Divergent effects of emm types 1 and 12 on invasive group A streptococcal infections—Results of a retrospective cohort study, Germany 2023. J. Clin. Microbiol. 2024, 62, e00637-24. [Google Scholar] [CrossRef] [PubMed]
- De Amicis, K.M.; de Barros, F.S.; Alencar, R.E.; Postól, E.; Martins Cde, O.; Arcuri, H.A.; Goulart, C.; Kalil, J.; Guilherme, L. Analysis of the coverage capacity of the StreptInCor candidate vaccine against Streptococcus pyogenes. Vaccine 2014, 32, 4104–4110. [Google Scholar] [CrossRef]
- Chiang-Ni, C.; Zheng, P.X.; Wang, S.Y.; Tsai, P.J.; Chuang, W.J.; Lin, Y.S.; Liu, C.C.; Wu, J.J. Epidemiology analysis of Streptococcus pyogenes in a hospital in southern Taiwan by use of the updated emm cluster typing system. J. Clin. Microbiol. 2016, 54, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Zhang, J.; Zhao, F.; You, Y. emm type distribution of group A Streptococcus in China during 1990 and 2020: A systematic review and implications for vaccine coverage. Front. Public Health 2023, 11, 1157289. [Google Scholar] [CrossRef] [PubMed]
- Goldberg-Bockhorn, E.; Hagemann, B.; Furitsch, M.; Hoffmann, T.K. Invasive group A streptococcal infections in Europe after the COVID-19 pandemic. Dtsch. Arztebl. Int. 2024, 121, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Vázquez, E.; Aguilera-Alonso, D.; Grandioso-Vas, D.; Gamell, A.; Rello-Saltor, V.; Oltra-Benavent, M.; Cervantes, E.; Sanz-Santaeufemia, F.; Carrasco-Colom, J.; Manzanares-Casteleiro, Á.; et al. Sharp increase in the incidence and severity of invasive Streptococcus pyogenes infections in children after the COVID-19 pandemic (2019–2023): A nationwide multicenter study. Int. J. Infect. Dis. 2025, 159, 107982. [Google Scholar] [CrossRef]
- Basit, A.; Hussain, M.; Qasim, M.; Fozia, F.; Naveed, H.; Rehman, A.; Ahmad, I.; Mohany, M.; Al-Rejaie, S.S.; Djurasevic, S. Prevalence and emm typing of multi-drugresistant Streptococcus pyogenes in tertiary care health settings. BMC Microbiol. 2025, 25, 1–14. [Google Scholar] [CrossRef]
- Karapati, E.; Tsantes, A.G.; Iliodromiti, Z.; Boutsikou, T.; Paliatsiou, S.; Domouchtsidou, A.; Ioannou, P.; Petrakis, V.; Iacovidou, N.; Sokou, R. Group A Streptococcus infections in children: Epidemiological insights before and after the COVID-19 Pandemic. Pathogens 2024, 13, 1007. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, X.; Zhang, C.; Jiang, Y.; Lv, P.; Zhou, Y.; Chen, M.; Zeng, M. Ongoing epidemic of scarlet fever in Shanghai and the emergence of M1UK lineage group A Streptococcus: A 14-year surveillance study across the COVID-19 pandemic period. Lancet. Reg. Health West Pac. 2025, 58, 101576. [Google Scholar] [CrossRef]
- Cipolla, L.; Gianecini, A.; Poklepovich, T.; Etcheverry, P.; Rocca, F.; Prieto, M. Genomic epidemiology of invasive group A Streptococcus infections in Argentina, 2023: High prevalence of emm1-global and detection of emm1 hypervirulent lineages. Microbiol. Spectr. 2025, 13, e0131024. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Giacobbe, D.R.; Larosa, B.; Lamarina, A.; Vena, A.; Brucci, G. The reemergence of Streptococcus pyogenes in skin and soft tissue infections: A review of epidemiology, pathogenesis, and management strategies. Curr. Opin. Infect. Dis. 2025, 38, 114–121. [Google Scholar] [CrossRef]
- Rajendran, R.; Chitrapady, S.K.; Haritha, K.; Tejashree, M.U.; Balakrishnan, J.M.; Thunga, G. Bacterial pathogens causing skin and soft tissue infections and antibiotic susceptibility in South Asia: A scoping review protocol. Syst. Rev. 2025, 14, 136. [Google Scholar] [CrossRef]
- Titou, H.; Ebongo, C.; Bouati, E.; Boui, M. Risk factors associated with local complications of erysipelas: A retrospective study of 152 cases. Pan. Afr. Med. J. 2017, 26, 66. [Google Scholar] [CrossRef]
- Jendoubi, F.; Rohde, M.; Prinz, J.C. Intracellular streptococcal uptake and persistence: A potential cause of erysipelas recurrence. Front. Med. 2019, 6, 6. [Google Scholar] [CrossRef]
- Boettler, M.A.; Kaffenberger, B.H.; Chung, C.G. Cellulitis: A review of current practice guidelines and differentiation from pseudocellulitis. Am. J. Clin. Dermatol. 2022, 23, 153–165. [Google Scholar] [CrossRef]
- Balabanova, M. Erysipelas. In European Handbook of Dermatological Treatments, 4th ed.; Katsambas, A.D., Lotti, T.M., Dessinioti, C., D’Erme, A.M., Eds.; Springer: Cham, Switzerland, 2023; pp. 283–286. ISBN 978-3-031-15130-9. [Google Scholar] [CrossRef]
- Sen, P.; Khulbe, P.; Ahire, E.D.; Gupta, M.; Chauhan, N.; Keservani, R.K. Skin and soft tissue diseases and their treatment in society. Community Acquir. Infect. 2023, 10. [Google Scholar] [CrossRef]
- Esposito, S.; Masetti, M.; Calanca, C.; Canducci, N.; Rasmi, S.; Fradusco, A.; Principi, N. Recent changes in the epidemiology of group A Streptococcus infections: Observations and implications. Microorganisms 2025, 13, 1871. [Google Scholar] [CrossRef]
- Pato, C.; Melo-Cristino, J.; Ramirez, M.; Friaes, A. Portuguese Group for the Study of Streptococcal Infections. Streptococcus pyogenes causing skin and soft tissue infections are enriched in the recently emerged emm 89 clade 3 and are not associated with abrogation of CovRS. Front. Microbiol. 2018, 9, 2372. [Google Scholar]
- Lin, J.; Chang, L.; Lai, C.; Lin, H.; Chen, Y. Clinical and molecular characteristics of invasive and noninvasive skin and soft tissue infections caused by group A Streptococcus. J. Clin. Microbiol. 2011, 49, 3632–3637. [Google Scholar] [CrossRef]
- Mercadante, S.; Ficari, A.; Romani, L.; De Luca, M.; Tripiciano, C.; Chiurchiù, S.; Calo Carducci, F.I.; Cursi, L.; Di Giuseppe, M.; Krzysztofiak, A.; et al. The Thousand faces of invasive group A streptococcal infections: Update on epidemiology, symptoms, and therapy. Children 2024, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Bellés-Bellés, A.; Prim, N.; Mormeneo-Bayo, S.; Villalón-Panzano, P.; Valiente-Novillo, M.; Jover-Sáenz, A.; Aixalà, N.; Bernet, A.; López-González, É.; Prats, I.; et al. Changes in Group A Streptococcus emm types associated with invasive infections in adults, Spain, 2023. Emerg. Infect. Dis. 2023, 29, 2390–2392. [Google Scholar] [CrossRef] [PubMed]
- Mavroidi, A.; Katsiaflaka, A.; Petinaki, E.; Froukala, E.; Papadopoulos, D.; Vrioni, G.; Tsakris, A. M1UK Streptococcus pyogenes causing community-acquired pneumonia, pleural empyema and streptococcal toxic shock syndrome. J. Glob. Antimicrob. Resist. 2024, 37, 185–189. [Google Scholar] [CrossRef]
- Klug, T.E.; Greve, T.; Hentze, M. Complications of peritonsillar abscess. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–17. [Google Scholar] [CrossRef]
- Slouka, D.; Hanakova, J.; Kostlivy, T.; Skopek, P.; Kubec, V.; Babuska, V.; Kucera, R. Epidemiological and microbiological aspects of the peritonsillar abscess. Int. J. Environ. Res. Public Health 2020, 17, 4020. [Google Scholar] [CrossRef]
- Koutouzi, F.; Tsakris, A.; Chatzichristou, P.; Koutouzis, E.; Daikos, G.L.; Kirikou, E.; Petropoulou, N.; Syriopoulou, V.; Michos, A. Streptococcus pyogenes emm types and clusters during a 7-Year Period (2007 to 2013) in pharyngeal and nonpharyngeal pediatric isolates. J. Clin. Microbiol. 2015, 53, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Das, S.; Hayes, A.J.; Bertolla, O.M.; Davies, M.R.; Walker, M.J.; Whiley, D.M.; Irwin, A.D.; Tickner, J.A. A rapid molecular detection tool for toxigenic M1UK Streptococcus pyogenes. J. Infect. Dis. 2025, 231, e375–e384. [Google Scholar] [CrossRef]
- Imöhl, M.; van der Linden, M. Antimicrobial susceptibility of invasive Streptococcus pyogenes isolates in Germany during 2003-2013. PLoS ONE 2015, 10, e0137313. [Google Scholar] [CrossRef]
- Kebede, D.; Admas, A.; Mekonnen, D. Prevalence and antibiotics susceptibility profiles of Streptococcus pyogenes among pediatric patients with acute pharyngitis at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Microbiol. 2021, 21, 135. [Google Scholar] [CrossRef]
- Li, J.; Lagace-Wiens, P.; Adam, H.; Pieroni, P.; Zhanel, G.; Karlowsky, J.; Walkty, A. P-1493. In vitro activity of clindamycin in comparison with linezolid versus Streptococcus pyogenes clinical isolates recovered from patients in Manitoba, Canada. Open Forum Infect. Dis. 2025, 12, ofae631.1663. [Google Scholar] [CrossRef]
- Ünübol, N.; Caglayan, N.; Cebeci, S.; Beşli, Y.; Sancak, B.; Uyar, N.Y.; Ahrabi, S.S.; Alebouyeh, M.; Kocagöz, T. Antimicrobial resistance and epidemiological patterns of Streptococcus pyogenes in Türkiye. J. Infect. Public Health 2025, 18, 102633. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.A.; Equils, O.; Huang, D.B.; Gladue, R. Linezolid effects on bacterial toxin production and host immune response: Review of the evidence. Curr. Ther. Res. Clin. Exp. 2012, 73, 86–102. [Google Scholar] [CrossRef]
- Green, S.B.; Albrecht, B.; Chapin, R.; Walters, J. Toxin inhibition: Examining tetracyclines, clindamycin, and linezolid. Am. J. Health. Syst. Pharm. 2025, 82, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Babiker, A.; Warner, S.; Li, X.; Chishti, E.A.; Saad, E.; Swihart, B.J.; Dekker, J.P.; Walker, M.; Lawandi, A.; Kadri, S.S.; et al. Adjunctive linezolid versus clindamycin for toxin inhibition in β-lactam-treated patients with invasive group A streptococcal infections in 195 US hospitals from 2016 to 2021: A retrospective cohort study with target trial emulation. Lancet Infect. Dis. 2025, 25, 265–275. [Google Scholar] [CrossRef]
- Gebre, A.B.; Fenta, D.A.; Negash, A.A.; Hayile, B.J. Prevalence, antibiotic susceptibility pattern and associated factors of Streptococcus pyogenes among pediatric patients with acute pharyngitis in Sidama, Southern Ethiopia. Int. J. Microbiol. 2024, 2024, 9282571. [Google Scholar] [CrossRef]
- Rafei, R.; Al Iaali, R.; Osman, M.; Dabboussi, F.; Hamze, M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. Infect. Genet. Evol. 2022, 99, 105258. [Google Scholar] [CrossRef]
- Muhtarova, A.A.; Gergova, R.T.; Mitov, I.G. Distribution of macrolide resistance mechanisms in Bulgarian clinical isolates of Streptococcus pyogenes during the years of 2013–2016. J. Glob. Antimicrob. Resist. 2017, 10, 238–242. [Google Scholar] [CrossRef]
- Lu, B.; Fang, Y.; Fan, Y.; Chen, X.; Wang, J.; Zeng, J.; Li, Y.; Zhang, Z.; Huang, L.; Li, H.; et al. High prevalence of macrolide-resistance and molecular characterization of Streptococcus pyogenes isolates circulating in China from 2009 to 2016. Front. Microbiol. 2017, 8, 1052. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Xu, M.; Zhou, Y.; Xing, X.; Shen, A.; Wang, B. A multicomponent vaccine provides immunity against local and systemic infections by Group A Streptococcus across serotypes. mBio 2019, 10, e02600-19. [Google Scholar] [CrossRef]
- Berbel, D.; González-Díaz, A.; López de Egea, G.; Càmara, J.; Ardanuy, C. An Overview of macrolide resistance in streptococci: Prevalence, mobile elements and dynamics. Microorganisms 2022, 10, 2316. [Google Scholar] [CrossRef] [PubMed]
- Boyanov, V.S.; Alexandrova, A.S.; Hristova, P.M.; Hitkova, H.Y.; Gergova, R.T. Antibiotic resistance and serotypes sistribution in Streptococcus agalactiae Bulgarian clinical isolates during the years of 2021-2024. Pol. J. Microbiol. 2024, 73, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Muhtarova, A.; Mihova, K.; Markovska, R.; Mitov, I.; Kaneva, R.; Gergova, R. Molecular emm typing of Bulgarian macrolide-resistant Streptococcus pyogenes isolates. Acta Microbiol. Hung. 2020, 67, 14–17. [Google Scholar] [CrossRef]
- Meletis, G.; Ketikidis, A.L.; Floropoulou, N.; Tychala, A.; Kagkalou, G.; Vasilaki, O.; Protonotariou, E. Antimicrobial resistance rates of Streptococcus pyogenes in a Greek tertiary care hospital: 6-year data and. New Microbiol. 2023, 46, 37–42. [Google Scholar] [PubMed]
emm-Clusters (Types) | Study Years | All Patients (n = 66 */70) | SSTI (n = 21 */40) | Pneumonia (n = 3 */15) | Peritonsillar Abscess (n = 8 */12) | Perianal Abscess (n = 0 */3) | Other Manifestations *** (n = 34 */0) |
---|---|---|---|---|---|---|---|
A-C3 (emm1) | 2014–2018 * | 17 (25.8%) | 6 (28.6%) | 1 (33.3%) | 1 (12.5%) | 0 (0.0%) | 9 (26.5%) |
2023–2024 | 16 (22.9%) | 9 (22.5%) | 7 (46.7%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
p-value ** | 0.84 | 0.76 | 1 | ||||
E4 (emm2, 28, 77, 89) | 2014–2018 * | 13 (19.7%) | 1 (4.8%) | 0 (0.0%) | 2 (25.0%) | 0 (0.0%) | 10 (29.4%) |
2023–2024 | 13 (18.6%) | 10 (25.0%) | 0 (0.0%) | 1 (8.3%) | 2 (66.7%) | 0 (0.0%) | |
p-value ** | 1 | 0.08 | 0.54 | ||||
A-C5 (emm3) | 2014–2018 * | 24 (36.4%) | 10 (47.6%) | 0 | 3 (37.5%) | 0 | 11 (32.4%) |
2023–2024 | 12 (17.1%) | 8 (20.0%) | 0 | 4 (33.3%) | 0 | 0 | |
p-value ** | 0.01 | 0.04 | 1 | ||||
E6 (emm11, 75) | 2014–2018 * | 4 (6.1%) | 2 (9.5%) | 1 (33.3%) | 1 (12.5%) | 0 (0.0%) | 0 (0.0%) |
2023–2024 | 10 (14.3%) | 7 (17.5%) | 0 (0.0%) | 2 (16.7%) | 1 (33.3%) | 0 (0.0%) | |
p-value ** | 0.16 | 1 | |||||
E1 (emm4) | 2014–2018 * | 3 (4.5%) | 2 (9.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (2.9%) |
2023–2024 | 9 (12.9%) | 5 (12.5%) | 4 (26.7%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
p-value ** | 0.13 | 1 | |||||
A-C4 (emm12) | 2014–2018 * | 2 (3.0%) | 0 (0.0%) | 1 (33.3%) | 0 (0.0%) | 0 (0.0%) | 1 (2.9%) |
2023–2024 | 4 (5.7%) | 1 (2.5%) | 3 (20.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
p-value ** | 0.68 | 1 | |||||
Clyde_Y_M6 (emm6) | 2014–2018 * | 3 (4.5%) | 0 (0.0%) | 0 (0.0%) | 1 (12.5%) | 0 (0.0%) | 2 (5.9%) |
2023–2024 | 4 (5.7%) | 0 (0.0%) | 1 (6.7%) | 3 (25.0%) | 0 (0.0%) | 0 (0.0%) | |
p-value ** | 1 | 0.62 | |||||
E3 (emm49) | 2014–2018 * | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
2023–2024 | 2 (2.9%) | 0 (0.0%) | 0 (0.0%) | 2 | 0 (0.0%) | 0 (0.0%) | |
p-value ** |
Antibiotics | SSTI (n = 40) | Other Diseases | Total Number (n = 70) | p-Value * (SSTI/Other Diseases) | |||
---|---|---|---|---|---|---|---|
Pneumonia (n = 15) | Peritonsillar Abscess (n = 12) | Perianal Abscess (n = 3) | Total Other Diseases (n = 30) | ||||
Penicillin | 0 | 0 | 0 | 0 | 0 | 0 | |
Linezolid | 0 | 0 | 0 | 0 | 0 | 0 | |
Macrolides | 9 (22.5%) | 0 | 0 | 1 (33.3%) | 1 (3.3%) | 10 (14.3%) | 0.036 |
Clindamycin | 9 (22.5%) | 0 | 0 | 1 (33.3%) | 1 (3.3%) | 10 (14.3%) | 0.036 |
Tetracyclines | 11 (27.5%) | 0 | 0 | 2 (66.7%) | 2 (6.7%) | 13 (18.6%) | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhtarova, A.A.; Boyanov, V.S.; Alexandrova, A.S.; Gergova, R.T. Molecular Characterization of Streptococcus pyogenes Isolates Recovered from Hospitalized Patients During the Years 2023–2024. Microorganisms 2025, 13, 2148. https://doi.org/10.3390/microorganisms13092148
Muhtarova AA, Boyanov VS, Alexandrova AS, Gergova RT. Molecular Characterization of Streptococcus pyogenes Isolates Recovered from Hospitalized Patients During the Years 2023–2024. Microorganisms. 2025; 13(9):2148. https://doi.org/10.3390/microorganisms13092148
Chicago/Turabian StyleMuhtarova, Adile A., Vasil S. Boyanov, Alexandra S. Alexandrova, and Raina T. Gergova. 2025. "Molecular Characterization of Streptococcus pyogenes Isolates Recovered from Hospitalized Patients During the Years 2023–2024" Microorganisms 13, no. 9: 2148. https://doi.org/10.3390/microorganisms13092148
APA StyleMuhtarova, A. A., Boyanov, V. S., Alexandrova, A. S., & Gergova, R. T. (2025). Molecular Characterization of Streptococcus pyogenes Isolates Recovered from Hospitalized Patients During the Years 2023–2024. Microorganisms, 13(9), 2148. https://doi.org/10.3390/microorganisms13092148