Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. S. Typhimurium Strains and Culture Preparation
2.2. Biosurfactant Inhibition Efficiency Test
2.3. Bactericidal and Bacteriostatic Activity Test
2.4. Quantification of S. Typhimurium WT LT2 and LPS-Modified Mutants’ Biofilm Formation on Plastic Surfaces in the Presence or Absence of Surfactin
2.5. Quantification of EPS Using Fluorescence Microscopy
2.5.1. Culture Sample Preparations
2.5.2. Fluorescence Microscopy
2.6. Statistical Analysis
3. Results
3.1. Comparison of Biofilm-Forming Ability of S. Typhimurium WT (LT2) and Mutants on Plastic Surfaces
3.2. Biosurfactant Inhibition Test and Bactericidal Properties
3.3. Quantification of Biofilm Formations of Selected Strains in the Presence of Surfactin on Plastic Surfaces
3.4. Measuring the EPS of Biofilms Using Fluorescence Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flemming, H.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Valvano, M.A.; Furlong, S.E.; Patel, K.B. Genetics biosynthesis assembly of O-antigen. In Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells; Knirel, Y.A., Valvano, M.A., Eds.; Springer: Vienna, Austria, 2011; pp. 275–310. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.; Pedersen, H.T.; Lerche, C.J.; Kolpen, M.; Line, L.; Thomsen, K.; Høiby, N.; Jensen, P.Ø. Biofilms and host response–helpful or harmful. Apmis 2017, 125, 320–338. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef]
- Kackar, S.; Suman, E.; Kotian, M.S. Bacterial and Fungal Biofilm formation on Contact Lenses and their Susceptibility to Lens Care Solutions. Indian J. Med. Microbiol. 2017, 35, 80–84. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, X.; Lu, Z.; Ma, W.; Hu, A.; Zhou, H.; Bie, X. Transcriptome sequencing reveals the difference in the expression of biofilm and planktonic cells between two strains of Salmonella Typhimurium. Biofilm 2022, 4, 100086. [Google Scholar] [CrossRef]
- Farhana, A.; Khan, Y.S. Biochemistry, Lipopolysaccharide. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554414/ (accessed on 1 July 2025).
- Whitfield, C.; Williams, D.M.; Kelly, S.D. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 2020, 295, 10593–10609. [Google Scholar] [CrossRef]
- Needham, B.D.; Trent, M.S. Fortifying the barrier: The impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 2013, 11, 467–481. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef]
- Ceresa, C.; Fracchia, L.; Fedeli, E.; Porta, C.; Banat, I.M. Recent advances in biomedical, therapeutic and pharmaceutical applications of microbial surfactants. Pharmaceutics 2021, 13, 466. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Silva, F.F.; Tarabal, V.S.; Livio, D.F.; Meira, H.G.R.; Gonçalves, P.F.R.; Parreira, A.G.; da Silva, J.A.; Gonçalves, D.B.; Granjeiro, P.A. Recent Patents on the Industrial Application of Biosurfactants. Recent Pat. Biotechnol. 2023, 17, 376–394. [Google Scholar] [CrossRef]
- Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 127, 12–28. [Google Scholar] [CrossRef]
- Swarnalatha, S.M.; Rani, I.J.C. Biosurfactants: Unique properties and their versatile applications. Pharma Innov. J. 2019, 8, 684–687. [Google Scholar]
- Ceresa, C.; Fracchia, L.; Sansotera, A.C.; De Rienzo, M.A.D.; Banat, I.M. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023, 15, 2156. [Google Scholar] [CrossRef]
- Sharma, J.; Sundar, D.; Srivastava, P. Biosurfactants: Potential agents for controlling cellular communication, motility, and antagonism. Front. Mol. Biosci. 2021, 8, 727070. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Circular and Leaderless Bacteriocins: Biosynthesis, Mode of Action, Applications, and Prospects. Front. Microbiol. 2018, 9, 2085. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Fathi Abd_Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Thérien, M.; Kiesewalter, H.T.; Auria, E.; Charron-Lamoureux, V.; Wibowo, M.; Maróti, G.; Kovács, Á.T.; Beauregard, P.B. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2020, 2, 100021. [Google Scholar] [CrossRef] [PubMed]
- Yamasakis, J.R.; Toguchi, A.; Harshey, R.M. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 2001, 183, 5848–5854. [Google Scholar] [CrossRef]
- Yamasaki, S.; Nagasawa, S.; Fukushima, A.; Hayashi-Nishino, M.; Nishino, K. Cooperation of the multidrug efflux pump and lipopolysaccharides in the intrinsic antibiotic resistance of Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 2013, 68. [Google Scholar] [CrossRef]
- Aksu, O.; Cakirlar, F.K. Comparison of the antibiofilm activity of plant-derived compounds furanone C30 and ellagic acid C11 with antibiotics against Pseudomonas aeruginosa. North Clin. Istanb. 2025, 12, 21–28. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 30, 2437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Slettengren, M.; Mohanty, S.; Kamolvit, W.; van der Linden, J.; Brauner, A. Making medical devices safer: Impact of plastic and silicone oil on microbial biofilm formation. J. Hosp. Infect. 2020, 106, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Jan, Q.M.U.; Habib, T.; Noor, S.; Abas, M.; Azim, S.; Yaseen, Q.M.; Pham, D. Multi response optimization of injection moulding process parameters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function. Cogent Eng. 2020, 7, 1–30. [Google Scholar] [CrossRef]
- De-la-Pinta, I.; Cobos, M.; Ibarretxe, J.; Montoya, E.; Eraso, E.; Guraya, T.; Quindós, G. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. Mater. Med. 2019, 30, 77. [Google Scholar] [CrossRef] [PubMed]
- Abram, A.; Zore, A.; Lipovž, U.; Košak, A.; Gavras, M.; Boltežar, Ž.; Bohinc, K. Bacterial adhesion on prosthetic and orthotic material surfaces. Coatings 2021, 11, 1469. [Google Scholar] [CrossRef]
- Eschlbeck, E.; Kulozik, U. Effect of moisture equilibration time and medium on contact angles of bacterial spores. J. Microbiol. Methods 2017, 135, 1–7. [Google Scholar] [CrossRef]
- Ganesan, S.; Ruendee, T.; Kimura, S.Y.; Chawengkijwanich, C.; Janjaroen, D. Effect of biofilm formation on different types of plastic shopping bags: Structural and physicochemical properties. Environ. Res. 2022, 206, 112542. [Google Scholar] [CrossRef]
- Moyal, J.; Dave, P.H.; Wu, M.; Karimpour, S.; Brar, S.K.; Zhong, H.; Kwong, R.W.M. Impacts of Biofilm Formation on the Physicochemical Properties and Toxicity of Microplastics: A Concise Review. Rev. Environ. Contam. Toxicol. 2023, 261, 8. [Google Scholar] [CrossRef]
- He, S.; Jia, M.; Xiang, Y.; Song, B.; Xiong, W.; Cao, J.; Peng, H.; Yang, Y.; Wang, W.; Yang, Z.; et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 2022, 424, 127286. [Google Scholar] [CrossRef]
- Kisil, O.V.; Trefilov, V.S.; Sadykova, V.S.; Zvereva, M.E.; Kubareva, E.A. Surfactin: Its biological activity and possibility of application in agriculture. Appl. Biochem. Microbiol. 2023, 59, 1–13. [Google Scholar] [CrossRef]
- Romeo, T. (Ed.) Bacterial Biofilms; Springer: Berlin/Heidelberg, Germany, 2008; Available online: https://link.springer.com/book/10.1007/978-3-540-75418-3 (accessed on 15 June 2025).
- Caroff, M.; Novikov, A. Lipopolysaccharides: Structure, function and bacterial identifications. OCL 2020, 27, 31. [Google Scholar] [CrossRef]
- Pagnout, C.; Sohm, B.; Razafitianamaharavo, A.; Caillet, C.; Offroy, M.; Leduc, M.; Gendre, H.; Jomini, S.; Beaussart, A.; Bauda, P.; et al. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 2019, 9, 9696. [Google Scholar] [CrossRef]
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H.; et al. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef] [PubMed]
- Soydam, S.; Has, E.G.; Sürkaç, T.N.; Akçelik, M.; Akçelik, N. Effects of bcsE, luxS and rfaG genes on the physiology and pathogenicity of Salmonella Typhimurium. Arch. Microbiol. 2025, 207, 63. [Google Scholar] [CrossRef]
- Jin, U.-H.; Chung, T.-W.; Lee, Y.-C.; Ha, S.-D.; Kim, C.-H. Molecular cloning and functional expression of the rfaE gene required for lipopolysaccharide biosynthesis in Salmonella typhimurium. Glycoconj. J. 2001, 18, 779–787. [Google Scholar] [CrossRef]
- Heffernan, L.; Zhang, Y.; Chen, W.; Li, J. Lignin/Surfactin coacervate as an eco-friendly pesticide carrier and antifungal agent against phytopathogen. ACS Nano 2024, 18, 22415–22430. [Google Scholar] [CrossRef]
- Qui, X.; Liu, W.; He, X.; Du, C. A review on surfactin: Molecular regulation of biosynthesis. Arch. Microbiol. 2021, 205, 313. Available online: https://link.springer.com/article/10.1007/s00203-023-03652-3 (accessed on 15 August 2025). [CrossRef]
- Ebbensgaard, A.; Mordhorst, H.; Aarestrup, F.M.; Hansen, E.B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front. Microbiol. 2018, 9, 2153. [Google Scholar] [CrossRef]
- Zhen, C.; Ge, X.; Lu, Y.; Liu, W. Chemical structure, properties and potential applications of surfactin, as well as advanced strategies for improving its microbial production. AIMS Microbiol. 2023, 9, 195–217. [Google Scholar] [CrossRef]
- Yamasaki, R.; Kawano, A.; Yoshioka, Y.; Ariyoshi, W. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiol. 2020, 20, 358. [Google Scholar] [CrossRef]
- Heerklotz, H.; Wieprecht, T.; Seelig, J. Membrane Perturbation by the Lipopeptide Surfactin and Detergents as Studied by Deuterium NMR. Phys. Chem. B 2004, 108, 4909–4915. [Google Scholar] [CrossRef]
- Vaara, M.; Nurminen, M. Outer membrane permeability barrier in Escherichia coli mutants that have lost the polysaccharide side chains of their lipopolysaccharide. Antimicrob. Agents Chemother. 1999, 43, 1459–1462. [Google Scholar] [CrossRef]
- Wong, M.; Wang, Y.; Wang, H.; Marrone, A.; Haugen, S.; Kulkarni, K.; Basile, R.; Philips, S. RESEARCH: Fluorescence Microscopy–Based Protocol for Detecting Residual Bacteria on Medical Devices. Biomed. Instrum. Technol. 2020, 54, 397–409. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Wang, Y.; Donarski, E.; Gahlmann, A. Optically Accessible Microfluidic Flow Channels for Noninvasive High-Resolution Biofilm Imaging Using Lattice Light Sheet Microscopy. Phys. Chem. B 2021, 125, 12187–12196. [Google Scholar] [CrossRef] [PubMed]
- Sen, R. Surfactin: Biosynthesis, genetics and potential applications. Biosci. Rep. 2012, 32, 243–255. [Google Scholar] [CrossRef]
- Bochynek, M.; Lewińska, A.; Witwicki, M.; Dębczak, A.; Łukaszewicz, M. Formation and structural features of micelles formed by surfactin homologues. Front. Bioenginerring Biotechnol. 2023, 11, 1211318. [Google Scholar] [CrossRef] [PubMed]
- Zezzi do Valle Gomes, M.; Nitschke, M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 2012, 25, 441–447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonsari, S.; Cossu, A.; Vu, M.; Roulston, D.; Marvasi, M.; Purchase, D. Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure. Microorganisms 2025, 13, 2130. https://doi.org/10.3390/microorganisms13092130
Khonsari S, Cossu A, Vu M, Roulston D, Marvasi M, Purchase D. Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure. Microorganisms. 2025; 13(9):2130. https://doi.org/10.3390/microorganisms13092130
Chicago/Turabian StyleKhonsari, Shadi, Andrea Cossu, Milan Vu, Dallas Roulston, Massimiliano Marvasi, and Diane Purchase. 2025. "Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure" Microorganisms 13, no. 9: 2130. https://doi.org/10.3390/microorganisms13092130
APA StyleKhonsari, S., Cossu, A., Vu, M., Roulston, D., Marvasi, M., & Purchase, D. (2025). Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure. Microorganisms, 13(9), 2130. https://doi.org/10.3390/microorganisms13092130