The Hidden Microbial World in the Gut of the Terrestrial Snail Cornu aspersum maxima and the Unexpected Negative Effects of Synbiotics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Snail Rearing and Sample Collection
2.2. Molecular Analysis
2.3. Library Preparation and Amplicon Sequencing
2.4. Bioinformatic and Statistical Analysis
3. Results
3.1. Growth Performance and Mortality
3.2. 16S rRNA Amplicon Sequencing
3.3. Microbial Diversity in the Gut of the Land Species Cornu aspersum maxima
3.3.1. Phylum Classification
3.3.2. Genus Classification
3.4. Diversity Analysis
4. Discussion
Genus | Functional Role |
---|---|
Pseudomonas | Present in all terrestrial snails. Contributes to cellulolytic activity and the degradation of plant fibers [114]. |
Acinetobacter | Involved in cellulose degradation [78]. |
Brevundimonas | Degradation of pharmaceutical waste and insecticides [115]. |
Cutibacterium | Synbiotic with human skin, produces propionic acid [116,117]. |
Lawsonella | Emerging human pathogen, associated with infections, especially following medical procedures such as autologous fat grafting [118]. |
Staphylococcus | Protection against other pathogens [119]. |
Enterobacter | Fermentation of polysaccharides [120]. |
Klebsiella | Associated with infections and reduced presence of beneficial Lactobacillus bacteria [110]. |
Streptococcus | pH regulation via lactic acid production [121]. |
Corynebacterium | Degradation of organic matter. Protection from pathogens [122]. |
Lactococcus | Fermentation of plant materials and sugars via lactic acid production [123,124]. |
Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium | Nitrogen fixation [125]. |
Buttiauxella | Exclusively in land snails. Associated with pathogenic conditions [112]. |
Escherichia | May include pathogenic strains [126]. |
Shigella | Pathogens cause intestinal infections [127]. |
Dysgonomonas | Digestion of plant fibers [128]. |
Macellibacteroides | Digestion of plant materials through anaerobic fermentation [129]. |
Shewanella | Primarily in marine snails. Involved in the breakdown of organic matter [130]. |
Micrococcus | Degradation of organic matter. Protection from pathogens [131]. |
Arcticibacter | Survives in low temperatures. Degrades fats [132]. |
Methylobacterium, Methylorubrum | Degradation of methanol [133]. |
Microbacterium | Degradation of organic compounds [134]. |
Curtobacterium | Degradation of plant fibers. Potentially pathogenic [135,136]. |
Modestobacter | Recycling of organic matter and degradation of organic compounds in soil and plants [137]. |
Mycoplasma | Causes diseases in the respiratory, reproductive, and urinary systems [138]. |
Lelliottia | Causes infections primarily in plants [105]. |
Sphingobacterium | Metabolism of lipids and polysaccharides [75,139]. |
5. Conclusions
- The intestinal microbiome of C. aspersum maxima is particularly diverse and sensitive to dietary interventions. It is primarily composed of the bacterial phyla Proteobacteria (formerly Proteobacteria) and Actinobacteria, with Firmicutes and Bacteroidota present in lower abundances.
- Significant differences in microbial composition were observed between groups and time points, as shown by Bray–Curtis, NMDS, and Venn analyses.
- The presence of unassigned microorganisms increased in all supplemented groups, especially in the inulin group (Prebiotic), reaching 35%.
- L. plantarum was not detected in any of the groups after administration, indicating a transient presence or the inability to colonize the snail gut.
- Only the administration of L. plantarum increased the presence of the phylum Actinobacteria, which includes beneficial bacteria, and decreased the presence of potentially pathogenic Proteobacteria.
- Administration of inulin (Prebiotic) caused an increase in unclassified genera and the appearance of new species (e.g., Dysgonomonas, Macellibacteroides, Shewanella), indicating a restructuring of the microflora.
- Co-administration of a probiotic and a prebiotic (synbiotic) significantly enhanced microbial diversity but also resulted in a dramatic increase in mortality after 60 days.
- Weight gain was limited and decreased after the initial phase (30 days), possibly due to adaptation or saturation of the microflora.
- The weight gain rate (WGR) was highest in the Control group, while it was lower in the Probiotic- and Prebiotic-supplemented groups, particularly after 60 days.
- Synbiotics may induce adverse synergistic effects, possibly due to the inability of the probiotic to establish stable colonization and the resulting competition within the microbiome.
- The abundance of potentially pathogenic genera was significantly reduced in the groups receiving probiotics or prebiotics, suggesting a potential protective effect of the dietary supplements on the microbiome.
- Beta diversity analyses confirmed that microbial communities clustered by treatment and time, indicating strong effects of diet and exposure duration on the structure of the gut microbiome.
- Further research is required to better understand the effects of probiotics and prebiotics on snail biology and to develop safe dietary interventions.
- The use of synbiotics in snails should be reviewed in detail, as their combined administration may be detrimental to survival.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dar, M.A.; Pawar, K.D.; Pandit, R.S. Gut Microbiome Analysis of Snails: A Biotechnological Approach. In Organismal and Molecular Malacology; Ray, S., Ed.; InTech: Rijeka, Croatia, 2017; pp. 189–217. [Google Scholar] [CrossRef]
- Li, L.H.; Lv, S.; Lu, Y.; Bi, D.Q.; Guo, Y.H.; Wu, J.T.; Yue, Z.Y.; Mao, G.Y.; Guo, Z.X.; Zhang, Y.; et al. Spatial Structure of the Microbiome in the Gut of Pomacea canaliculata. BMC Microbiol. 2019, 19, 273. [Google Scholar] [CrossRef]
- Yang, M.J.; Song, H.; Yu, Z.L.; Hu, Z.; Zhou, C.; Wang, X.L.; Zhang, T. Changes in Synbiotic Microbiota and Immune Responses in Early Development Stages of Rapana venosa (Valenciennes, 1846) Provide Insights into Immune System Development in Gastropods. Front. Microbiol. 2020, 11, 1265. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Li, Z.; Wu, Q.; Qiao, X.; Wan, F.; Qian, W.; Liu, C. Investigation of Immune Responses in Giant African Snail, Achatina immaculata, against a Two-Round Lipopolysaccharide Challenge. Int. J. Mol. Sci. 2023, 24, 12191. [Google Scholar] [CrossRef]
- Loker, E.S. Gastropod Immunobiology. Adv. Exp. Med. Biol. 2010, 708, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Moeller, A.H.; Sanders, J.G. Roles of the Gut Microbiota in the Adaptive Evolution of Mammalian Species. Philos. Trans. R. Soc. B 2020, 375, 20190597. [Google Scholar] [CrossRef]
- Lindsay, E.C.; Metcalfe, N.B.; Llewellyn, M.S. The Potential Role of the Gut Microbiota in Shaping Host Energetics and Metabolic Rate. J. Anim. Ecol. 2020, 89, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Parlapani, F.F.; Neofitou, C.; Boziaris, I.S. Microbiological Quality of Raw and Processed Wild and Cultured Edible Snails. J. Sci. Food Agric. 2014, 94, 768–772. [Google Scholar] [CrossRef]
- Pissia, M.A.; Matsakidou, A.; Kiosseoglou, V. Raw Materials from Snails for Food Preparation. Future Foods 2021, 3, 100034. [Google Scholar] [CrossRef]
- Gupta, A.; Khanal, P. The Potential of Snails as a Source of Food and Feed. J. Agric. Food Res. 2024, 18, 101330. [Google Scholar] [CrossRef]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Nuzzo, S.; Agostiano, A.; Cosma, P. Snail Slime-Based Gold Nanoparticles: An Interesting Potential Ingredient in Cosmetics as an Antioxidant, Sunscreen, and Tyrosinase Inhibitor. J. Photochem. Photobiol. B 2021, 224, 112309. [Google Scholar] [CrossRef]
- Rashad, M.; Sampò, S.; Cataldi, A.; Zara, S. Biological Activities of Gastropods Secretions: Snail and Slug Slime. Nat. Prod. Bioprospect. 2023, 13, 42. [Google Scholar] [CrossRef]
- Ndlovu, T.M.; Van Wyk, J.P.H. Relative Saccharification of Waste Paper during Successive Treatment with Garden Snail (Cornu aspersum) Cellulase. Sustain. Chem. Pharm. 2019, 11, 54–60. [Google Scholar] [CrossRef]
- Apostolou, K.; Karagkounis, G.; Kokkinos, K.; Klaoudatos, D.; Exadactylos, A.; Hatziioannou, M. Environmental Footprint of Energy and Transformation Systems for Small-Scale Snail Farms. In Proceedings of the HydroMediT 2024, Mytilene, Lesvos, Greece, 30 May–2 June 2024. [Google Scholar]
- Hatziioannou, M.; Issari, A.; Neofitou, C.; Aifadi, S.; Matsiori, S. Economic Analysis and Production Techniques of Snail Farms in Southern Greece. World J. Agric. Res. 2014, 12, 276–279. [Google Scholar] [CrossRef]
- Czarnoleski, M.; Labecka, A.M.; Kozłowski, J. Thermal Plasticity of Body Size and Cell Size in Snails from Two Subspecies of Cornu aspersum. J. Molluscan Stud. 2016, 82, 235–243. [Google Scholar] [CrossRef]
- Power, K.; Leandri, R.; Fierro, A.; Zottola, T.; De Vico, G. Mass Mortality of Cornu aspersum in Italian Snail Farms: A Histopathological Survey. J. Invertebr. Pathol. 2024, 206, 108160. [Google Scholar] [CrossRef]
- Staikou, A.; Lazaridou-Dimitriadou, M. Feeding Experiments on and Energy Flux in a Natural Population of the Edible Snail Helix lucorum L. (Gastropoda: Pulmonata: Stylommatophora) in Greece. Malacologia 1989, 31, 217–227. [Google Scholar]
- Lazaridou-Dimitriadou, M.; Alpoyanni, E.; Baka, M.; Brouziotis, T.; Kifonidis, N.; Mihaloudi, E.; Sioula, D.; Vellis, G. Growth, Mortality and Fecundity in Successive Generations of Helix aspersa Müller Cultured Indoors and Crowding Effects on Fast-, Medium- and Slow-Growing Snails of the Same Clutch. J. Molluscan Stud. 1998, 64, 67–74. [Google Scholar] [CrossRef]
- Staikou, A.; Lazaridou-Dimitriadou, M. Effect of Crowding on Growth and Mortality in the Edible Snail Helix lucorum (Gastropoda: Pulmonata) in Greece. Isr. J. Zool. 1989, 36, 1–9. Available online: https://www.tandfonline.com/doi/abs/10.1080/00212210.1989.10688620 (accessed on 9 June 2025).
- Flari, V.; Charrier, M. Contribution to the Study of Carbohydrases in the Digestive Tract of the Edible Snail Helix lucorum L. (Gastropoda: Pulmonata: Stylommatophora) in Relation to Its Age and Its Physiological State. Comp. Biochem. Physiol. 1992, 102, 363–372. [Google Scholar] [CrossRef]
- García, A.; Perea, J.; Martín, R.; Acero, R.; Mayoral, A.; Peña, F.; Luque, M. Effect of Two Diets on the Growth of the Helix aspersa Müller during the Juvenile Stage. In Proceedings of the 56th Annual Meeting EAAP, Uppsala, Sweden, 5–8 June 2005; pp. 1–9. Available online: https://www.researchgate.net/publication/238677621 (accessed on 9 June 2025).
- Gogas, A.; Laliotis, G.P.; Ladoukakis, E.; Trachana, V. Chemical Composition and Antioxidant Profile of Snails (Cornu aspersum aspersum) Fed Diets with Different Protein Sources under Intensive Rearing Conditions. J. Anim. Feed Sci. 2021, 30, 391–398. [Google Scholar] [CrossRef]
- Surówka, K.; Ligaszewski, M.; Szymczyk, B.; Anthony, B. Amino Acid Profile and Nutritional Quality Parameters of Small Brown Snail (Cornu aspersum aspersum) Edible Parts Protein from Commercial Production in Field Pens. J. Food Compos. Anal. 2025, 140, 107221. [Google Scholar] [CrossRef]
- Dushku, E.; Ioannou, A.; Staikou, A.; Yiangou, M. Probiotic Properties and Immunomodulatory Activity of Gastrointestinal Tract Commensal Bacterial Strains Isolated from the Edible Farmed Snail Cornu aspersum maxima. Fish Shellfish Immunol. 2019, 92, 792–801. [Google Scholar] [CrossRef]
- Kotzamanidis, C.; Kourelis, A.; Litopoulou-Tzanetaki, E.; Tzanetakis, N.; Yiangou, M. Evaluation of Adhesion Capacity, Cell Surface Traits and Immunomodulatory Activity of Presumptive Probiotic Lactobacillus Strains. Int. J. Food Microbiol. 2010, 140, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as Means of Diseases Control in Aquaculture: A Review of Current Knowledge and Future Perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef] [PubMed]
- Wuertz, S.; Beça, F.; Kreuz, E.; Wanka, K.M.; Azeredo, R.; Machado, M.; Costas, B. Two Probiotic Candidates of the Genus Psychrobacter Modulate the Immune Response and Disease Resistance after Experimental Infection in Turbot (Scophthalmus maximus, Linnaeus 1758). Fishes 2023, 8, 144. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Patterson, J.A.; Orban, J.I.; Sutton, A.L.; Richards, G.N. Selective Enrichment of Bifidobacteria in the Intestinal Tract of Broilers by Thermally Produced Kestoses and Effect on Broiler Performance. Poult. Sci. 1997, 76, 497–500. [Google Scholar] [CrossRef]
- Collins, M.D.; Gibson, G.R. Probiotics, Prebiotics, and Synbiotics: Approaches for Modulating the Microbial Ecology of the Gut. Am. J. Clin. Nutr. 1999, 69, 1052s–1057s. [Google Scholar] [CrossRef]
- Alvanou, M.V.; Feidantsis, K.; Staikou, A.; Apostolidis, A.P.; Michaelidis, B.; Giantsis, I.A. Probiotics, Prebiotics, and Synbiotics Utilization in Crayfish Aquaculture and Factors Affecting Gut Microbiota. Microorganisms 2023, 11, 1232. [Google Scholar] [CrossRef]
- Yirga, H. The Use of Probiotics in Animal Nutrition. J. Probiotics Health 2015, 3, 132. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in Human Medicine. Gut 1991, 32, 439. [Google Scholar] [CrossRef]
- Charrier, M.; Fonty, G.; Gaillard-Martinie, B.; Ainouche, K.; Andant, G. Isolation and Characterization of Cultivable Fermentive Bacteria from the Intestine of Two Edible Snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata). Biol. Res. 2006, 39, 669–681. [Google Scholar] [CrossRef]
- Dushku, E.; Kotzamanidis, C.; Avgousti, K.; Zdragas, A.; Vafeas, G.; Giantzi, V.; Staikou, A.; Yiangou, M. Listeria monocytogenes-Induced Dysbiosis in Snails and Rebiosis Achieved by Administration of the Gut Commensal Lactobacillus plantarum Sgs14 Strain. Fish Shellfish Immunol. 2020, 104, 337–346. [Google Scholar] [CrossRef]
- Schillinger, U.; Lücke, F.K. Antibacterial Activity of Lactobacillus sake Isolated from Meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Jacobus, N.V.; Deneke, C.; Gorbach, S.L. Antimicrobial Substance from a Human Lactobacillus Strain. Antimicrob. Agents Chemother. 1987, 31, 1231–1233. [Google Scholar] [CrossRef]
- Fernández, M.F.; Boris, S.; Barbes, C. Probiotic Properties of Human Lactobacilli Strains to Be Used in the Gastrointestinal Tract. J. Appl. Microbiol. 2003, 94, 449–455. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Durand, H. Probiotics in Animal Nutrition and Health. Benef. Microbes 2010, 1, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Corcionivoschi, N.; Drinceanu, D.; Pop, I.M.; Stack, D.; Stef, L.; Julean, C.; Bourke, B. The Effect of Probiotics on Animal Health. Anim. Sci. Biotechnol. 2010, 43, 35–41. [Google Scholar]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of Dietary Fructooligosaccharide on Digestive Enzyme Activities, Intestinal Microflora and Morphology of Male Broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Smiricky-Tjardes, M.R.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Fahey, G.C., Jr. Dietary Galactooligosaccharides Affect Ileal and Total-Tract Nutrient Digestibility, Ileal and Fecal Bacterial Concentrations, and Ileal Fermentative Characteristics of Growing Pigs. J. Anim. Sci. 2003, 81, 2535–2545. [Google Scholar] [CrossRef]
- Monsan, P.F.; Paul, F. Oligosaccharide Feed Additives. In Biotechnology in Animal Feeds and Animal Feeding; Wiley-VCH: Weinheim, Germany, 1995; pp. 233–245. [Google Scholar]
- Birmani, M.W.; Nawab, A.; Ghani, M.W.; Li, G.; Xiao, M.; An, L. A Review: Role of Inulin in Animal Nutrition. J. Food Technol. Res. 2019, 6, 18–27. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, Colonic Fermentation, and Gastrointestinal Health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Suply, E.; de Vries, P.; Soret, R.; Cossais, F.; Neunlist, M. Butyrate Enemas Enhance Both Cholinergic and Nitrergic Phenotype of Myenteric Neurons and Neuromuscular Transmission in Newborn Rat Colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G1373–G1380. [Google Scholar] [CrossRef] [PubMed]
- Efstratiou, E.; Feidantsis, K.; Makri, V.; Staikou, A.; Giantsis, I.A. Evidence for Beneficial Physiological Responses of the Land Snail Cornu aspersum to Probiotics’ (Lactobacillus plantarum) Dietary Intervention. Animals 2024, 14, 857. [Google Scholar] [CrossRef]
- Xia, Y.; Miao, J.; Zhang, Y.; Zhang, H.; Kong, L.; Seviour, R.; Kong, Y. Dietary inulin supplementation modulates the composition and activities of carbohydrate-metabolizing organisms in the cecal microbiota of broiler chickens. PLoS ONE 2021, 16, e0258663. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Auguste, M.; Balbi, T.; Ciacci, C.; Canonico, B.; Papa, S.; Borello, A.; Vezzulli, L.; Canesi, L. Shift in Immune Parameters after Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front. Immunol. 2020, 11, 426. [Google Scholar] [CrossRef]
- Sampelayo, M.S.; Fonolla, J.; Extremera, F.G. Factors Affecting the Food Intake, Growth and Protein Utilization in the Helix aspersa Snail. Protein Content of the Diet and Animal Age. Lab. Anim. 1991, 25, 291–298. [Google Scholar] [CrossRef]
- Tsagani, D. Food Consumption and Assimilation in Adult Snails (Cornu aspersum maximum) for the Evaluation of Commercial Diets. Bachelor’s Thesis, University of Thessaly, Thessaly, Greece, 2021. (In Greek). [Google Scholar]
- Babayemi, O.J.; Bamikole, M.A.; Daodu, M.O. In Vitro Gas Production and Its Prediction on Metabolizable Energy, Organic Matter Digestibility and Short Chain Fatty Acids of Some Tropical Seeds. Pak. J. Nutr. 2009, 8, 1078–1082. [Google Scholar] [CrossRef]
- Gidenne, T. Dietary Fibres in the Nutrition of the Growing Rabbit and Recommendations to Preserve Digestive Health: A Review. Animal 2015, 9, 227–242. [Google Scholar] [CrossRef]
- Fraga, M. Effect of Type of Fibre on the Rate of Passage and on the Contribution of Soft Feces to Nutrient Intake of Finishing Rabbits. J. Anim. Sci. 1990, 69, 1566–1574. [Google Scholar] [CrossRef]
- Speakman, J.R. Body size, energy metabolism and lifespan. J. Exp. Biol. 2005, 208, 1717–1730. [Google Scholar] [CrossRef]
- Chilliard, Y.; Bocquier, F.; Doreau, M. Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction. Reprod. Nutr. Dev. 1998, 38, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Kotsakiozi, P.; Pafilis, P.; Giokas, S.; Valakos, E. A comparison of the physiological responses of two land snail species with different distributional ranges. J. Molluscan Stud. 2012, 78, 217–224. [Google Scholar] [CrossRef]
- Artacho, P.; Nespolo, R.F. Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum). Evolution 2009, 63, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, J.P.; Barnard, N.D.; Sandusky, C. Laboratory routines cause animal stress. Contemp. Top. Lab. Anim. Sci. 2004, 43, 42–51. [Google Scholar] [PubMed]
- National Research Council; Division on Earth, Life Studies; Institute for Laboratory Animal Research; Committee on Recognition; Alleviation of Distress in Laboratory Animals. Recognition and Alleviation of Distress in Laboratory Animals; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Senina, A.; Markelova, M.; Khusnutdinova, D.; Siniagina, M.; Kupriyanova, O.; Synbulatova, G.; Kayumov, A.; Boulygina, E.; Grigoryeva, T. Two-Year Study on the Intra-Individual Dynamics of Gut Microbiota and Short-Chain Fatty Acids Profiles in Healthy Adults. Microorganisms 2024, 12, 1712. [Google Scholar] [CrossRef]
- Karwowska, Z.; Szczerbiak, P.; Kosciolek, T. Microbiome time series data reveal predictable patterns of change. Microbiol. Spectr. 2024, 12, e04109-23. [Google Scholar] [CrossRef]
- Rozas, M.; Hart de Ruijter, A.; Fabrega, M.J.; Zorgani, A.; Guell, M.; Paetzold, B.; Brillet, F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021, 9, 628. [Google Scholar] [CrossRef]
- Sommer, A.J.; Deblois, C.L.; Tu, A.D.J.; Suen, G.; Coon, K.L. Opportunistic pathogens are prevalent across the culturable exogenous and endogenous microbiota of stable flies captured at a dairy facility. Vet. Res. 2025, 56, 40. [Google Scholar] [CrossRef]
- Cohen, A.; Poupko, L.; Craddock, H.A.; Motro, Y.; Khalfin, B.; Zelinger, A.; Tirosh-Levy, S.; Blum, S.E.; Steinman, A.; Moran-Gilad, J. Fecal Microbiome Features Associated with Extended-Spectrum β-Lactamase-Producing Enterobacterales Carriage in Dairy Heifers. Animals 2022, 12, 1738. [Google Scholar] [CrossRef]
- Zhong, Z.; Hou, Q.; Kwok, L.; Yu, Z.; Zheng, Y.; Sun, Z.; Zhang, H. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. J. Dairy Sci. 2016, 99, 7832–7841. [Google Scholar] [CrossRef]
- Xu, W.L.; Li, C.D.; Guo, Y.S.; Zhang, Y.; Ya, M.; Guo, L. A snapshot study of the microbial community dynamics in naturally fermented cow’s milk. Food Sci. Nutr. 2021, 9, 2053–2065. [Google Scholar] [CrossRef]
- Benjamino, J.; Lincoln, S.; Srivastava, R.; Graf, J. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Microbiome 2018, 6, 86. [Google Scholar] [CrossRef]
- Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019, 7, e7502. [Google Scholar] [CrossRef] [PubMed]
- Cholewińska, P.; Górniak, W.; Wojnarowski, K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet. Res. 2021, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Black, M.; Moolhuijzen, P.; Chapman, B.; Barrero, R.; Howieson, J.; Hungria, M.; Bellgard, M. The genetics of synbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 2012, 3, 138–166. [Google Scholar] [CrossRef]
- Rahal, S.; Chekireb, D. Diversity of rhizobia and non-rhizobia endophytes isolated from root nodules of Trifolium sp. growing in lead and zinc mine site Guelma, Algeria. Arch. Microbiol. 2021, 203, 3839–3849. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.K.; Ikeno, S.; Kadhim Almansoori, A.K.; Muhammad, I.; Abdul Rahim, R. Characterization of Sphingobacterium sp. Ab3 lipase and its coexpression with LEA peptides. Microbiol. Spectr. 2022, 10, e01422-21. [Google Scholar] [CrossRef]
- Bai, X.; Ya, R.; Tang, X.; Cai, M. Role and interaction of bacterial sphingolipids in human health. Front. Microbiol. 2023, 14, 1289819. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Venkateswarulu, T.C.; Srirama, K.; Dirisala, V.R.; Kamarajugadda, B.P.; Kota, R.K.; Kodali, V.P. Purification and lignocellulolytic potential of cellulase from newly isolated Acinetobacter indicus KTCV2 strain. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 755–761. [Google Scholar] [CrossRef]
- Banerjee, S.; Maiti, T.K.; Roy, R.N. Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Ann. Microbiol. 2020, 70, 28. [Google Scholar] [CrossRef]
- Linker, A.; Evans, L.R. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. J. Bacteriol. 1984, 159, 958–964. [Google Scholar] [CrossRef]
- Furmanczyk, E.M.; Kaminski, M.A.; Spolnik, G.; Sojka, M.; Danikiewicz, W.; Dziembowski, A.; Sobczak, A. Isolation and characterization of Pseudomonas spp. strains that efficiently decompose sodium dodecyl sulfate. Front. Microbiol. 2017, 8, 1872. [Google Scholar] [CrossRef]
- Karishma, S.; Yaashikaa, P.R.; Kumar, P.S.; Kamalesh, R.; Saravanan, A.; Rangasamy, G. Promising approaches and kinetic prospects of the microbial degradation of pharmaceutical contaminants. Environ. Sci. Adv. 2023, 2, 1488–1504. [Google Scholar] [CrossRef]
- Mavriou, Z.; Alexandropoulou, I.; Melidis, P.; Karpouzas, D.G.; Ntougias, S. Biotreatment and bacterial succession in an upflow immobilized cell bioreactor fed with fludioxonil wastewater. Environ. Sci. Pollut. Res. 2021, 28, 3774–3786. [Google Scholar] [CrossRef]
- Fuhren, J.; Schwalbe, M.; Boekhorst, J.; Rösch, C.; Schols, H.A.; Kleerebezem, M. Dietary calcium phosphate strongly impacts gut microbiome changes elicited by inulin and galacto-oligosaccharides consumption. Microbiome 2021, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.N.; Barua, N.; Tin, M.C.F.; Dharmaratne, P.; Wong, S.H.; Ip, M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; a systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024, 16, 2356279. [Google Scholar] [CrossRef]
- Gao, L.; Liu, L.; Du, C.; Hou, Q. Comparative analysis of fecal bacterial microbiota of six bird species. Front. Vet. Sci. 2021, 8, 791287. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liang, J.; Wang, Y.; Du, W.; Wang, D. Kraft lignin biodegradation by Dysgonomonas sp. WJDL-Y1, a new anaerobic bacterial strain isolated from sludge of a pulp and paper mill S. J. Microbiol. Biotechnol. 2016, 26, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Jabari, L.; Gannoun, H.; Cayol, J.L.; Hedi, A.; Sakamoto, M.; Falsen, E.; Ohkuma, M.; Hamdi, M.; Fauque, G.; Ollivier, B.; et al. Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters. Int. J. Syst. Evol. Microbiol. 2012, 62, 2522–2527. [Google Scholar] [CrossRef]
- Ivanova, E.; Nedashkovskaya, O.; Sawabe, T.; Zhukova, N.; Frolova, G.; Nicolau, D.; Mikhailov, V.; Bowman, J. Shewanella affinis sp. nov., isolated from marine invertebrates. Int. J. Syst. Evol. Microbiol. 2004, 54, 1089–1093. [Google Scholar] [CrossRef]
- Rymer, T.L.; Pillay, N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS ONE 2023, 18, e0281533. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, G.; Argentini, C.; Milani, C.; Turroni, F.; Ossiprandi, M.C.; van Sinderen, D.; Ventura, M. Catching a glimpse of the bacterial gut community of companion animals: A canine and feline perspective. Microb. Biotechnol. 2020, 13, 1708–1732. [Google Scholar] [CrossRef]
- Faccin, M.; Wiener, D.J.; Rech, R.R.; Santoro, D.; Rodrigues Hoffmann, A. Common superficial and deep cutaneous bacterial infections in domestic animals: A review. Vet. Pathol. 2023, 60, 796–811. [Google Scholar] [CrossRef] [PubMed]
- Almasia, R.; Henríquez, M.; Levican, A.; Poblete-Morales, M. Genome Sequence of a Potentially New Buttiauxella Species, Strain B2, Isolated from Rhizosphere of Olivillo Trees (Aextoxicon punctatum). Microbiol. Resour. Announc. 2020, 9, e01351-19. [Google Scholar] [CrossRef] [PubMed]
- Bunnoy, A.; Na-Nakorn, U.; Srisapoome, P. Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864). Microorganisms 2019, 7, 613. [Google Scholar] [CrossRef]
- Peterson, C.T.; Perez Santiago, J.; Iablokov, S.N.; Rodionov, D.A.; Patel, R.; Peterson, S.N. Short-Chain Fatty Acids Modulate Healthy Gut Microbiota Composition and Functional Potential. Curr. Microbiol. 2022, 79, 128. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, D.; Zhu, L.; Zhang, Y.; Chen, J. Role of two methanol dehydrogenases in methanol metabolism of Methylobacterium. Sci. Technol. Food Ind. 2024, 45, 126–132. [Google Scholar] [CrossRef]
- Yuan, X.J.; Chen, W.J.; Ma, Z.X.; Yuan, Q.Q.; Zhang, M.; He, L.; Mo, X.H.; Zhang, C.; Zhang, C.T.; Wang, M.Y.; et al. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. Metab. Eng. 2021, 64, 95–110. [Google Scholar] [CrossRef]
- Ezemba, C.C.; Ozokpo, C.A.; Anakwenze, V.N.; Anaukwu, G.C.; Ogbukagu, C.M.; Ekwealor, C.C.; Ekwealor, I.A. Lysine production of Microbacterium lacticum by submerged fermentation using various hydrocarbon, sugar and nitrogen sources. Adv. Microbiol. 2016, 6, 797–810. [Google Scholar] [CrossRef]
- Afkhamifar, A.; Moslemkhani, C.; Hasanzadeh, N.; Ghasemi, A.; Ghasemi, S.; Mohammadi, A. Curtobacterium flaccumfaciens pv. flaccumfaciens with antagonistic effect on Xanthomonas translucens pv. cerealis, plays a dual role in the legumes–wheat rotation system. Eur. J. Plant Pathol. 2023, 165, 611–621. [Google Scholar] [CrossRef]
- Tarakanov, R.I.; Lukianova, A.A.; Evseev, P.V.; Pilik, R.I.; Tokmakova, A.D.; Kulikov, E.E.; Toshchakov, S.V.; Ignatov, A.N.; Dzhalilov, F.S.-U.; Miroshnikov, K.A. Ayka, a novel Curtobacterium bacteriophage, provides protection against soybean bacterial wilt and tan spot. Int. J. Mol. Sci. 2022, 23, 10913. [Google Scholar] [CrossRef]
- Evseev, P.; Lukianova, A.; Tarakanov, R.; Tokmakova, A.; Shneider, M.; Ignatov, A.; Miroshnikov, K. Curtobacterium spp. and Curtobacterium flaccumfaciens: Phylogeny, genomics-based taxonomy, pathogenicity, and diagnostics. Curr. Issues Mol. Biol. 2022, 44, 889–927. [Google Scholar] [CrossRef]
- Choi, J.; Moriuchi, R.; Sukprasitchai, A.; Tokuyama, S.; Kawagishi, H.; Dohra, H. Draft genome sequence of Buttiauxella sp. strain A111, which converts 2-azahypoxanthine to 2-aza-8-oxohypoxanthine. Microbiol. Resour. Announc. 2019, 8, e00664-19. [Google Scholar] [CrossRef]
- Golińska, P.; Montero-Calasanz, M.D.C.; Świecimska, M.; Yaramis, A.; Igual, J.M.; Bull, A.T.; Goodfellow, M. Modestobacter excelsi sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Syst. Appl. Microbiol. 2020, 43, 126051. [Google Scholar] [CrossRef]
- Bull, A.T.; Goodfellow, M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns. Microbiology 2019, 165, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Algharib, S.A.; Zhao, G.; Zhu, T.; Qi, M.; Delai, K.; Hao, Z.; Marawan, M.A.; Shirani, I.; Guo, A. Mycoplasmas as host pantropic and specific pathogens: Clinical implications, gene transfer, virulence factors, and future perspectives. Front. Cell. Infect. Microbiol. 2022, 12, 855731. [Google Scholar] [CrossRef] [PubMed]
- Osei, R.; Yang, C.; Cui, L.; Ma, T.; Li, Z.; Boamah, S. Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato tuber in China. Microb. Pathog. 2022, 164, 105441. [Google Scholar] [CrossRef]
- Nettleton, J.E.; Klancic, T.; Schick, A.; Choo, A.C.; Cheng, N.; Shearer, J.; Borgland, S.L.; Rho, J.M.; Reimer, R.A. Prebiotic, Probiotic, and Synbiotic Consumption Alter Behavioral Variables and Intestinal Permeability and Microbiota in BTBR Mice. Microorganisms 2021, 9, 1833. [Google Scholar] [CrossRef] [PubMed]
- Tavaniello, S.; De Marzo, D.; Bednarczyk, M.; Palazzo, M.; Zejnelhoxha, S.; Wu, M.; Peng, M.; Stadnicka, K.; Maiorano, G. Influence of a Commercial Synbiotic Administered In Ovo and In-Water on Broiler Chicken Performance and Meat Quality. Foods 2023, 12, 2470. [Google Scholar] [CrossRef]
- Salem, G.A.; Mohamed, A.A.R.; Ghonimi, W.A.M.; El-Demerdash, H.M.; El-Naby, A.S.A.; Khalil, M.A.M.; Ibrahim, D. The Synbiotic Mixture of Bacillus licheniformis and Saccharomyces cerevisiae Extract Aggravates Dextran Sulfate Sodium Induced Colitis in Rats. BMC Vet. Res. 2022, 18, 405. [Google Scholar] [CrossRef]
- Costa, G.N.; Marcelino-Guimarães, F.C.; Vilas-Bôas, G.T.; Matsuo, T.; Miglioranza, L.H.S. Potential fate of ingested Lactobacillus plantarum and its occurrence in human feces. Appl. Environ. Microbiol. 2014, 80, e02588-13. [Google Scholar] [CrossRef]
- Caullan, L.P.; Vila, G.G.; Angulo, E.A.; Calvo, A.; Marcelo, J.A.; Torras, M.A.C. Microbiota from Helix aspersa Müller in Barcelona area (Spain). Adv. Microbiol. 2014, 2014, 604–608. [Google Scholar] [CrossRef]
- Harris, J.M. The Presence, Nature, and Role of Gut Microflora in Aquatic Invertebrates: A Synthesis. Microb. Ecol. 1993, 25, 195–231. [Google Scholar] [CrossRef]
- Apostolou, K.; Radea, C.; Meziti, A.; Kormas, K.A. Bacterial diversity associated with terrestrial and aquatic snails. Microorganisms 2025, 13, 8. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Seoraj-Pillai, N.; Nangammbi, T.C. Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications. Biology 2025, 14, 1086. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, G.L.; Correa, R.F.; Cunha, R.S.; Cardoso, A.M.; Chaia, C.; Clementino, M.M.; Garcia, E.S.; de Souza, W.; Frasés, S. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Front. Microbiol. 2015, 6, 860. [Google Scholar] [CrossRef] [PubMed]
- Egorova, D.O.; Nazarova, E.A.; Demakov, V.A. New lindane-degrading strains Achromobacter sp. NE1 and Brevundimonas sp. 242. Microbiology 2021, 90, 392–396. [Google Scholar] [CrossRef]
- Brüggemann, H.; Salar-Vidal, L.; Gollnick, H.P.; Lood, R. A Janus-faced bacterium: Host-beneficial and -detrimental roles of Cutibacterium acnes. Front. Microbiol. 2021, 12, 673845. [Google Scholar] [CrossRef]
- Kao, H.J.; Wang, Y.H.; Keshari, S.; Yang, J.J.; Simbolon, S.; Chen, C.C.; Huang, C.M. Propionic acid produced by Cutibacterium acnes fermentation ameliorates ultraviolet B-induced melanin synthesis. Sci. Rep. 2021, 11, 11980. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, J.; Gong, L.; Wang, G.; Khan, A.; Cui, H. Infection caused by Lawsonella clevelandensis after breast augmentation with autologous fat grafting: A case report. BMC Infect. Dis. 2023, 23, 124. [Google Scholar] [CrossRef]
- Le, K.Y.; Park, M.D.; Otto, M. Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front. Microbiol. 2018, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Ochuba, G.U.; von Riesen, V.L. Fermentation of polysaccharides by Klebsielleae and other facultative bacilli. Appl. Environ. Microbiol. 1980, 39, 988–992. [Google Scholar] [CrossRef]
- Iwami, Y.; Abbe, K.; Takahashi-Abbe, S.; Yamada, T. Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol. Immunol. 1992, 7, 304–308. [Google Scholar] [CrossRef]
- Tortosa, G.; Fernández-González, A.J.; Lasa, A.V.; Aranda, E.; Torralbo, F.; González-Murua, C.; Bedmar, E.J. Involvement of the metabolically active bacteria in the organic matter degradation during olive mill waste composting. Sci. Total Environ. 2021, 789, 147975. [Google Scholar] [CrossRef]
- Aso, Y.; Hashimoto, A.; Ohara, H. Engineering Lactococcus lactis for D-lactic acid production from starch. Curr. Microbiol. 2019, 76, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Vadlani, P.V. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 2015, 119, 694–699. [Google Scholar] [CrossRef]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many Rhizobium recipes? Trends Microbiol. 2009, 17, 458–466. [Google Scholar] [CrossRef]
- Donnenberg, M.S.; Whittam, T.S. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J. Clin. Investig. 2001, 107, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Deidei, H.; Amadi, L.; Aleruchi, O. Impact of various slime removal treatment and antibiogram of bacterial isolates from snails (Achatina fulica) harvested in Port Harcourt Metropolis. Int. J. Microbiol. Appl. Sci 2024, 3, 50–59. [Google Scholar]
- Kmezik, C.; Mazurkewich, S.; Meents, T.; McKee, L.S.; Idström, A.; Armeni, M.; Savolainen, O.; Brändén, G.; Larsbrink, J. A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J. Biol. Chem. 2021, 296, 100500. [Google Scholar] [CrossRef]
- Rout, S.P.; Salah, Z.B.; Charles, C.J.; Humphreys, P.N. Whole-genome sequence of the anaerobic isosaccharinic acid degrading isolate, Macellibacteroides fermentans strain HH-ZS. Genome Biol. Evol. 2017, 9, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Al-Tarshi, M.; Dobretsov, S.; Al-Belushi, M. Bacterial communities across multiple ecological niches (water, sediment, plastic, and snail gut) in mangrove habitats. Microorganisms 2024, 12, 1561. [Google Scholar] [CrossRef] [PubMed]
- Bodor, A.; Bounedjoum, N.; Feigl, G.; Duzs, Á.; Laczi, K.; Szilágyi, Á.; Perei, K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants. J. Hazard. Mater. 2021, 417, 125996. [Google Scholar] [CrossRef]
- Wu, G.; Baumeister, R.; Heimbucher, T. Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells 2023, 12, 1353. [Google Scholar] [CrossRef]
- Thulasi, K.; Jayakumar, A.; Balakrishna Pillai, A.; Gopalakrishnapillai Sankaramangalam, V.K.; Kumarapillai, H. Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem. Arch. Microbiol. 2018, 200, 829–833. [Google Scholar] [CrossRef]
- Schippers, A.; Bosecker, K.; Spröer, C.; Schumann, P. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int. J. Syst. Evol. Microbiol. 2005, 55, 655–660. [Google Scholar] [CrossRef]
- Ventorino, V.; Aliberti, A.; Faraco, V.; Robertiello, A.; Giacobbe, S.; Ercolini, D.; Amore, A.; Fagnano, M.; Pepe, O. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci. Rep. 2015, 5, 8161. [Google Scholar] [CrossRef]
- Francis, M.J.; Doherty, R.R.; Patel, M.; Hamblin, J.F.; Ojaimi, S.; Korman, T.M. Curtobacterium flaccumfaciens septic arthritis following puncture with a Coxspur Hawthorn thorn. J. Clin. Microbiol. 2011, 49, 2759–2760. [Google Scholar] [CrossRef]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; Rehman, S.U.; Oetting, J.N. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Flores, C.; Rodriguez, C.; Giai, C.; Vega, I.A.; Castro-Vazquez, A. Pathogenesis of an experimental mycobacteriosis in an apple snail. Front. Immunol. 2023, 14, 1253099. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Porcelli, S.A.; Naka, T.; Yano, I.; Maeda, S.; Kuwata, H.; Akira, S.; Uematsu, S.; Takii, T.; Ogura, H.; et al. Bacterial sphingophospholipids containing non-hydroxy fatty acid activate murine macrophages via Toll-like receptor 4 and stimulate bacterial clearance. Biochim. Biophys. Acta 2013, 1831, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
Composition | |||||
---|---|---|---|---|---|
Corn, Soybean Flour *, Calcium Carbonate, Monocalcium Phosphate, Sodium Chloride, Sodium Bicarbonate | |||||
Detailed Ingredients (in %) | |||||
Total nitrogenous substances | 20.00% | Calcium (Ca) | 1.70% | ||
Total fats | 3.80% | Phosphorus (P) | 0.85% | ||
Total fibrous substances | 5.00% | Sodium (Na) | 0.20% | ||
Total ash | 8.70% | Lysine | 1.10% | ||
Humidity | 13.00% | Methionine | 0.50% | ||
Additives (per Kg of forage) | |||||
Vitamins | Trace Elements | ||||
3a672a Vitamin A | I.U. | 9.70 | 3b603 Ζinc oxide [ZnO] | mg | 90 |
3a671 Vitamin D | I.U. | 3.0 | 3b606 Hydrated zinc amine chelate complex | mg | 27 |
3a700 Vitamin E | mg | 60 | 3b202 Calcium iodate | mg | 1.13 |
3a711 Vitamin K3 (MNB) | mg | 3.0 | 3b801 Sodium selenite | mg | 0.38 |
3a821 Vitamin B1 | mg | 1.1 | 3b103 Iron sulfate | mg | 150 |
Vitamin B2 (Riboflavin) | mg | 4.0 | 3b106 Iron from hydrated amino acid chelate complex | mg | 44 |
3a831 Vitamin B6 | mg | 4.50 | 3b502 Μanganese oxide | mg | 52.50 |
Vitamin B12 (Cyanocobalamin) | mg | 0.02 | 3b506 Μanganese from glycine chelate | mg | 34.50 |
3a314 Niacin (Νicotinic acid) | mg | 22.50 | 3b404 Copper oxide | mg | 2.50 |
3a841 Calcium pantothenate | mg | 15 | |||
3a316 Folic acid | mg | 0.38 | |||
3a880 Biotin | mg | 0.08 | |||
3a890 Cholinechloride | mg | 300 | |||
Digestibility enhancer | Fytase EC 3.1.3.26 |
Trait | Control | Probiotic | Prebiotic | Synbiotic |
---|---|---|---|---|
Initial weight (g) | 9.87 ± 1.20 | 9.44 ± 1.33 | 10.37 ± 1.29 | 10.71 ± 1.95 |
30-Day weight (g) | 11.27 ± 1.64 | 10.49 ± 1.64 a | 11.81 ± 1.65 | 12.13 ± 2.28 |
60-Day weight (g) | 10.76 ± 1.51 | 9.72 ± 1.41 | 10.54 ± 1.59 | 11.54 ± 1.84 |
30-Day weight growth rate—WGR (%) | 14.18 ± 16.67 | 11.13 ± 17.45 | 13.89 ± 15.99 | 13.27± 21.43 |
60-Day weight growth rate—WGR (%) | 8.99 ± 15.34 | 2.97 ± 14.94 | 1.58 ± 15.33 | 7.76 ± 17.24 |
30-Day mortality (%) | 5.71 ± 1.90 | 14.29 ± 4.59 a | 20 ± 5.58 b | 48.57 ± 11.79 c |
60-Day mortality (%) | 68.57 ± 16.01 | 51.43 ± 10.33 a | 62.86 ± 11.53 | 100 ± 14.34 c |
Barcodes | Treatment Group |
---|---|
BC01 | 30_CONTROL |
BC03 | 30_PROBIOTIC |
BC05 | 30_PREBIOTIC |
BC07 | 30_SYNBIOTIC |
BC09 | 60_CONTROL |
BC11 | 60_PROBIOTIC |
BC13 | 60_PREBIOTIC |
BC15 | 60_SYNBIOTIC |
BC01 | BC03 | BC05 | BC07 | BC09 | BC11 | BC13 | BC15 | |
---|---|---|---|---|---|---|---|---|
BC01 | 0.000 | 0.680 | 0.732 | 0.711 | 0.614 | 0.442 | 0.764 | 0.673 |
BC03 | 0.680 | 0.000 | 0.414 | 0.457 | 0.606 | 0.572 | 0.439 | 0.210 |
BC05 | 0.732 | 0.414 | 0.000 | 0.169 | 0.698 | 0.646 | 0.457 | 0.413 |
BC07 | 0.711 | 0.457 | 0.169 | 0.000 | 0.752 | 0.617 | 0.479 | 0.443 |
BC09 | 0.614 | 0.606 | 0.698 | 0.752 | 0.000 | 0.478 | 0.700 | 0.575 |
BC11 | 0.442 | 0.572 | 0.646 | 0.617 | 0.478 | 0.000 | 0.575 | 0.445 |
BC13 | 0.764 | 0.439 | 0.457 | 0.479 | 0.700 | 0.575 | 0.000 | 0.354 |
BC15 | 0.673 | 0.210 | 0.413 | 0.443 | 0.575 | 0.445 | 0.354 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efstratiou, E.; Alvanou, M.V.; Loukovitis, D.; Giantsis, I.A.; Staikou, A. The Hidden Microbial World in the Gut of the Terrestrial Snail Cornu aspersum maxima and the Unexpected Negative Effects of Synbiotics. Microorganisms 2025, 13, 2127. https://doi.org/10.3390/microorganisms13092127
Efstratiou E, Alvanou MV, Loukovitis D, Giantsis IA, Staikou A. The Hidden Microbial World in the Gut of the Terrestrial Snail Cornu aspersum maxima and the Unexpected Negative Effects of Synbiotics. Microorganisms. 2025; 13(9):2127. https://doi.org/10.3390/microorganisms13092127
Chicago/Turabian StyleEfstratiou, Efstratios, Maria V. Alvanou, Dimitrios Loukovitis, Ioannis A. Giantsis, and Alexandra Staikou. 2025. "The Hidden Microbial World in the Gut of the Terrestrial Snail Cornu aspersum maxima and the Unexpected Negative Effects of Synbiotics" Microorganisms 13, no. 9: 2127. https://doi.org/10.3390/microorganisms13092127
APA StyleEfstratiou, E., Alvanou, M. V., Loukovitis, D., Giantsis, I. A., & Staikou, A. (2025). The Hidden Microbial World in the Gut of the Terrestrial Snail Cornu aspersum maxima and the Unexpected Negative Effects of Synbiotics. Microorganisms, 13(9), 2127. https://doi.org/10.3390/microorganisms13092127