Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Reference Microbial Strains
2.2. Photosensitizer and Laser
2.3. First Phase of the Study
- (L+P+) aPDT group (suspension subjected to both the photosensitizer and laser light) (n = 4).
- (L−P+) photosensitizer-only group (suspension exposed to PS without laser irradiation) (n = 4).
- (L+P−) light-only group (suspension exposed to laser light without PS) (n = 4).
- (L−P−) control group (suspension without exposure to either laser light or PS) (n = 4).
2.4. Second Phase of the Study
2.5. Statistical Analysis
3. Results
3.1. Phase I-Effect of Incubation Time
3.2. Phase 2-Effect of Laser Parameters
3.3. Key Findings
- Minimal effective incubation times: 5 min for S. aureus; 10 min for Candida spp.
- Most effective tested laser settings: 400 mW for 120 s, though these represent the upper limits of the tested range rather than confirmed optima.
- Relative susceptibility: S. aureus > C. albicans ≈ C. krusei > C. glabrata.
- Controls: Neither photosensitizer nor laser alone significantly reduced microbial counts.
- Levels of statistical significance were graphically presented in the figures. It should be noted, however, that the laser device used in this study had a maximum output of 400 mW, and while irradiation time could be extended beyond 120 s, this was not explored here. This represents a limitation of the present work.
4. Discussion
4.1. Importance of Incubation Time
4.2. Comparison with Previous Studies on Incubation Time
4.3. Broader Context of Incubation Parameters
4.4. Influence of Laser Parameters
4.5. Evidence from Other Studies on Irradiation
4.6. Relative Susceptibility of Different Microorganisms
4.7. Clinical Implications
4.8. Limitations of the Study
4.9. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- R, A.N.; Rafiq, N.B. Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Nunes, P.F.I.; Crugeira, P.J.L.; Sampaio, F.J.P.; de Oliveira, S.C.P.S.; Azevedo, J.M.; Santos, C.L.O.; Soares, L.G.P.; Samuel, I.D.W.; Persheyev, S.; de Almeida, P.F.; et al. Evaluation of dual application of photodynamic therapy—PDT in Candida albicans. Photodiagn. Photodyn. Ther. 2023, 42, 103327. [Google Scholar] [CrossRef]
- Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morad, H.O.J.; Wild, A.-M.; Wiehr, S.; Davies, G.; Maurer, A.; Pichler, B.J.; Thornton, C.R. Pre-clinical imaging of invasive candidiasis using immunoPET/MR. Front. Microbiol. 2018, 9, 1996. [Google Scholar] [CrossRef]
- Martins, N.; Ferreira, I.C.; Barros, L.; Silva, S.; Henriques, M. Candidiasis: Predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 2014, 177, 223–240. [Google Scholar] [CrossRef]
- Liguori, G.; Onofrio, V.; Lucariello, A.; Galle, F.; Signoriello, G.; Colella, G.; D’Amora, M.; Rossano, F. Oral candidiasis: A comparison between conventional methods and multiplex polymerase chain reaction for species identification. Oral. Microbiol. Immunol. 2009, 24, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gherardi, G. Staphylococcus aureus Infection: Pathogenesis and Antimicrobial Resistance. Int. J. Mol. Sci. 2023, 24, 8182. [Google Scholar] [CrossRef]
- Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M.; SENTRY Participants Group. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32, S114–S132. [Google Scholar] [CrossRef] [PubMed]
- Michalik, M.; Podbielska-Kubera, A.; Dmowska-Koroblewska, A. Antibiotic Resistance of Staphylococcus aureus Strains—Searching for New Antimicrobial Agents—Review. Pharmaceuticals 2025, 18, 81. [Google Scholar] [CrossRef]
- Taylor, T.A.; Unakal, C.G. Staphylococcus aureus Infection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Jo, A.; Ahn, J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buonomini, A.R.; Riva, E.; Di Bonaventura, G.; Gherardi, G. Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review. Diagnostics 2020, 10, 830. [Google Scholar] [CrossRef]
- Hofer, U. The Cost of Antimicrobial Resistance. Nat. Rev. Microbiol. 2019, 17, 3. [Google Scholar] [CrossRef]
- McAdam, A.J.; Hooper, D.C.; DeMaria, A.; Limbago, B.M.; O’Brien, T.F.; McCaughey, B. Antibiotic Resistance: How Serious Is the Problem, and What Can Be Done? Clin. Chem. 2012, 58, 1182–1186. [Google Scholar] [CrossRef]
- Ziental, D.; Wysocki, M.; Michalak, M.; Dlugaszewska, J.; Güzel, E.; Sobotta, L. The Dual Synergy of Photodynamic and Sonodynamic Therapy in the Eradication of Methicillin-Resistant Staphylococcus aureus. Appl. Sci. 2023, 13, 3810. [Google Scholar] [CrossRef]
- Jebali, A.; Hajjar, F.H.E.; Pourdanesh, F.; Hekmatimoghaddam, S.; Kazemi, B.; Masoudi, A.; Daliri, K.; Sedighi, N. Silver and Gold Nanostructures: Antifungal Property of Different Shapes of These Nanostructures on Candida Species. Med. Mycol. 2014, 52, 65–72. [Google Scholar]
- Viswanathan, A.K.; Krishnan, R. In Vitro Evaluation of Flexural Strength, Impact Strength, and Surface Microhardness of Vaccinium macrocarpon Reinforced Polymethyl Methacrylate Denture Base Resin. Clin. Exp. Dent. Res. 2025, 11, e70145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiench, R.; Nowicka, J.; Pajaczkowska, M.; Kuropka, P.; Skaba, D.; Kruczek-Kazibudzka, A.; Kuśka-Kiełbratowska, A.; Grzech-Leśniak, K. Influence of Incubation Time on Ortho-Toluidine Blue Mediated Antimicrobial Photodynamic Therapy Directed Against Selected Candida Strains—An In Vitro Study. Int. J. Mol. Sci. 2021, 22, 10971. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, M.; Kuśka-Kielbratowska, A.; Fiegler-Rudol, J.; Niemczyk, W.; Mertas, A.; Skaba, D.; Wiench, R. The Prevalence and Drug Susceptibility of Candida Species and an Analysis of Risk Factors for Oral Candidiasis—A Retrospective Study. Antibiotics 2025, 14, 876. [Google Scholar] [CrossRef]
- Kuśka-Kiełbratowska, A.; Wiench, R.; Mertas, A.; Bobela, E.; Kiełbratowski, M.; Łukomska-Szymańska, M.; Tanasiewicz, M.; Skaba, D. Evaluation of the Sensitivity of Selected Candida Strains to Ozonated Water—An In Vitro Study. Medicina 2022, 58, 1731. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Penetra, M.; Arnaut, L.G.; Gomes-da-Silva, L.C. Trial Watch: An Update of Clinical Advances in Photodynamic Therapy and Its Immunoadjuvant Properties for Cancer Treatment. Oncoimmunology 2023, 12, 2226535. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, N.; Sevilla, A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024, 25, 1023. [Google Scholar] [CrossRef]
- D’Ilario, L.; Martinelli, A. Toluidine Blue: Aggregation Properties and Structural Aspects. Model. Simul. Mater. Sci. Eng. 2006, 14, 581–595. [Google Scholar] [CrossRef]
- Rout, B.; Liu, C.H.; Wu, W.C. Increased anti-biofilm efficacy of toluidine blue on Staphylococcus species after nano-encapsulation. Photodiagn. Photodyn. Ther. 2018, 21, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Samaranayake, L.P.; Romanos, G.E. Treatment of Oral Fungal Infections Using Antimicrobial Photodynamic Therapy: A Systematic Review of Currently Available Evidence. Photochem. Photobiol. Sci. 2014, 13, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.F.; Chen, C.P.; Chen, Y.C.; Chang, P.H.; Tsai, T.; Chen, C.T. The Use of Chitosan to Enhance Photodynamic Inactivation Against Candida albicans and Its Drug-Resistant Clinical Isolates. Int. J. Mol. Sci. 2013, 14, 7445–7456. [Google Scholar] [CrossRef]
- de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.D.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donnelly, R.F.; McCarron, P.A.; Tunney, M.M.; Woolfson, A.D. Potential of Photodynamic Therapy in Treatment of Fungal Infections of the Mouth: Design and Characterisation of a Mucoadhesive Patch Containing Toluidine Blue, O.J. Photochem. Photobiol. B 2007, 86, 59–69. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Q.; Zhang, Y.; Wang, Y.; Liu, N.; Liu, Q. Rapid Inactivation of Mixed Biofilms of Candida albicans and Candida tropicalis Using Antibacterial Photodynamic Therapy: Based on PAD™ Plus. Heliyon 2023, 9, e15396. [Google Scholar] [CrossRef]
- Nielsen, H.K.; Garcia, J.; Væth, M.; Schlafer, S. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro. PLoS ONE 2015, 10, e0140720. [Google Scholar] [CrossRef]
- Moore, J.V.; Wylie, M.P.; Andrews, G.P.; McCoy, C.P. Photosensitiser-Incorporated Microparticles for Photodynamic Inactivation of Bacteria. J. Photochem. Photobiol. B 2023, 241, 112671. [Google Scholar] [CrossRef]
- Ribeiro, C.P.S.; Faustino, M.A.F.; Almeida, A.; Lourenço, L.M.O. The Antimicrobial Photoinactivation Effect on Escherichia coli through the Action of Inverted Cationic Porphyrin–Cyclodextrin Conjugates. Microorganisms 2022, 10, 718. [Google Scholar] [CrossRef]
- Benov, L. Photodynamic Therapy: Current Status and Future Directions. Med. Princ. Pract. 2015, 24 (Suppl. S1), 14–28. [Google Scholar] [CrossRef]
- Kharkwal, G.B.; Sharma, S.K.; Huang, Y.Y.; Dai, T.; Hamblin, M.R. Photodynamic Therapy for Infections: Clinical Applications. Lasers Surg. Med. 2011, 43, 755–767. [Google Scholar] [CrossRef]
- Law, S.K.; Leung, A.W.N.; Xu, C. Photodynamic Action of Curcumin and Methylene Blue Against Bacteria and SARS-CoV-2—A Review. Pharmaceuticals 2024, 17, 34. [Google Scholar] [CrossRef]
- Carvalho, G.G.; Felipe, M.P.; Costa, M.S. The Photodynamic Effect of Methylene Blue and Toluidine Blue on Candida albicans Is Dependent on Medium Conditions. J. Microbiol. 2009, 47, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Barbério, G.S.; da Costa, S.V.; dos Santos Silva, M.; de Oliveira, T.M.; Silva, T.C.; de Andrade Moreira Machado, M.A. Photodynamic Inactivation of Candida albicans Mediated by a Low Density of Light Energy. Lasers Med. Sci. 2014, 29, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Rosseti, I.B.; Chagas, L.R.; Costa, M.S. Photodynamic Antimicrobial Chemotherapy (PACT) Inhibits Biofilm Formation by Candida albicans, Increasing Both ROS Production and Membrane Permeability. Lasers Med. Sci. 2014, 29, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Di Lodovico, S.; Pierfelice, T.V.; Tripodi, D.; Piattelli, A.; Iezzi, G.; Petrini, M.; D’Ercole, S. What Is the Impact of Antimicrobial Photodynamic Therapy on Oral Candidiasis? An In Vitro Study. Gels 2024, 10, 110. [Google Scholar] [CrossRef]
- Wiench, R.; Skaba, D.; Stefanik, N.; Kępa, M.; Łukasz, G.; Cieślar, G.; Kawczyk-Krupka, A. Assessment of Sensitivity of Selected Candida Strains on Antimicrobial Photodynamic Therapy Using Diode Laser 635 nm and Toluidine Blue—In Vitro Research. Photodiagn. Photodyn. Ther. 2019, 27, 241–247. [Google Scholar] [CrossRef]
- Da Silva, B.G.M.; Carvalho, M.L.; Rosseti, I.B.; Zamuner, S.; Costa, M.S. Photodynamic Antimicrobial Chemotherapy (PACT) Using Toluidine Blue Inhibits Both Growth and Biofilm Formation by Candida krusei. Lasers Med. Sci. 2018, 33, 983–990. [Google Scholar] [CrossRef]
- Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold Nanoparticle–Photosensitizer Conjugate-Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice. PLoS ONE 2015, 10, e0131684. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.M.; Da Silva, D.L.; Sousa, G.R.; Amorim, J.C.F.; De Resende, M.A.; Pinotti, M.; Cisalpino, P.S. In Vitro Photodynamic Inactivation of Candida spp. Growth and Adhesion to Buccal Epithelial Cells. J. Photochem. Photobiol. B Biol. 2009, 94, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.B.; Dias-Baruffi, M.; Holman, N.; Wainwright, M.; Braga, G.U. In Vitro Photodynamic Inactivation of Candida Species and Mouse Fibroblasts with Phenothiazinium Photosensitisers and Red Light. Photodiagn. Photodyn. Ther. 2013, 10, 141–149. [Google Scholar] [CrossRef]
- Passos, J.C.D.S.; Calvi, G.S.; Rodrigues, A.B.F.; Costa, M.S. The Inhibitory Effect of Photodynamic Therapy on Dual-Species Biofilms of Candida albicans and Candida krusei Can Be Determined by Candida albicans/Candida krusei Ratio. Photodiagn. Photodyn. Ther. 2023, 44, 103787. [Google Scholar] [CrossRef]
- Rodrigues, A.B.F.; Passos, J.C.D.S.; Costa, M.S. Effect of Antimicrobial Photodynamic Therapy Using Toluidine Blue on Dual-Species Biofilms of Candida albicans and Candida krusei. Photodiagn. Photodyn. Ther. 2023, 42, 103600. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Snell, S.B.; Gill, A.L.; Haidaris, C.G.; Foster, T.H.; Baran, T.M.; Gill, S.R. Staphylococcus aureus Tolerance and Genomic Response to Photodynamic Inactivation. mSphere 2021, 6, e00762-20. [Google Scholar] [CrossRef]
- Romano, A.; Contaldo, M.; Della Vella, F.; Russo, D.; Lajolo, C.; Serpico, R.; Di Stasio, D. Topical toluidine blue-mediated photodynamic therapy for the treatment of oral lichen planus. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. S1), 27–33. [Google Scholar] [PubMed]
- Paz-Cristobal, M.P.; Royo, D.; Rezusta, A.; Andrés-Ciriano, E.; Alejandre, M.C.; Meis, J.F.; Revillo, M.J.; Aspiroz, C.; Nonell, S.; Gilaberte, Y. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses 2014, 57, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Picco, D.C.R.; Cavalcante, L.L.R.; Trevisan, R.L.B.; Souza-Gabriel, A.E.; Borsatto, M.C.; Corona, S.A.M. Effect of curcumin-mediated photodynamic therapy on Streptococcus mutans and Candida albicans: A systematic review of in vitro studies. Photodiagn. Photodyn. Ther. 2019, 27, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Kasić, S.; Knezović, M.; Beader, N.; Gabrić, D.; Malčić, A.I.; Baraba, A. Efficacy of Three Different Lasers on Eradication of Enterococcus faecalis and Candida albicans Biofilms in Root Canal System. Photomed. Laser Surg. 2017, 35, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Becerik, S.; Ozçaka, O.; Nalbantsoy, A.; Atilla, G.; Celec, P.; Behuliak, M.; Emingil, G. Effects of menstrual cycle on periodontal health and gingival crevicular fluid markers. J. Periodontol. 2010, 81, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Mombeshora, M.; Mukanganyama, S. Development of an accumulation assay and evaluation of the effects of efflux pump inhibitors on the retention of chlorhexidine digluconate in Pseudomonas aeruginosa and Staphylococcus aureus. BMC Res. Notes 2017, 10, 328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Microorganism | Time (s) | 50 mW | 100 mW | 200 mW | 300 mW | 400 mW |
---|---|---|---|---|---|---|
A. Candida albicans ATCC 10231 | ||||||
30 | 26.42% | 12.78% | 56.34% | 66.42% | 67.15% | |
60 | 25.38% | 38.69% | 39.30% | 77.23% | 56.86% | |
90 | 24.33% | 37.88% | 45.28% | 76.03% | 91.08% | |
120 | 44.55% | 68.85% | 80.78% | 92.88% | 95.18% | |
B. Candida krusei ATCC 14243 | ||||||
30 | 32.91% | 33.02% | 60.63% | 58.82% | 66.46% | |
60 | 31.63% | 36.19% | 51.25% | 61.92% | 72.62% | |
90 | 26.26% | 31.31% | 62.63% | 75.76% | 72.22% | |
120 | 35.35% | 36.36% | 56.06% | 80.81% | 90.05% | |
C. Candida glabrata ATCC 2001 | ||||||
30 | 19.80% | 11.47% | 41.08% | 56.26% | 55.92% | |
60 | 12.12% | 34.41% | 40.48% | 45.13% | 47.57% | |
90 | 15.13% | 39.05% | 47.54% | 72.87% | 71.83% | |
120 | 21.02% | 33.14% | 41.65% | 74.81% | 82.23% | |
D. Staphylococcus aureus ATCC 25923 | ||||||
30 | 53.96% | 77.48% | 77.72% | 76.60% | 86.23% | |
60 | 57.52% | 76.15% | 74.29% | 88.71% | 87.75% | |
90 | 72.75% | 81.14% | 85.32% | 98.75% | 98.78% | |
120 | 77.53% | 84.40% | 86.50% | 98.78% | 99.00% | |
E. Mixed culture (C. albicans ATCC 10231 + S. aureus ATCC 25923) | ||||||
30 | 47.30% | 60.70% | 67.37% | 71.68% | 80.65% | |
60 | 50.71% | 62.49% | 70.04% | 82.30% | 86.04% | |
90 | 61.51% | 65.95% | 77.50% | 94.68% | 96.26% | |
120 | 64.49% | 68.97% | 84.41% | 97.14% | 97.52% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkaczyk, M.; Mertas, A.; Kuśka-Kiełbratowska, A.; Fiegler-Rudol, J.; Bobela, E.; Cisowska, M.; Skaba, D.; Wiench, R. Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study. Microorganisms 2025, 13, 2126. https://doi.org/10.3390/microorganisms13092126
Tkaczyk M, Mertas A, Kuśka-Kiełbratowska A, Fiegler-Rudol J, Bobela E, Cisowska M, Skaba D, Wiench R. Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study. Microorganisms. 2025; 13(9):2126. https://doi.org/10.3390/microorganisms13092126
Chicago/Turabian StyleTkaczyk, Marcin, Anna Mertas, Anna Kuśka-Kiełbratowska, Jakub Fiegler-Rudol, Elżbieta Bobela, Maria Cisowska, Dariusz Skaba, and Rafał Wiench. 2025. "Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study" Microorganisms 13, no. 9: 2126. https://doi.org/10.3390/microorganisms13092126
APA StyleTkaczyk, M., Mertas, A., Kuśka-Kiełbratowska, A., Fiegler-Rudol, J., Bobela, E., Cisowska, M., Skaba, D., & Wiench, R. (2025). Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study. Microorganisms, 13(9), 2126. https://doi.org/10.3390/microorganisms13092126