New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections
Abstract
1. Introduction
1.1. Clinical Burden of AMR
1.2. Rationale for Drug Repurposing
1.3. Novelty and Scope of This Review
2. Host-Directed Therapies (HDT) in Infectious Diseases
2.1. Phosphoinositide 3-Kinase (PI3K) Inhibitors
2.2. Thalidomide
2.3. Drugs Affecting NETosis and Iron Metabolism
3. Approved Drugs with Antibacterial Activity or Enhancing/Restoring Antibiotic Sensitivity
- Antimicrobial Agents (antiparasitic, antifungal, anthelmintic, and antiviral drugs)
- Ciclopirox (antifungal): Functions through iron chelation and inhibition of LPS (lipopolysaccharide) synthesis, with broad activity against Gram-negative bacteria.
- Pentamidine (antiparasitic): An antibiotic sensitizer that interacts with LPS and increases membrane permeability, with potential for inhaled delivery formulations.
- Niclosamide (anthelmintic): Induces oxidative stress and inhibits ATP production; synergistic with polymyxins.
- Zidovudine: Demonstrates inhibition of plasmid transfer and bacterial DNA synthesis; exhibits synergy with several conventional antibiotics.
3.1. Ciclopirox
3.2. Pentamidine
3.3. Niclosamide
3.4. Tavaborole
3.5. Zidovudine
- Anti-inflammatory agents (non-steroidal anti-inflammatory drugs and anti-rheumatic drugs)
3.6. Non-Steroidal Anti-Inflammatory Drugs
- Diclofenac: Inhibits bacterial DNA synthesis and shows synergistic interactions with ciprofloxacin. Its achievable clinical dosing makes diclofenac a candidate for adjunctive therapy.
- Acetylsalicylic acid (Aspirin): Demonstrates synergy with colistin, including reversal of resistance in MDR Enterobacteriaceae. Salicylate inhibits biofilm formation and motility in E. coli and Pseudomonas, with enhanced effects when combined with EDTA. Host-directed actions include Aspirin-triggered resolvins that accelerate bacterial clearance in murine pneumonia models, with additive effects alongside ciprofloxacin.
- Ibuprofen: Exhibits MICs in the low µg/mL range against E. coli, inhibits biofilm maturation of Pseudomonas, and reduces adherence to urothelial cells by decreasing fimbriae production. In cystic fibrosis models, ibuprofen delays Pseudomonas biofilm development and improves survival in infected mice.
3.6.1. Diclofenac
3.6.2. Acetylsalicylic Acid (Aspirin)
3.6.3. Ibuprofen
3.7. Auranofin
- Cardiovascular and Metabolic Drugs
- Amlodipine: Inhibits efflux pumps and reverses resistance in vitro; however, pharmacological limitations prevent its use in acute sepsis.
- Metformin: Reduces the transcription of efflux pump genes; has favorable safety but limited direct antimicrobial potency.
- Statins: Show antibacterial effects and immunomodulation in vitro, possibly through altered membrane function and cholesterol biosynthesis pathways.
3.8. Amlodipine
3.9. Metformin
3.10. Statins
- Gastrointestinal Agents
- Loperamide: Disrupts bacterial membranes and increases permeability. It could have antagonistic effects with certain antibiotics; despite in vitro potency, pharmacokinetics limit systemic use.
- Bismuth: Specifically eradicates MDR P. aeruginosa in combination with antibiotics.
3.11. Loperamide
3.12. Bismuth
- Psychotrophic medications (antipsychotics, antidepressants and anxiolytics)
- Fluspirilene: Show limited but notable activity; more research required.
- SSRIs: Manifest antibacterial activity and synergy with aminoglycosides and fluoroquinolones; sertraline and fluoxetine have been most studied.
- Anxiolytics (benzodiazepines): Some members promote plasmid DNA cleavage, interfering with resistance gene transfer.
3.13. Fluspirilene
3.14. Selective Serotonin Reuptake Inhibitors
3.15. Benzodiazepines
Drug Name | Original Indication | Antibacterial Mechanism(s) of Action | Antibacterial Activity (In Vitro) | In Vivo Activity | Immune-Modulation/Antioxidant Effect | Anti-Virulence Effect |
---|---|---|---|---|---|---|
Ciclopirox | Antifungal (topical) | Iron chelation; inhibition of LPS synthesis, disruption of galactose metabolism | + | + | + | + |
Pentamidine | Anti-parasitic | Adjuvant (LPS interaction; increased membrane permeability) | +(as an adjuvant) | +(as an adjuvant) | + | |
Niclosamide | Anthelmintic | Oxidative damage; inhibition of ATP production | + | + | + | + |
Tavaborole | Antifungal (topical) | Not specified | + | +(as an adjuvant) | ||
Zidovudine | Antiviral | Inhibition of DNA synthesis; inhibition of plasmid transfer | + | +(as an adjuvant) | ||
Diclofenac | NSAID | Inhibition of DNA synthesis | + | + | + | + |
Acetylsalicylic acid (ASA) | NSAID | Membrane disruption | + | + | + | + |
Ibuprofen | NSAID | Inhibition of ATP production | + | + | + | + |
Auranofin | Anti-rheumatic | Inhibition of thioredoxin reductase (TrxR); inhibition of MBLs and MCR enzymes | + | + | ||
Amlodipine | Antihypertensive | Adjuvant (inhibition of efflux pumps) | +(as an adjuvant) | +(as an adjuvant) | + | |
Metformin | Antidiabetic (T2DM) | Inhibition of efflux pump transcription | +(as an adjuvant) | +(as an adjuvant and through immune modulation) | + | |
Statins | Antihyperlipidemic | Not specified | + | +(as an adjuvant) | + | |
Loperamide | Antidiarrheal | Adjuvant (membrane disruption, increased permeability) | + | + | ||
Bismuth | Peptic ulcers and diarrhea | Adjuvant (inhibition of antibiotics-inactivating enzymes and efflux pumps) | + | + | ||
Fluspirilene | Antipsychotic | Adjuvant and host-directed effects | +(as an adjuvant) | |||
SSRIs | Antidepressants | Adjuvant | +(as an adjuvant) | +(as an adjuvant) | + | |
Benzodiazepines | Anxiolytics | Adjuvant (plasmid cleavage) | +(as an adjuvant) |
- Anticancer and Cytotoxic Agents
3.16. Anticancer Drugs
3.16.1. 5-Fluorouracil
3.16.2. Mitomycin C
3.16.3. Hormonal Modulators
3.16.4. Gallium
3.16.5. Tirapazamine
3.16.6. Mitoxantrone
4. Natural Compounds, Vitamins, and Dietary Supplements
4.1. Curcumin
4.2. Berberine
4.3. Epigallocatechin Gallate
4.4. Quercetin
4.5. Capsaicin
4.6. Cranberry Proanthocyanidins
4.7. Vitamin D
4.8. Vitamin C
4.9. Melatonin
5. Repurposing of Drugs for the Treatment of Bioterror Agents
5.1. Plague—Yersinia pestis
5.2. Tularemia—Francisella tularensis
5.3. Melioidosis—Burkholderia pseudomallei
6. Discussion and Outlook
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic Use in Plant Agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Wright, G.D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems Through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Taylor, M. Legionella Detection by Culture and qPCR: Comparing Apples and Oranges. Crit. Rev. Microbiol. 2016, 42, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Anokyeqwaa, M.A.; Wang, J.; Jian, J.; Lu, Y. Pathogenicity and Antibiotic Resistance Analysis of Vibrio Species Found in Coastal Water at Mainly Beach of Shenzhen, China. Front. Mar. Sci. 2022, 9, 980593. [Google Scholar] [CrossRef]
- Weigel, L.M.; Morse, S.A. Implications of Antibiotic Resistance in Potential Agents of Bioterrorism. In Antimicrobial Drug Resistance; Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-Directed Immunotherapy of Viral and Bacterial Infections: Past, Present and Future. Nat. Rev. Immunol. 2023, 23, 121–133. [Google Scholar] [CrossRef]
- Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; et al. Host-Directed Therapies for Infectious Diseases: Current Status, Recent Progress, and Future Prospects. Lancet Infect. Dis. 2016, 16, e47–e63. [Google Scholar] [CrossRef]
- Skyberg, J.A. Immunopotentiation for Bacterial Biodefense. Curr. Top. Med. Chem. 2014, 14, 2115–2126. [Google Scholar] [CrossRef]
- Gal, Y.; Marcus, H.; Mamroud, E.; Aloni-Grinstein, R. Mind the Gap-A Perspective on Strategies for Protecting Against Bacterial Infections During the Period from Infection to Eradication. Microorganisms 2023, 11, 1701. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Uzoma, I.; Moore, R.T.; Gilbert, M.; Duplantier, A.J.; Panchal, R.G. Mitigating the Impact of Antibacterial Drug Resistance Through Host-Directed Therapies: Current Progress, Outlook, and Challenges. mBio 2018, 9, e01932-17. [Google Scholar] [CrossRef]
- Mourenza, A.; Gil, J.A.; Mateos, L.M.; Letek, M. Novel Treatments Against Mycobacterium Tuberculosis Based on Drug Repurposing. Antibiotics 2020, 9, 550. [Google Scholar] [CrossRef]
- Czyz, D.M.; Potluri, L.P.; Jain-Gupta, N.; Riley, S.P.; Martinez, J.J.; Steck, T.L.; Crosson, S.; Shuman, H.A.; Gabay, J.E. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy Against Intracellular Bacterial Pathogens. mBio 2014, 5, e01534-14. [Google Scholar] [CrossRef]
- Fleeman, R. Repurposing Inhibitors of Phosphoinositide 3-Kinase as Adjuvant Therapeutics for Bacterial Infections. Front. Antibiot. 2023, 2, 1135485. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Bolanos, N.; Laoutaris, G.; Papadakis, V.; Koussoulas, V.; Perrea, D.; Karayannacos, P.E.; Giamarellou, H. Immunomodulatory Intervention in Sepsis by Multidrug-Resistant Pseudomonas aeruginosa with Thalidomide: An Experimental Study. BMC Infect. Dis. 2005, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Poulaki, H.; Kostomitsopoulos, N.; Dontas, I.; Perrea, D.; Karayannacos, P.E.; Giamarellou, H. Effective Immunomodulatory Treatment of Escherichia coli Experimental Sepsis with Thalidomide. Antimicrob. Agents Chemother. 2003, 47, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Carlson-Banning, K.M.; Chou, A.; Liu, Z.; Hamill, R.J.; Song, Y.; Zechiedrich, L. Toward Repurposing Ciclopirox as an Antibiotic Against Drug-Resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS ONE 2013, 8, e69646. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron Homeostasis in Host Defence and Inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, T.; Pan, J.G. In Vitro Evaluation of Ciclopirox as an Adjuvant for Polymyxin B Against Gram-Negative Bacteria. J. Antibiot. 2015, 68, 395–398. [Google Scholar] [CrossRef]
- Gupta, A.K.; Plott, T. Ciclopirox: A Broad-Spectrum Antifungal with Antibacterial and Anti-Inflammatory Properties. Int. J. Dermatol. 2004, 43 (Suppl. S1), 3–8. [Google Scholar] [CrossRef]
- Liang, S.; Yang, Z.; Hua, L.; Chen, Y.; Zhou, Y.; Ou, Y.; Chen, X.; Yue, H.; Yang, X.; Wu, X.; et al. Ciclopirox Inhibits Nlrp3 Inflammasome Activation via Protecting Mitochondria and Ameliorates Imiquimod-Induced Psoriatic Inflammation in Mice. Eur. J. Pharmacol. 2022, 930, 175156. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, T.; Shang, C.; Luo, Y.; Liu, L.; Yan, J.; Li, Y.; Huang, S. Ciclopirox Induces Autophagy Through Reactive Oxygen Species-Mediated Activation of Jnk Signaling Pathway. Oncotarget 2014, 5, 10140–10150. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brown, D. Antibiotic Resistance Breakers: Can Repurposed Drugs Fill the Antibiotic Discovery Void? Nat. Rev. Drug Discov. 2015, 14, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Subissi, A.; Monti, D.; Togni, G.; Mailland, F. Ciclopirox: Recent Nonclinical and Clinical Data Relevant to Its Use as a Topical Antimycotic Agent. Drugs 2010, 70, 2133–2152. [Google Scholar] [CrossRef] [PubMed]
- Ihn, H.J.; Lim, J.; Kim, K.; Nam, S.H.; Lim, S.; Lee, S.J.; Bae, J.S.; Kim, T.H.; Kim, J.E.; Baek, M.C.; et al. Protective Effect of Ciclopirox Against Ovariectomy-Induced Bone Loss in Mice by Suppressing Osteoclast Formation and Function. Int. J. Mol. Sci. 2021, 22, 8299. [Google Scholar] [CrossRef]
- Weir, S.J.; Patton, L.; Castle, K.; Rajewski, L.; Kasper, J.; Schimmer, A.D. The Repositioning of the Anti-Fungal Agent Ciclopirox Olamine as a Novel Therapeutic Agent for the Treatment of Haematologic Malignancy. J. Clin. Pharm. Ther. 2011, 36, 128–134. [Google Scholar] [CrossRef]
- Subbaiah, K.C.V.; Wu, J.; Tang, W.H.W.; Yao, P. Ciclopirox Inhibition of eIF5A Hypusination Attenuates Fibroblast Activation and Cardiac Fibrosis. J. Cardiovasc. Dev. Dis. 2023, 10, 52. [Google Scholar] [CrossRef]
- Yin, J.; Che, G.; Jiang, K.; Zhou, Z.; Wu, L.; Xu, M.; Liu, J.; Yan, S. Ciclopirox Olamine Exerts Tumor-Suppressor Effects via Topoisomerase II Alpha in Lung Adenocarcinoma. Front. Oncol. 2022, 12, 791916. [Google Scholar] [CrossRef]
- Weir, S.J.; Dandawate, P.; Standing, D.; Bhattacharyya, S.; Ramamoorthy, P.; Rangarajan, P.; Wood, R.; Brinker, A.E.; Woolbright, B.L.; Tanol, M.; et al. Fosciclopirox Suppresses Growth of High-Grade Urothelial Cancer by Targeting the Gamma-Secretase Complex. Cell Death Dis. 2021, 12, 562. [Google Scholar] [CrossRef]
- Sands, M.; Kron, M.A.; Brown, R.B. Pentamidine: A Review. Rev. Infect. Dis. 1985, 7, 625–634. [Google Scholar] [CrossRef]
- Stokes, J.M.; Macnair, C.R.; Ilyas, B.; French, S.; Cote, J.P.; Bouwman, C.; Farha, M.A.; Sieron, A.O.; Whitfield, C.; Coombes, B.K.; et al. Pentamidine Sensitizes Gram-Negative Pathogens to Antibiotics and Overcomes Acquired Colistin Resistance. Nat. Microbiol. 2017, 2, 17028. [Google Scholar] [CrossRef]
- Tang, M.; Qian, C.; Zhang, X.; Liu, Y.; Pan, W.; Yao, Z.; Zeng, W.; Xu, C.; Zhou, T. When Combined with Pentamidine, Originally Ineffective Linezolid Becomes Active in Carbapenem-Resistant Enterobacteriaceae. Microbiol. Spectr. 2023, 11, e0313822. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.; Lei, E.; Yang, A.; Li, Y.; Wen, K.; Wang, M.; Li, L.; Chen, Z.; Zhou, C.; et al. Cooperative Membrane Damage as a Mechanism for Pentamidine-Antibiotic Mutual Sensitization. ACS Chem. Biol. 2022, 17, 3178–3190. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, H.; Lin, J.; Li, Z.; Tian, G.; Yang, Y.Y.; Yuan, P.; Ding, X. Repurposing Non-Antibiotic Drugs Auranofin and Pentamidine in Combination to Combat Multidrug-Resistant Gram-Negative Bacteria. Int. J. Antimicrob. Agents 2022, 59, 106582. [Google Scholar] [CrossRef] [PubMed]
- Macnair, C.R.; Farha, M.A.; Serrano-Wu, M.H.; Lee, K.K.; Hubbard, B.; Cote, J.P.; Carfrae, L.A.; Tu, M.M.; Gaulin, J.L.; Hunt, D.K.; et al. Preclinical Development of Pentamidine Analogs Identifies a Potent and Nontoxic Antibiotic Adjuvant. ACS Infect. Dis. 2022, 8, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, C.M.J.; Slingerland, C.J.; Veraar, S.; Lok, S.; Martin, N.I. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics Against Gram-Negative Pathogens. ACS Infect. Dis. 2021, 7, 3314–3335. [Google Scholar] [CrossRef]
- Rosenthal, G.J.; Craig, W.A.; Corsini, E.; Taylor, M.; Luster, M.I. Pentamidine Blocks the Pathophysiologic Effects of Endotoxemia Through Inhibition of Cytokine Release. Toxicol. Appl. Pharmacol. 1992, 112, 222–228. [Google Scholar] [CrossRef]
- Esposito, G.; Capoccia, E.; Sarnelli, G.; Scuderi, C.; Cirillo, C.; Cuomo, R.; Steardo, L. The Antiprotozoal Drug Pentamidine Ameliorates Experimentally Induced Acute Colitis in Mice. J. Neuroinflamm. 2012, 9, 277. [Google Scholar] [CrossRef]
- Chen, Y.L.; Le Vraux, V.; Giroud, J.P.; Chauvelot-Moachon, L. Anti-Tumor Necrosis Factor Properties of Non-Peptide Drugs in Acute-Phase Responses. Eur. J. Pharmacol. 1994, 271, 319–327. [Google Scholar] [CrossRef]
- Dudakov, J.A.; Hanash, A.M.; Van Den Brink, M.R. Interleukin-22: Immunobiology and Pathology. Annu. Rev. Immunol. 2015, 33, 747–785. [Google Scholar] [CrossRef]
- Costa, D.V.S.; Moura-Neto, V.; Bolick, D.T.; Guerrant, R.L.; Fawad, J.A.; Shin, J.H.; Medeiros, P.; Ledwaba, S.E.; Kolling, G.L.; Martins, C.S.; et al. S100b Inhibition Attenuates Intestinal Damage and Diarrhea Severity During Clostridioides difficile Infection by Modulating Inflammatory Response. Front. Cell. Infect. Microbiol. 2021, 11, 739874. [Google Scholar] [CrossRef]
- Van Wauwe, J.; Aerts, F.; Van Genechten, H.; Blockx, H.; Deleersnijder, W.; Walter, H. The Inhibitory Effect of Pentamidine on the Production of Chemotactic Cytokines by In Vitro Stimulated Human Blood Cells. Inflamm. Res. 1996, 45, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Quay, J.; Rosenthal, G.; Becker, S. Effect of Pentamidine on Cytokine (IL-β, TNFα, IL-6) Production by Human Alveolar Macrophages In Vitro. Exp. Lung Res. 1993, 19, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Imperi, F.; Massai, F.; Ramachandran Pillai, C.; Longo, F.; Zennaro, E.; Rampioni, G.; Visca, P.; Leoni, L. New Life for an Old Drug: The Anthelmintic Drug Niclosamide Inhibits Pseudomonas aeruginosa Quorum Sensing. Antimicrob. Agents Chemother. 2013, 57, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pachon-Ibanez, M.E.; Cebrero-Cangueiro, T.; Chen, H.; Sanchez-Cespedes, J.; Zhou, J. Discovery of Niclosamide and Its O-Alkylamino-Tethered Derivatives as Potent Antibacterial Agents Against Carbapenemase-Producing and/or Colistin Resistant Enterobacteriaceae Isolates. Bioorg. Med. Chem. Lett. 2019, 29, 1399–1402. [Google Scholar] [CrossRef]
- Ayerbe-Algaba, R.; Gil-Marques, M.L.; Jimenez-Mejias, M.E.; Sanchez-Encinales, V.; Parra-Millan, R.; Pachon-Ibanez, M.E.; Pachon, J.; Smani, Y. Synergistic Activity of Niclosamide in Combination with Colistin Against Colistin-Susceptible and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 348. [Google Scholar] [CrossRef]
- Domalaon, R.; De Silva, P.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. The Anthelmintic Drug Niclosamide Synergizes with Colistin and Reverses Colistin Resistance in Gram-Negative Bacilli. Antimicrob. Agents Chemother. 2019, 63, e02574-18. [Google Scholar] [CrossRef]
- Copp, J.N.; Pletzer, D.; Brown, A.S.; Van Der Heijden, J.; Miton, C.M.; Edgar, R.J.; Rich, M.H.; Little, R.F.; Williams, E.M.; Hancock, R.E.W.; et al. Mechanistic Understanding Enables the Rational Design of Salicylanilide Combination Therapies for Gram-Negative Infections. mBio 2020, 11, e02068-20. [Google Scholar] [CrossRef]
- Liang, L.; Huang, M.; Xiao, Y.; Zen, S.; Lao, M.; Zou, Y.; Shi, M.; Yang, X.; Xu, H. Inhibitory Effects of Niclosamide on Inflammation and Migration of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Inflamm. Res. 2015, 64, 225–233. [Google Scholar] [CrossRef]
- Thatikonda, S.; Pooladanda, V.; Godugu, C. Repurposing an Old Drug for New Use: Niclosamide in Psoriasis-Like Skin Inflammation. J. Cell. Physiol. 2020, 235, 5270–5283. [Google Scholar] [CrossRef]
- Huang, M.; Qiu, Q.; Zeng, S.; Xiao, Y.; Shi, M.; Zou, Y.; Ye, Y.; Liang, L.; Yang, X.; Xu, H. Niclosamide Inhibits the Inflammatory and Angiogenic Activation of Human Umbilical Vein Endothelial Cells. Inflamm. Res. 2015, 64, 1023–1032. [Google Scholar] [CrossRef]
- Backer, V.; Sjobring, U.; Sonne, J.; Weiss, A.; Hostrup, M.; Johansen, H.K.; Becker, V.; Sonne, D.P.; Balchen, T.; Jellingso, M.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase 1 Trial of Inhaled and Intranasal Niclosamide: A Broad Spectrum Antiviral Candidate for Treatment of COVID-19. Lancet Reg. Health Eur. 2021, 4, 100084. [Google Scholar] [CrossRef] [PubMed]
- Di Bonaventura, G.; Lupetti, V.; Di Giulio, A.; Muzzi, M.; Piccirilli, A.; Cariani, L.; Pompilio, A. Repurposing High-Throughput Screening Identifies Unconventional Drugs with Antibacterial and Antibiofilm Activities Against Pseudomonas aeruginosa Under Experimental Conditions Relevant to Cystic Fibrosis. Microbiol. Spectr. 2023, 11, e0035223. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; She, P.; Li, Z.; Li, Y.; Li, L.; Yang, Y.; Zhou, L.; Wu, Y. Drug Synergy Discovery of Tavaborole and Aminoglycosides Against Escherichia coli Using High Throughput Screening. AMB Express 2022, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, G.X.; Hammer, S.M. Zidovudine: Five Years Later. Ann. Intern. Med. 1992, 117, 487–501. [Google Scholar] [CrossRef]
- Elwell, L.P.; Ferone, R.; Freeman, G.A.; Fyfe, J.A.; Hill, J.A.; Ray, P.H.; Richards, C.A.; Singer, S.C.; Knick, V.B.; Rideout, J.L.; et al. Antibacterial Activity and Mechanism of Action of 3′-Azido-3′-Deoxythymidine (Bw A509U). Antimicrob. Agents Chemother. 1987, 31, 274–280. [Google Scholar] [CrossRef]
- Peyclit, L.; Ben Khedher, M.; Zerrouki, L.; Diene, S.M.; Baron, S.A.; Rolain, J.M. Inactivation of Thymidine Kinase as a Cause of Resistance to Zidovudine in Clinical Isolates of Escherichia coli: A Phenotypic and Genomic Study. J. Antimicrob. Chemother. 2020, 75, 1410–1414. [Google Scholar] [CrossRef]
- Buckner, M.M.C.; Ciusa, M.L.; Meek, R.W.; Moorey, A.R.; McCallum, G.E.; Prentice, E.L.; Reid, J.P.; Alderwick, L.J.; Di Maio, A.; Piddock, L.J.V. HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes. mBio 2020, 11, e03355-19. [Google Scholar] [CrossRef]
- Desarno, A.E.; Parcell, B.J.; Coote, P.J. Repurposing the Anti-Viral Drug Zidovudine (Azt) in Combination with Meropenem as an Effective Treatment for Infections with Multi-Drug Resistant, Carbapenemase-Producing Strains of Klebsiella pneumoniae. Pathog. Dis. 2020, 78, ftaa063. [Google Scholar] [CrossRef]
- Lin, Y.W.; Abdul Rahim, N.; Zhao, J.; Han, M.L.; Yu, H.H.; Wickremasinghe, H.; Chen, K.; Wang, J.; Paterson, D.L.; Zhu, Y.; et al. Novel Polymyxin Combination with the Antiretroviral Zidovudine Exerts Synergistic Killing Against Ndm-Producing Multidrug-Resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2019, 63, e02176-18. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Coates, A. Azidothymidine Produces Synergistic Activity in Combination with Colistin Against Antibiotic-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e01630-18. [Google Scholar] [CrossRef]
- Falagas, M.E.; Voulgaris, G.L.; Tryfinopoulou, K.; Giakkoupi, P.; Kyriakidou, M.; Vatopoulos, A.; Coates, A.; Hu, Y.; The Colistin—Azidothymidine Hellenic Study Group. Synergistic Activity of Colistin with Azidothymidine Against Colistin-Resistant Klebsiella pneumoniae Clinical Isolates Collected from Inpatients in Greek Hospitals. Int. J. Antimicrob. Agents 2019, 53, 855–858. [Google Scholar] [CrossRef]
- Loose, M.; Naber, K.G.; Hu, Y.; Coates, A.; Wagenlehner, F.M.E. Serum Bactericidal Activity of Colistin and Azidothymidine Combinations Against MCR-1-Positive Colistin-Resistant Escherichia coli. Int. J. Antimicrob. Agents 2018, 52, 783–789. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Y.; Yang, K.; Li, R.; Xiao, X.; Wang, Z. Anti-Hiv Agent Azidothymidine Decreases Tet(X)-Mediated Bacterial Resistance to Tigecycline in Escherichia coli. Commun. Biol. 2020, 3, 162. [Google Scholar] [CrossRef]
- Doleans-Jordheim, A.; Bergeron, E.; Bereyziat, F.; Ben-Larbi, S.; Dumitrescu, O.; Mazoyer, M.A.; Morfin, F.; Dumontet, C.; Freney, J.; Jordheim, L.P. Zidovudine (Azt) Has a Bactericidal Effect on Enterobacteria and Induces Genetic Modifications in Resistant Strains. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Liu, P.; Dai, S.H.; Sun, J.; Liu, Y.H.; Liao, X.P. Activity of Tigecycline or Colistin in Combination with Zidovudine Against Escherichia coli Harboring Tet(X) and MCR-1. Antimicrob. Agents Chemother. 2020, 65, e01172-20. [Google Scholar] [CrossRef] [PubMed]
- Antonello, R.M.; Di Bella, S.; Betts, J.; La Ragione, R.; Bressan, R.; Principe, L.; Morabito, S.; Gigliucci, F.; Tozzoli, R.; Busetti, M.; et al. Zidovudine in Synergistic Combination with Fosfomycin: An In Vitro and In Vivo Evaluation Against Multidrug-Resistant Enterobacterales. Int. J. Antimicrob. Agents 2021, 58, 106362. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, M.A.; Shakya, V.P.S.; Lewis, A.J.; Mulvey, M.A.; Brown, J.C.S. High-Throughput Identification and Rational Design of Synergistic Small-Molecule Pairs for Combating and Bypassing Antibiotic Resistance. PLoS Biol. 2017, 15, e2001644. [Google Scholar] [CrossRef]
- Ng, S.M.S.; Sioson, J.S.P.; Yap, J.M.; Ng, F.M.; Ching, H.S.V.; Teo, J.W.P.; Jureen, R.; Hill, J.; Chia, C.S.B. Repurposing Zidovudine in Combination with Tigecycline for Treating Carbapenem-Resistant Enterobacteriaceae Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 141–148. [Google Scholar] [CrossRef]
- Alves De Lima E Silva, A.; Silva, P.M. Non-Antibiotic Compounds: The Activity of the Nsaid Diclofenac on Bacteria–A Review. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 340–351. [Google Scholar] [CrossRef]
- Mazumdar, K.; Dutta, N.K.; Dastidar, S.G.; Motohashi, N.; Shirataki, Y. Diclofenac in the Management of E. coli Urinary Tract Infections. In Vivo 2006, 20, 613–619. [Google Scholar]
- Dastidar, S.G.; Ganguly, K.; Chaudhuri, K.; Chakrabarty, A.N. The Anti-Bacterial Action of Diclofenac Shown by Inhibition of DNA Synthesis. Int. J. Antimicrob. Agents 2000, 14, 249–251. [Google Scholar] [CrossRef]
- Mazumdar, K.; Dastidar, S.G.; Park, J.H.; Dutta, N.K. The Anti-Inflammatory Non-Antibiotic Helper Compound Diclofenac: An Antibacterial Drug Target. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, S.; Guha-Thakurta, A.; Sa, B.; Ray, R.; Chakrabarty, A.N. Experimental Studies on Synergism Between Aminoglycosides and the Antimicrobial Antiinflammatory Agent Diclofenac Sodium. J. Chemother. 2002, 14, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Annadurai, S.; Mazumdar, K.; Dastidar, S.G.; Kristiansen, J.E.; Molnar, J.; Martins, M.; Amaral, L. Potential Management of Resistant Microbial Infections with a Novel Non-Antibiotic: The Anti-Inflammatory Drug Diclofenac Sodium. Int. J. Antimicrob. Agents 2007, 30, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Dastidar, S.G.; Annadurai, S.; Kumar, K.A.; Dutta, N.K.; Chakrabarty, A.N. Evaluation of a Synergistic Combination Between the Non-Antibiotic Microbicides Diclofenac and Trifluoperazine. Int. J. Antimicrob. Agents 2003, 21, 599–601. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Ahmed, M.T.; Anwer, B.E.; Aboshanab, K.M.; Aboulwafa, M.M. Propranolol, Chlorpromazine and Diclofenac Restore Susceptibility of Extensively Drug-Resistant (Xdr)-Acinetobacter baumannii to Fluoroquinolones. PLoS ONE 2020, 15, e0238195. [Google Scholar] [CrossRef]
- Abbas, H.A. Inhibition of Virulence Factors of Pseudomonas aeruginosa by Diclofenac Sodium. Roum. Arch. Microbiol. Immunol. 2015, 74, 79–85. [Google Scholar]
- Desborough, M.J.R.; Keeling, D.M. The Aspirin Story—From Willow to Wonder Drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef]
- Ohsuka, S.; Ohta, M.; Masuda, K.; Arakawa, Y.; Kaneda, T.; Kato, N. Lidocaine Hydrochloride and Acetylsalicylate Kill Bacteria by Disrupting the Bacterial Membrane Potential in Different Ways. Microbiol. Immunol. 1994, 38, 429–434. [Google Scholar] [CrossRef]
- Malla, C.F.; Mireles, N.A.; Ramirez, A.S.; Poveda, J.B.; Tavio, M.M. Aspirin, Sodium Benzoate and Sodium Salicylate Reverse Resistance to Colistin in Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2020, 75, 3568–3575. [Google Scholar] [CrossRef]
- Al-Bakri, A.G.; Othman, G.; Bustanji, Y. The Assessment of the Antibacterial and Antifungal Activities of Aspirin, Edta and Aspirin-Edta Combination and Their Effectiveness as Antibiofilm Agents. J. Appl. Microbiol. 2009, 107, 280–286. [Google Scholar] [CrossRef]
- Vila, J.; Soto, S.M. Salicylate Increases the Expression of Mara and Reduces In Vitro Biofilm Formation in Uropathogenic Escherichia coli by Decreasing Type 1 Fimbriae Expression. Virulence 2012, 3, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Antimicrobial Effects of Antipyretics. Antimicrob. Agents Chemother. 2017, 61, e02268-16. [Google Scholar] [CrossRef] [PubMed]
- Abdulnour, R.E.; Sham, H.P.; Douda, D.N.; Colas, R.A.; Dalli, J.; Bai, Y.; Ai, X.; Serhan, C.N.; Levy, B.D. Aspirin-Triggered Resolvin D1 Is Produced During Self-Resolving Gram-Negative Bacterial Pneumonia and Regulates Host Immune Responses for the Resolution of Lung Inflammation. Mucosal Immunol. 2016, 9, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K.D. Ibuprofen: Pharmacology, Efficacy and Safety. Inflammopharmacology 2009, 17, 275–342. [Google Scholar] [CrossRef]
- Al-Janabi, A.A. In Vitro Antibacterial Activity of Ibuprofen and Acetaminophen. J. Glob. Infect. Dis. 2010, 2, 105–108. [Google Scholar] [CrossRef]
- Paes Leme, R.C.; Da Silva, R.B. Antimicrobial Activity of Non-Steroidal Anti-Inflammatory Drugs on Biofilm: Current Evidence and Potential for Drug Repurposing. Front. Microbiol. 2021, 12, 707629. [Google Scholar] [CrossRef]
- Khodaparast, S.; Ghanbari, F.; Zamani, H. Evaluation of the Effect of Ibuprofen in Combination with Ciprofloxacin on the Virulence-Associated Traits, and Efflux Pump Genes of Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2022, 38, 125. [Google Scholar] [CrossRef]
- Shah, P.N.; Marshall-Batty, K.R.; Smolen, J.A.; Tagaev, J.A.; Chen, Q.; Rodesney, C.A.; Le, H.H.; Gordon, V.D.; Greenberg, D.E.; Cannon, C.L. Antimicrobial Activity of Ibuprofen Against Cystic Fibrosis-Associated Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2018, 62, e01574-17. [Google Scholar] [CrossRef]
- Yamashita, M. Auranofin: Past to Present, and Repurposing. Int. Immunopharmacol. 2021, 101 Pt B, 108272. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, A.; Sharma, R.; Kumar, A. Repurposing of Auranofin Against Bacterial Infections: An In Silico and In Vitro Study. Curr. Comput. Aided Drug Des. 2021, 17, 687–701. [Google Scholar] [CrossRef]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Sobreira, T.J.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Antibacterial Activity and Mechanism of Action of Auranofin Against Multi-Drug Resistant Bacterial Pathogens. Sci. Rep. 2016, 6, 22571. [Google Scholar] [CrossRef]
- Ding, X.; Yang, C.; Moreira, W.; Yuan, P.; Periaswamy, B.; De Sessions, P.F.; Zhao, H.; Tan, J.; Lee, A.; Ong, K.X.; et al. A Macromolecule Reversing Antibiotic Resistance Phenotype and Repurposing Drugs as Potent Antibiotics. Adv. Sci. 2020, 7, 2001374. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, S.; Wang, Y.; Zhang, Y.; Sun, L.; Li, H.; Wang, C.; Liu, Y.; Cao, B. Synergistic Activity of Colistin Combined with Auranofin Against Colistin-Resistant Gram-Negative Bacteria. Front. Microbiol. 2021, 12, 676414. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, S.; Huang, S.; Yang, H.; Ye, Q.; Lv, L.; Liang, Y.; Shan, J.; Xu, J.; Liu, W.; et al. Gold(I) Selenium N-Heterocyclic Carbene Complexes as Potent Antibacterial Agents Against Multidrug-Resistant Gram-Negative Bacteria via Inhibiting Thioredoxin Reductase. Redox Biol. 2023, 60, 102621. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Q.; Wang, R.; Wang, H.; Wong, Y.T.; Wang, M.; Hao, Q.; Yan, A.; Kao, R.Y.; Ho, P.L.; et al. Resensitizing Carbapenem- and Colistin-Resistant Bacteria to Antibiotics Using Auranofin. Nat. Commun. 2020, 11, 5263. [Google Scholar] [CrossRef]
- Roder, C.; Thomson, M.J. Auranofin: Repurposing an Old Drug for a Golden New Age. Drugs R D 2015, 15, 13–20. [Google Scholar] [CrossRef]
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of Hypertension: A Review. JAMA 2022, 328, 1849–1861. [Google Scholar] [CrossRef]
- Li, Y.; Pan, C.; Zhao, Z.; Zhao, Z.; Chen, H.; Lu, W. Effects of a Combination of Amlodipine and Imipenem on 42 Clinical Isolates of Acinetobacter baumannii Obtained from a Teaching Hospital in Guangzhou, China. BMC Infect. Dis. 2013, 13, 548. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Zhao, Z.; Wei, S.; Zhao, Z.; Chen, H.; Wu, P. In Vitro Synergistic Effect of Amlodipine and Imipenem on the Expression of the Adeabc Efflux Pump in Multidrug-Resistant Acinetobacter baumannii. PLoS ONE 2018, 13, e0198061. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, D.; Sun, S.; Lu, C. In Vitro Interactions of Ambroxol Hydrochloride or Amlodipine in Combination with Antibacterial Agents Against Carbapenem-Resistant Acinetobacter baumannii. Lett. Appl. Microbiol. 2020, 70, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Asok Kumar, K.; Mazumdar, K.; Dutta, N.K.; Karak, P.; Dastidar, S.G.; Ray, R. Evaluation of Synergism Between the Aminoglycoside Antibiotic Streptomycin and the Cardiovascular Agent Amlodipine. Biol. Pharm. Bull. 2004, 27, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, W.F.; Haynes, V.L.; Noreddin, A.M. Microbiological Appraisal of Levofloxacin Activity Against Pseudomonas aeruginosa Biofilm in Combination with Different Calcium Chanel Blockers In Vitro. J. Chemother. 2009, 21, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ugurel, E.; Turgut-Balik, D. Synergistic Combination of Carvedilol, Amlodipine, Amitriptyline, and Antibiotics as an Alternative Treatment Approach for the Susceptible and Multidrug-Resistant A. baumannii Infections via Drug Repurposing. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1063–1072. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, W.; Jia, Y.; Lu, C.; Jin, X.; Yang, J.; Zhu, Y.; Yang, L.; Song, Y.; Ding, L.; et al. Effects of Amlodipine on the Oral Bioavailability of Cephalexin and Cefuroxime Axetil in Healthy Volunteers. J. Clin. Pharmacol. 2013, 53, 82–86. [Google Scholar] [CrossRef]
- Kumar, K.A.; Ganguly, K.; Mazumdar, K.; Dutta, N.K.; Dastidar, S.G.; Chakrabarty, A.N. Amlodipine: A Cardiovascular Drug with Powerful Antimicrobial Property. Acta Microbiol. Pol. 2003, 52, 285–292. [Google Scholar]
- Mazumdar, K.; Asok Kumar, K.; Dutta, N.K. Potential Role of the Cardiovascular Non-Antibiotic (Helper Compound) Amlodipine in the Treatment of Microbial Infections: Scope and Hope for the Future. Int. J. Antimicrob. Agents 2010, 36, 295–302. [Google Scholar] [CrossRef]
- Lee, C.C.; Yang, C.Y.; Su, B.A.; Hsieh, C.C.; Hong, M.Y.; Lee, C.H.; Ko, W.C. The Hypotension Period After Initiation of Appropriate Antimicrobial Administration Is Crucial for Survival of Bacteremia Patients Initially Experiencing Severe Sepsis and Septic Shock. J. Clin. Med. 2020, 9, 2617. [Google Scholar] [CrossRef]
- Toma, L.; Stancu, C.S.; Sanda, G.M.; Sima, A.V. Anti-Oxidant and Anti-Inflammatory Mechanisms of Amlodipine Action to Improve Endothelial Cell Dysfunction Induced by Irreversibly Glycated LDL. Biochem. Biophys. Res. Commun. 2011, 411, 202–207. [Google Scholar] [CrossRef]
- Das, R.; Burke, T.; Van Wagoner, D.R.; Plow, E.F. L-Type Calcium Channel Blockers Exert an Antiinflammatory Effect by Suppressing Expression of Plasminogen Receptors on Macrophages. Circ. Res. 2009, 105, 167–175. [Google Scholar] [CrossRef]
- Das, R.; Plow, E.F. A New Function for Old Drugs. Cell Cycle 2010, 9, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical Use in Type 2 Diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jia, Y.; Yang, K.; Li, R.; Xiao, X.; Zhu, K.; Wang, Z. Metformin Restores Tetracyclines Susceptibility Against Multidrug Resistant Bacteria. Adv. Sci. 2020, 7, 1902227. [Google Scholar] [CrossRef] [PubMed]
- Masadeh, M.M.; Alzoubi, K.H.; Masadeh, M.M.; Aburashed, Z.O. Metformin as a Potential Adjuvant Antimicrobial Agent Against Multidrug Resistant Bacteria. Clin. Pharmacol. 2021, 13, 83–90. [Google Scholar] [CrossRef]
- Bae, H.B.; Zmijewski, J.W.; Deshane, J.S.; Tadie, J.M.; Chaplin, D.D.; Takashima, S.; Abraham, E. Amp-Activated Protein Kinase Enhances the Phagocytic Ability of Macrophages and Neutrophils. FASEB J. 2011, 25, 4358–4368. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, F.; Li, S.; Jiang, N.; Yu, C.; Zhu, X.; Qin, Y.; Hui, J.; Meng, L.; Song, C.; et al. Metformin Promotes Innate Immunity Through a Conserved Pmk-1/P38 Mapk Pathway. Virulence 2020, 11, 39–48. [Google Scholar] [CrossRef]
- Xu, T.; Wu, X.; Lu, X.; Liang, Y.; Mao, Y.; Loor, J.J.; Yang, Z. Metformin Activated AMPK Signaling Contributes to the Alleviation of LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. BMC Vet. Res. 2021, 17, 97. [Google Scholar] [CrossRef]
- Kar, E.; Alatas, O.; Sahinturk, V.; Oz, S. Effects of Metformin on Lipopolysaccharide Induced Inflammation by Activating Fibroblast Growth Factor 21. Biotech. Histochem. 2022, 97, 44–52. [Google Scholar] [CrossRef]
- Baker, E.H.; Baines, D.L. Airway Glucose Homeostasis: A New Target in the Prevention and Treatment of Pulmonary Infection. Chest 2018, 153, 507–514. [Google Scholar] [CrossRef]
- Tzanavari, T.; Varela, A.; Theocharis, S.; Ninou, E.; Kapelouzou, A.; Cokkinos, D.V.; Kontaridis, M.I.; Karalis, K.P. Metformin Protects Against Infection-Induced Myocardial Dysfunction. Metabolism 2016, 65, 1447–1458. [Google Scholar] [CrossRef]
- Ko, H.H.T.; Lareu, R.R.; Dix, B.R.; Hughes, J.D. In Vitro Antibacterial Effects of Statins Against Bacterial Pathogens Causing Skin Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1125–1135. [Google Scholar] [CrossRef]
- Farmer, A.R.; Murray, C.K.; Mende, K.; Akers, K.S.; Zera, W.C.; Beckius, M.L.; Yun, H.C. Effect of HMG-CoA Reductase Inhibitors on Antimicrobial Susceptibilities for Gram-Negative Rods. J. Basic Microbiol. 2013, 53, 336–339. [Google Scholar] [CrossRef]
- Masadeh, M.; Mhaidat, N.; Alzoubi, K.; Al-Azzam, S.; Alnasser, Z. Antibacterial Activity of Statins: A Comparative Study of Atorvastatin, Simvastatin, and Rosuvastatin. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 13. [Google Scholar] [CrossRef]
- Kornelsen, V.; Unger, M.; Kumar, A. Atorvastatin Does Not Display an Antimicrobial Activity on Its Own nor Potentiates the Activity of Other Antibiotics Against Acinetobacter baumannii Atcc17978 or A. baumannii Ab030. Access Microbiol. 2021, 3, 000288. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.H.T.; Lareu, R.R.; Dix, B.R.; Hughes, J.D. Statins: Antimicrobial Resistance Breakers or Makers? PeerJ 2017, 5, e3952. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.K.; Ridker, P.M. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nat. Rev. Drug Discov. 2005, 4, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R. Immune Modulatory Effects of Statins. Immunology 2018, 154, 69–75. [Google Scholar] [CrossRef]
- De Paula, T.P.; Santos, P.C.; Arifa, R.; Vieira, A.T.; Baltazar, L.M.; Avila, T.V.; Fagundes, C.T.; Garcia, Z.M.; Lima, R.L.; Teixeira, M.M.; et al. Treatment with Atorvastatin Provides Additional Benefits to Imipenem in a Model of Gram-Negative Pneumonia Induced by Klebsiella pneumoniae in Mice. Antimicrob. Agents Chemother. 2018, 62, e00764-17. [Google Scholar] [CrossRef]
- Heel, R.C.; Brogden, R.N.; Speight, T.M.; Avery, G.S. Loperamide: A Review of Its Pharmacological Properties and Therapeutic Efficacy in Diarrhoea. Drugs 1978, 15, 33–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Lv, L.; Zhang, Y.; Chen, H. Identification of a Novel Adjuvant Loperamide That Enhances the Antibacterial Activity of Colistin Against MCR-1-Positive Pathogens In Vitro/Vivo. Lett. Appl. Microbiol. 2023, 76, ovad025. [Google Scholar] [CrossRef]
- Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of Antibiotics and Nonantibiotic Drugs Enhance Antimicrobial Efficacy. Nat. Chem. Biol. 2011, 7, 348–350. [Google Scholar] [CrossRef]
- Juarez, E.; Ruiz, A.; Cortez, O.; Sada, E.; Torres, M. Antimicrobial and Immunomodulatory Activity Induced by Loperamide in Mycobacterial Infections. Int. Immunopharmacol. 2018, 65, 29–36. [Google Scholar] [CrossRef]
- Barrientos, O.M.; Juarez, E.; Gonzalez, Y.; Castro-Villeda, D.A.; Torres, M.; Guzman-Beltran, S. Loperamide Exerts a Direct Bactericidal Effect Against M. tuberculosis, M. bovis, M. terrae and M. smegmatis. Lett. Appl. Microbiol. 2021, 72, 351–356. [Google Scholar]
- Baker, D.E. Loperamide: A Pharmacological Review. Rev. Gastroenterol. Disord. 2007, 7 (Suppl. S3), S11–S18. [Google Scholar] [PubMed]
- Griffith, D.M.; Li, H.; Werrett, M.V.; Andrews, P.C.; Sun, H. Medicinal Chemistry and Biomedical Applications of Bismuth-Based Compounds and Nanoparticles. Chem. Soc. Rev. 2021, 50, 12037–12069. [Google Scholar] [CrossRef] [PubMed]
- Kanatzidis, M.; Sun, H.; Dehnen, S. Bismuth—The Magic Element. Inorg. Chem. 2020, 59, 3341–3343. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, H. Recent Advances in Bioinorganic Chemistry of Bismuth. Curr. Opin. Chem. Biol. 2012, 16, 74–83. [Google Scholar] [CrossRef]
- Malfertheiner, P. Infection: Bismuth Improves PPI-Based Triple Therapy for H. pylori Eradication. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 538–539. [Google Scholar] [CrossRef]
- Wang, R.; Lai, T.P.; Gao, P.; Zhang, H.; Ho, P.L.; Woo, P.C.; Ma, G.; Kao, R.Y.; Li, H.; Sun, H. Bismuth Antimicrobial Drugs Serve as Broad-Spectrum Metallo-β-Lactamase Inhibitors. Nat. Commun. 2018, 9, 439. [Google Scholar] [CrossRef]
- Deng, T.; Jia, Y.; Tong, Z.; Shi, J.; Wang, Z.; Liu, Y. Bismuth Drugs Reverse Tet(X)-Conferred Tigecycline Resistance in Gram-Negative Bacteria. Microbiol. Spectr. 2022, 10, e0157821. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, X.; Gao, P.; Wang, C.; De Jong, A.; Chen, J.H.K.; Rodriguez-Sanchez, M.J.; Rodriguez-Nogales, A.; Diez-Echave, P.; Galvez, J.; et al. Bismuth-Based Drugs Sensitize Pseudomonas aeruginosa to Multiple Antibiotics by Disrupting Iron Homeostasis. Nat. Microbiol. 2024, 9, 2600–2613. [Google Scholar] [CrossRef]
- Hind, C.K.; Dowson, C.G.; Sutton, J.M.; Jackson, T.; Clifford, M.; Garner, R.C.; Czaplewski, L. Evaluation of a Library of FDA-Approved Drugs for Their Ability to Potentiate Antibiotics Against Multidrug-Resistant Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2019, 63, e00769-19. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Sun, W.; Xu, M.; Shen, M.; Khraiwesh, M.; Sciotti, R.J.; Zheng, W. Repurposing Screen Identifies Unconventional Drugs with Activity Against Multidrug Resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2018, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, M.T.; Korbee, C.J.; Esselink, J.J.; Dos Santos, C.C.; Van Veen, S.; Gordijn, I.F.; Vrieling, F.; Walburg, K.V.; Engele, C.G.; Dijkman, K.; et al. Repurposing Diphenylbutylpiperidine-Class Antipsychotic Drugs for Host-Directed Therapy of Mycobacterium Tuberculosis and Salmonella Enterica Infections. Sci. Rep. 2021, 11, 19634. [Google Scholar] [CrossRef]
- Otto, R.G.; Van Gorp, E.; Kloezen, W.; Meletiadis, J.; Van Den Berg, S.; Mouton, J.W. An Alternative Strategy for Combination Therapy: Interactions Between Polymyxin B and Non-Antibiotics. Int. J. Antimicrob. Agents 2019, 53, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.U.; Ullah, F.; Ullah, I.; Ali, G.; Syed, N.I.; Hussain, S. Sertraline Enhances the Activity of Antimicrobial Agents Against Pathogens of Clinical Relevance. J. Biol. Res. 2015, 22, 4. [Google Scholar] [CrossRef]
- Li, L.; Kromann, S.; Olsen, J.E.; Svenningsen, S.W.; Olsen, R.H. Insight Into Synergetic Mechanisms of Tetracycline and the Selective Serotonin Reuptake Inhibitor, Sertraline, in a Tetracycline-Resistant Strain of Escherichia coli. J. Antibiot. 2017, 70, 944–953. [Google Scholar] [CrossRef]
- Karine De Sousa, A.; Rocha, J.E.; Goncalves De Souza, T.; Sampaio De Freitas, T.; Ribeiro-Filho, J.; Melo Coutinho, H.D. New Roles of Fluoxetine in Pharmacology: Antibacterial Effect and Modulation of Antibiotic Activity. Microb. Pathog. 2018, 123, 368–371. [Google Scholar] [CrossRef]
- Foletto, V.S.; Da Rosa, T.F.; Serafin, M.B.; Bottega, A.; Franco, L.N.; De Paula, B.R.; Horner, R. Repositioning of Antidepressant Drugs and Synergistic Effect with Ciprofloxacin Against Multidrug-Resistant Bacteria. World J. Microbiol. Biotechnol. 2021, 37, 53. [Google Scholar] [CrossRef]
- Hoertel, N.; Sanchez-Rico, M.; Cougoule, C.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Becker, K.A.; Reiersen, A.M.; Lenze, E.J.; Seftel, D.; et al. Repurposing Antidepressants Inhibiting the Sphingomyelinase Acid/Ceramide System Against COVID-19: Current Evidence and Potential Mechanisms. Mol. Psychiatry 2021, 26, 7098–7099. [Google Scholar] [CrossRef]
- Da Rosa, T.F.; Serafin, M.B.; Foletto, V.S.; Franco, L.N.; De Paula, B.R.; Fuchs, L.B.; Calegari, L.; Horner, R. Repositioning of Benzodiazepine Drugs and Synergistic Effect with Ciprofloxacin Against ESKAPE Pathogens. Curr. Microbiol. 2023, 80, 160. [Google Scholar] [CrossRef]
- Rosa, T.F.D.; Machado, C.S.; Serafin, M.B.; Bottega, A.; Coelho, S.S.; Foletto, V.S.; Rampelotto, R.F.; Lorenzoni, V.V.; Mainardi, A.; Horner, R. Repurposing of Escitalopram Oxalate and Clonazepam in Combination with Ciprofloxacin and Sulfamethoxazole-Trimethoprim for Treatment of Multidrug-Resistant Microorganisms and Evaluation of the Cleavage Capacity of Plasmid DNA. Can. J. Microbiol. 2021, 67, 599–612. [Google Scholar] [CrossRef]
- Soo, V.W.; Kwan, B.W.; Quezada, H.; Castillo-Juarez, I.; Perez-Eretza, B.; Garcia-Contreras, S.J.; Martinez-Vazquez, M.; Wood, T.K.; Garcia-Contreras, R. Repurposing of Anticancer Drugs for the Treatment of Bacterial Infections. Curr. Top. Med. Chem. 2017, 17, 1157–1176. [Google Scholar] [CrossRef]
- Miro-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front. Microbiol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Attila, C.; Ueda, A.; Wood, T.K. 5-Fluorouracil Reduces Biofilm Formation in Escherichia coli K-12 Through Global Regulator AriR as an Antivirulence Compound. Appl. Microbiol. Biotechnol. 2009, 82, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Attila, C.; Whiteley, M.; Wood, T.K. Uracil Influences Quorum Sensing and Biofilm Formation in Pseudomonas aeruginosa and Fluorouracil Is an Antagonist. Microb. Biotechnol. 2009, 2, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Imperi, F.; Massai, F.; Facchini, M.; Frangipani, E.; Visaggio, D.; Leoni, L.; Bragonzi, A.; Visca, P. Repurposing the Antimycotic Drug Flucytosine for Suppression of Pseudomonas aeruginosa Pathogenicity. Proc. Natl. Acad. Sci. USA 2013, 110, 7458–7463. [Google Scholar] [CrossRef] [PubMed]
- Gieringer, J.H.; Wenz, A.F.; Just, H.M.; Daschner, F.D. Effect of 5-Fluorouracil, Mitoxantrone, Methotrexate, and Vincristine on the Antibacterial Activity of Ceftriaxone, Ceftazidime, Cefotiam, Piperacillin, and Netilmicin. Chemotherapy 1986, 32, 418–424. [Google Scholar] [CrossRef]
- Kwan, B.W.; Chowdhury, N.; Wood, T.K. Combatting Bacterial Infections by Killing Persister Cells with Mitomycin C. Environ. Microbiol. 2015, 17, 4406–4414. [Google Scholar] [CrossRef]
- Cruz-Muniz, M.Y.; Lopez-Jacome, L.E.; Hernandez-Duran, M.; Franco-Cendejas, R.; Licona-Limon, P.; Ramos-Balderas, J.L.; Martinez-Vazquez, M.; Belmont-Diaz, J.A.; Wood, T.K.; Garcia-Contreras, R. Repurposing the Anticancer Drug Mitomycin C for the Treatment of Persistent Acinetobacter baumannii Infections. Int. J. Antimicrob. Agents 2017, 49, 88–92. [Google Scholar] [CrossRef]
- Pacios, O.; Fernandez-Garcia, L.; Bleriot, I.; Blasco, L.; Gonzalez-Bardanca, M.; Lopez, M.; Fernandez-Cuenca, F.; Oteo, J.; Pascual, A.; Action Study Group on Mechanisms of, Diseases Resistance to Antimicrobials on behalf of the Spanish Society of Infectious, and Microbiology Clinical; et al. Enhanced Antibacterial Activity of Repurposed Mitomycin C and Imipenem in Combination with the Lytic Phage Vb_Kpnm-Vac13 Against Clinical Isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2021, 65, e0090021. [Google Scholar] [CrossRef]
- Ho Sui, S.J.; Lo, R.; Fernandes, A.R.; Caulfield, M.D.; Lerman, J.A.; Xie, L.; Bourne, P.E.; Baillie, D.L.; Brinkman, F.S. Raloxifene Attenuates Pseudomonas aeruginosa Pyocyanin Production and Virulence. Int. J. Antimicrob. Agents 2012, 40, 246–251. [Google Scholar] [CrossRef]
- Corriden, R.; Hollands, A.; Olson, J.; Derieux, J.; Lopez, J.; Chang, J.T.; Gonzalez, D.J.; Nizet, V. Tamoxifen Augments the Innate Immune Function of Neutrophils Through Modulation of Intracellular Ceramide. Nat. Commun. 2015, 6, 8369. [Google Scholar] [CrossRef]
- Miro-Canturri, A.; Ayerbe-Algaba, R.; Del Toro, R.; Mejias, M.E.; Pachon, J.; Smani, Y. Potential Tamoxifen Repurposing to Combat Infections by Multidrug-Resistant Gram-Negative Bacilli. Pharmaceuticals 2021, 14, 507. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.H.; Schneider, E.K.; Elliott, A.G.; Han, M.; Reyes-Ortega, F.; Morris, F.; Blastovich, M.A.T.; Jasim, R.; Currie, B.; Mayo, M.; et al. From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative “Superbugs” Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microb. Drug Resist. 2017, 23, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Boland, R.; Heemskerk, M.T.; Forn-Cuni, G.; Korbee, C.J.; Walburg, K.V.; Esselink, J.J.; Carvalho Dos Santos, C.; De Waal, A.M.; Van Der Hoeven, D.C.M.; Van Der Sar, E.; et al. Repurposing Tamoxifen as Potential Host-Directed Therapeutic for Tuberculosis. mBio 2023, 14, e0302422. [Google Scholar] [CrossRef] [PubMed]
- Sfogliarini, C.; Pepe, G.; Dolce, A.; Della Torre, S.; Cesta, M.C.; Allegretti, M.; Locati, M.; Vegeto, E. Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Front. Pharmacol. 2022, 13, 879020. [Google Scholar] [CrossRef]
- Bonanni, B.; Johansson, H.; Gandini, S.; Guerrieri-Gonzaga, A.; Sandri, M.T.; Mariette, F.; Lien, E.A.; Decensi, A. Effect of Tamoxifen at Low Doses on Ultrasensitive C-Reactive Protein in Healthy Women. J. Thromb. Haemost. 2003, 1, 2149–2152. [Google Scholar] [CrossRef]
- Hughes, T.E.; Hansen, L.A. Gallium Nitrate. Ann. Pharmacother. 1992, 26, 354–362. [Google Scholar] [CrossRef]
- Macapinlac, H.A.; Scott, A.M.; Larson, S.M.; Divgi, C.R.; Yeh, S.D.; Goldsmith, S.J. Gallium-67-Citrate Imaging in Nuclear Oncology. Nucl. Med. Biol. 1994, 21, 731–738. [Google Scholar] [CrossRef]
- Kelson, A.B.; Carnevali, M.; Truong-Le, V. Gallium-Based Anti-Infectives: Targeting Microbial Iron-Uptake Mechanisms. Curr. Opin. Pharmacol. 2013, 13, 707–716. [Google Scholar] [CrossRef]
- Scott, Z.W.; Choi, S.R.; Talmon, G.A.; Britigan, B.E.; Narayanasamy, P. Combining Gallium Protoporphyrin and Gallium Nitrate Enhances In Vitro and in Vivo Efficacy Against Pseudomonas aeruginosa: Role of Inhibition of Bacterial Antioxidant Enzymes and Resultant Increase in Cytotoxic Reactive Oxygen Species. ACS Infect. Dis. 2022, 8, 2096–2105. [Google Scholar] [CrossRef]
- Choi, S.R.; Britigan, B.E.; Narayanasamy, P. Dual Inhibition of Klebsiella pneumoniae and Pseudomonas aeruginosa Iron Metabolism Using Gallium Porphyrin and Gallium Nitrate. ACS Infect. Dis. 2019, 5, 1559–1569. [Google Scholar] [CrossRef]
- Rossato, L.; Arantes, J.P.; Ribeiro, S.M.; Simionatto, S. Antibacterial Activity of Gallium Nitrate Against Polymyxin-Resistant Klebsiella pneumoniae Strains. Diagn. Microbiol. Infect. Dis. 2022, 102, 115569. [Google Scholar] [CrossRef]
- Guo, M.; Tian, P.; Li, Q.; Meng, B.; Ding, Y.; Liu, Y.; Li, Y.; Yu, L.; Li, J. Gallium Nitrate Enhances Antimicrobial Activity of Colistin Against Klebsiella pneumoniae by Inducing Reactive Oxygen Species Accumulation. Microbiol. Spectr. 2023, 11, e0033423. [Google Scholar] [CrossRef]
- Antunes, L.C.; Imperi, F.; Minandri, F.; Visca, P. In Vitro and in Vivo Antimicrobial Activities of Gallium Nitrate Against Multidrug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2012, 56, 5961–5970. [Google Scholar] [CrossRef] [PubMed]
- Runci, F.; Bonchi, C.; Frangipani, E.; Visaggio, D.; Visca, P. Acinetobacter baumannii Biofilm Formation in Human Serum and Disruption by Gallium. Antimicrob. Agents Chemother. 2017, 61, e01563-16. [Google Scholar] [CrossRef] [PubMed]
- Mitidieri, E.; Visaggio, D.; Frangipani, E.; Turnaturi, C.; Vanacore, D.; Provenzano, R.; Costabile, G.; Sorrentino, R.; Ungaro, F.; Visca, P.; et al. Intra-Tracheal Administration Increases Gallium Availability in Lung: Implications for Antibacterial Chemotherapy. Pharmacol. Res. 2021, 170, 105698. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Li, L.; Zhen, S.; Du, H.; Wang, Z.; Xiao, S.; Wu, J.; Zhu, L.; Shen, J.; et al. New Insights Into the Antimicrobial Action and Protective Therapeutic Effect of Tirapazamine Towards Escherichia coli-Infected Mice. Int. J. Antimicrob. Agents 2023, 62, 106923. [Google Scholar] [CrossRef]
- Shah, Z.; Mahbuba, R.; Turcotte, B. The Anticancer Drug Tirapazamine Has Antimicrobial Activity Against Escherichia coli, Staphylococcus aureus and Clostridium difficile. FEMS Microbiol. Lett. 2013, 347, 61–69. [Google Scholar] [CrossRef]
- Shi, J.; Chen, C.; Zhang, M.; Wang, Z.; Liu, Y. Repurposing Anthracycline Drugs as Potential Antibiotic Candidates and Potentiators to Tackle Multidrug-Resistant Pathogens. ACS Infect. Dis. 2024, 10, 594–605. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for Human Disease: An Update on Plant-Derived Compounds Antibacterial Activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Wang, Y.; Sharma, G.; Shen, J.; Velkov, T.; Xiao, X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants 2020, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Pan, C.; Lu, Y.; Gao, Y.; Liu, W.; Yin, P.; Yu, X. Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats. Front. Cell. Infect. Microbiol. 2017, 7, 379. [Google Scholar] [CrossRef] [PubMed]
- Praditya, D.; Kirchhoff, L.; Bruning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-Infective Properties of the Golden Spice Curcumin. Front. Microbiol. 2019, 10, 912. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Pham, T.N.; Le, A.T.; Thuy, N.T.; Huy, T.Q.; Nguyen, T.T.T. Antibacterial Activity of a Berberine Nanoformulation. Beilstein J. Nanotechnol. 2022, 13, 641–652. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Wang, L.; Kang, G.; Wang, P.; Yin, H.; Huang, H. A Potential Combination Therapy of Berberine Hydrochloride with Antibiotics Against Multidrug-Resistant Acinetobacter baumannii. Front. Cell Infect. Microbiol. 2021, 11, 660431. [Google Scholar] [CrossRef]
- Magesh, H.; Kumar, A.; Alam, A.; Priyam; Sekar, U.; Sumantran, V.N.; Vaidyanathan, R. Identification of Natural Compounds Which Inhibit Biofilm Formation in Clinical Isolates of Klebsiella pneumoniae. Indian J. Exp. Biol. 2013, 51, 764–772. [Google Scholar]
- Su, F.; Wang, J. Berberine Inhibits the Mexxy-Oprm Efflux Pump to Reverse Imipenem Resistance in a Clinical Carbapenem-Resistant Pseudomonas aeruginosa Isolate in a Planktonic State. Exp. Ther. Med. 2018, 15, 467–472. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.N.; Jiang, J.D.; Kong, W.J. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2014, 2014, 289264. [Google Scholar] [CrossRef]
- Zou, K.; Li, Z.; Zhang, Y.; Zhang, H.Y.; Li, B.; Zhu, W.L.; Shi, J.Y.; Jia, Q.; Li, Y.M. Advances in the Study of Berberine and Its Derivatives: A Focus on Anti-Inflammatory and Anti-Tumor Effects in the Digestive System. Acta Pharmacol. Sin. 2017, 38, 157–167. [Google Scholar] [CrossRef]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-Infective Properties of Epigallocatechin-3-Gallate (EGCG), a Component of Green Tea. Br. J. Pharmacol. 2013, 168, 1059–1073. [Google Scholar] [CrossRef]
- Parvez, M.A.K.; Saha, K.; Rahman, J.; Munmun, R.A.; Rahman, M.A.; Dey, S.K.; Rahman, M.S.; Islam, S.; Shariare, M.H. Antibacterial Activities of Green Tea Crude Extracts and Synergistic Effects of Epigallocatechingallate (EGCG) with Gentamicin Against MDR Pathogens. Heliyon 2019, 5, e02126. [Google Scholar] [CrossRef]
- Betts, J.W.; Hornsey, M.; Higgins, P.G.; Lucassen, K.; Wille, J.; Salguero, F.J.; Seifert, H.; La Ragione, R.M. Restoring the Activity of the Antibiotic Aztreonam Using the Polyphenol Epigallocatechin Gallate (EGCG) Against Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Kanagaratnam, R.; Sheikh, R.; Alharbi, F.; Kwon, D.H. An Efflux Pump (MexAB-OprM) of Pseudomonas aeruginosa Is Associated with Antibacterial Activity of Epigallocatechin-3-Gallate (EGCG). Phytomedicine 2017, 36, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020, 25, 3146. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dong, M.; Bo, L.; Li, C.; Liu, Q.; Li, Y.; Ma, L.; Xie, Y.; Fu, E.; Mu, D.; et al. Epigallocatechin-3-Gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting Jak/Stat1 Pathway in Rats. Mediat. Inflamm. 2014, 2014, 612593. [Google Scholar] [CrossRef]
- Wang, J.; Fan, S.M.; Zhang, J. Epigallocatechin-3-Gallate Ameliorates Lipopolysaccharide-Induced Acute Lung Injury by Suppression of Tlr4/Nf-κb Signaling Activation. Braz. J. Med. Biol. Res. 2019, 52, e8092. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, H.; Zhang, X.; Huang, X.; Wang, J.; Li, Z.; Chen, M.; Xiao, Z. EGCG Promotes PRKCA Expression to Alleviate LPS-Induced Acute Lung Injury and Inflammatory Response. Sci. Rep. 2021, 11, 11014. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Pal, A.; Tripathi, A. Quercetin Inhibits Carbapenemase and Efflux Pump Activities Among Carbapenem-Resistant Gram-Negative Bacteria. APMIS 2020, 128, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Tripathi, A. Toxicological and Behavioral Study of Two Potential Antibacterial Agents:4-Chloromercuribenzoic Acid and Quercetin on Swiss-Albino Mice. Drug Chem. Toxicol. 2020, 43, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, P.L.; Nascimento, T.C.; Ramos, N.S.; Silva, G.R.; Gomes, J.E.; Falcao, R.E.; Moreira, K.A.; Porto, A.L.; Silva, T.M. Quantification, Antioxidant and Antimicrobial Activity of Phenolics Isolated from Different Extracts of Capsicum Frutescens (Pimenta malagueta). Molecules 2014, 19, 5434–5447. [Google Scholar] [CrossRef] [PubMed]
- Fuchtbauer, S.; Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Antibacterial Properties of Capsaicin and Its Derivatives and Their Potential to Fight Antibiotic Resistance—A Literature Survey. Eur. J. Microbiol. Immunol. 2021, 11, 10–17. [Google Scholar] [CrossRef]
- Periferakis, A.T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef]
- Guo, T.; Li, M.; Sun, X.; Wang, Y.; Yang, L.; Jiao, H.; Li, G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front. Pharmacol. 2021, 12, 744494. [Google Scholar] [CrossRef]
- Gallique, M.; Wei, K.; Maisuria, V.B.; Okshevsky, M.; Mckay, G.; Nguyen, D.; Tufenkji, N. Cranberry-Derived Proanthocyanidins Potentiate β-Lactam Antibiotics Against Resistant Bacteria. Appl. Environ. Microbiol. 2021, 87, e00127-21. [Google Scholar] [CrossRef]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; Van Hoek, M.L. Cranberry Proanthocyanidins Have Anti-Biofilm Properties Against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef]
- Maisuria, V.B.; Okshevsky, M.; Deziel, E.; Tufenkji, N. Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Adv. Sci. 2019, 6, 1802333. [Google Scholar] [CrossRef]
- Vadekeetil, A.; Alexandar, V.; Chhibber, S.; Harjai, K. Adjuvant Effect of Cranberry Proanthocyanidin Active Fraction on Antivirulent Property of Ciprofloxacin Against Pseudomonas aeruginosa. Microb. Pathog. 2016, 90, 98–103. [Google Scholar] [CrossRef]
- Maisuria, V.B.; Los Santos, Y.L.; Tufenkji, N.; Deziel, E. Cranberry-Derived Proanthocyanidins Impair Virulence and Inhibit Quorum Sensing of Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 30169. [Google Scholar] [CrossRef] [PubMed]
- Delehanty, J.B.; Johnson, B.J.; Hickey, T.E.; Pons, T.; Ligler, F.S. Binding and Neutralization of Lipopolysaccharides by Plant Proanthocyanidins. J. Nat. Prod. 2007, 70, 1718–1724. [Google Scholar] [CrossRef]
- La, V.D.; Howell, A.B.; Grenier, D. Cranberry Proanthocyanidins Inhibit MMP Production and Activity. J. Dent. Res. 2009, 88, 627–632. [Google Scholar] [CrossRef]
- La, V.D.; Labrecque, J.; Grenier, D. Cytoprotective Effect of Proanthocyanidin-Rich Cranberry Fraction Against Bacterial Cell Wall-Mediated Toxicity in Macrophages and Epithelial Cells. Phytother. Res. 2009, 23, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, M.; Bartoszek, A. Antioxidant and Antimicrobial Properties of Bioactive Phytochemicals from Cranberry. Postepy Hig. Med. Dosw. 2016, 70, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sony, S.A.; Chowdhury, M.B.; Ullah, M.M.; Paul, S.; Hossain, T. Retention of Antibiotic Activity Against Resistant Bacteria Harbouring Aminoglycoside-N-Acetyltransferase Enzyme by Adjuvants: A Combination of In-Silico and In-Vitro Study. Sci. Rep. 2020, 10, 19381. [Google Scholar] [CrossRef]
- Andrade, J.C.; Morais Braga, M.F.B.; Guedes, G.M.M.; Tintino, S.R.; Freitas, M.A.; Quintans, L.J., Jr.; Menezes, I.R.A.; Coutinho, H.D.M. Cholecalciferol, Ergosterol, and Cholesterol Enhance the Antibiotic Activity of Drugs. Int. J. Vitam. Nutr. Res. 2018, 88, 244–250. [Google Scholar] [CrossRef]
- Golpour, A.; Bereswill, S.; Heimesaat, M.M. Antimicrobial and Immune-Modulatory Effects of Vitamin D Provide Promising Antibiotics-Independent Approaches to Tackle Bacterial Infections—Lessons Learnt from a Literature Survey. Eur. J. Microbiol. Immunol. 2019, 9, 80–87. [Google Scholar] [CrossRef]
- Silwal, P.; Paik, S.; Jeon, S.M.; Jo, E.K. Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics. Cells 2020, 9, 1979. [Google Scholar] [CrossRef]
- Hertting, O.; Holm, A.; Luthje, P.; Brauner, H.; Dyrdak, R.; Jonasson, A.F.; Wiklund, P.; Chromek, M.; Brauner, A. Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder. PLoS ONE 2010, 5, e15580. [Google Scholar] [CrossRef]
- Georgieva, V.; Kamolvit, W.; Herthelius, M.; Luthje, P.; Brauner, A.; Chromek, M. Association Between Vitamin D, Antimicrobial Peptides and Urinary Tract Infection in Infants and Young Children. Acta Paediatr. 2019, 108, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Immunomodulatory and Antimicrobial Effects of Vitamin C. Eur. J. Microbiol. Immunol. 2019, 9, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Kallio, J.; Jaakkola, M.; Maki, M.; Kilpelainen, P.; Virtanen, V. Vitamin C Inhibits Staphylococcus aureus Growth and Enhances the Inhibitory Effect of Quercetin on Growth of Escherichia coli In Vitro. Planta Med. 2012, 78, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Van Asbeck, B.S.; Marcelis, J.H.; Marx, J.J.; Struyvenberg, A.; Van Kats, J.H.; Verhoef, J. Inhibition of Bacterial Multiplication by the Iron Chelator Deferoxamine: Potentiating Effect of Ascorbic Acid. Eur. J. Clin. Microbiol. 1983, 2, 426–431. [Google Scholar] [CrossRef]
- Herxheimer, A.; Petrie, K.J. Melatonin for the Prevention and Treatment of Jet Lag. Cochrane Database Syst. Rev. 2002, 2, CD001520. [Google Scholar] [CrossRef]
- Tekbas, O.F.; Ogur, R.; Korkmaz, A.; Kilic, A.; Reiter, R.J. Melatonin as an Antibiotic: New Insights Into the Actions of This Ubiquitous Molecule. J. Pineal Res. 2008, 44, 222–226. [Google Scholar] [CrossRef]
- He, F.; Wu, X.; Zhang, Q.; Li, Y.; Ye, Y.; Li, P.; Chen, S.; Peng, Y.; Hardeland, R.; Xia, Y. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front. Immunol. 2021, 12, 683879. [Google Scholar] [CrossRef]
- He, F.; Liu, Y.; Li, P.; Wu, X.; Xia, Y.; Zhang, D.; Li, N.; Peng, Y.; Zhu, G.; Hardeland, R.; et al. Melatonin Inhibits Gram-Negative Pathogens by Targeting Citrate Synthase. Sci. China Life Sci. 2022, 65, 1430–1444. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Y.; Yang, K.; Tong, Z.; Shi, J.; Li, R.; Xiao, X.; Ren, W.; Hardeland, R.; Reiter, R.J.; et al. Melatonin Overcomes MCR-Mediated Colistin Resistance in Gram-Negative Pathogens. Theranostics 2020, 10, 10697–10711. [Google Scholar] [CrossRef]
- Fink, T.; Glas, M.; Wolf, A.; Kleber, A.; Reus, E.; Wolff, M.; Kiefer, D.; Wolf, B.; Rensing, H.; Volk, T.; et al. Melatonin Receptors Mediate Improvements of Survival in a Model of Polymicrobial Sepsis. Crit. Care Med. 2014, 42, e22–e31. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Deng, C.; Ma, Z.; Wang, D.; Fan, C.; Li, T.; Di, S.; Gong, B.; Reiter, R.J.; Yang, Y. Utilizing Melatonin to Combat Bacterial Infections and Septic Injury. Br. J. Pharmacol. 2017, 174, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Mirzaei, E.; Vazin, A. Pharmacological Agents for the Prevention of Colistin-Induced Nephrotoxicity. Eur. J. Med. Res. 2022, 27, 64. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Meaney-Delman, D.; Fleck-Derderian, S.; Cooley, K.M.; Yu, P.A.; Mead, P.S. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm. Rep. 2021, 70, 1–27. [Google Scholar] [CrossRef]
- Andersson, J.A.; Fitts, E.C.; Kirtley, M.L.; Ponnusamy, D.; Peniche, A.G.; Dann, S.M.; Motin, V.L.; Chauhan, S.; Rosenzweig, J.A.; Sha, J.; et al. New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2016, 60, 3717–3729. [Google Scholar] [CrossRef]
- Lei, C.; Kumar, S. Yersinia pestis Antibiotic Resistance: A Systematic Review. Osong Public Health Res. Perspect. 2022, 13, 24–36. [Google Scholar] [CrossRef]
- Maurin, M.; Ponderand, L.; Hennebique, A.; Pelloux, I.; Boisset, S.; Caspar, Y. Tularemia Treatment: Experimental and Clinical Data. Front. Microbiol. 2023, 14, 1348323. [Google Scholar] [CrossRef]
- Nelson, C.A.; Winberg, J.; Bostic, T.D.; Davis, K.M.; Fleck-Derderian, S. Systematic Review: Clinical Features, Antimicrobial Treatment, and Outcomes of Human Tularemia, 1993–2023. Clin. Infect. Dis. 2024, 78 (Suppl. S1), S15–S28. [Google Scholar] [CrossRef]
- Kassinger, S.J.; Van Hoek, M.L. Genetic Determinants of Antibiotic Resistance in Francisella. Front. Microbiol. 2021, 12, 644855. [Google Scholar] [CrossRef]
- Sarovich, D.S.; Webb, J.R.; Pitman, M.C.; Viberg, L.T.; Mayo, M.; Baird, R.W.; Robson, J.M.; Currie, B.J.; Price, E.P. Raising the Stakes: Loss of Efflux Pump Regulation Decreases Meropenem Susceptibility in Burkholderia pseudomallei. Clin. Infect. Dis. 2018, 67, 243–250. [Google Scholar] [CrossRef]
- Schweizer, H.P. Mechanisms of Antibiotic Resistance in Burkholderia pseudomallei: Implications for Treatment of Melioidosis. Future Microbiol. 2012, 7, 1389–1399. [Google Scholar] [CrossRef]
- Gur, D.; Chitlaru, T.; Mamroud, E.; Zauberman, A. Screening of an FDA-Approved Library for Novel Drugs Against Y. pestis. Antibiotics 2021, 10, 40. [Google Scholar] [CrossRef]
- Vavra, J.J.; Deboer, C.; Dietz, A.; Hanka, L.J.; Sokolski, W.T. Streptozotocin, a New Antibacterial Antibiotic. Antibiot. Annu. 1959, 7, 230–235. [Google Scholar] [PubMed]
- Andros, C.C.; Dubay, R.A.; Mitchell, K.D.; Chen, A.; Holmes, D.E.; Kennedy, D.R. A Novel Application of Radiomimetic Compounds as Antibiotic Drugs. J. Pharm. Pharmacol. 2015, 67, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yang, S.H.; Oh, J.M.; Lee, M.G. Pharmacokinetics of Drugs in Rats with Diabetes Mellitus Induced by Alloxan or Streptozocin: Comparison with Those in Patients with Type I Diabetes Mellitus. J. Pharm. Pharmacol. 2010, 62, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.A.; Sha, J.; Kirtley, M.L.; Reyes, E.; Fitts, E.C.; Dann, S.M.; Chopra, A.K. Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics. Antimicrob. Agents Chemother. 2018, 62, e01943-17. [Google Scholar] [CrossRef]
- Levy, Y.; Vagima, Y.; Tidhar, A.; Zauberman, A.; Aftalion, M.; Gur, D.; Fogel, I.; Chitlaru, T.; Flashner, Y.; Mamroud, E. Adjunctive Corticosteroid Treatment Against Yersinia pestis Improves Bacterial Clearance, Immunopathology, and Survival in the Mouse Model of Bubonic Plague. J. Infect. Dis. 2016, 214, 970–977. [Google Scholar] [CrossRef]
- Ayyadurai, S.; Lepidi, H.; Nappez, C.; Raoult, D.; Drancourt, M. Lovastatin Protects Against Experimental Plague in Mice. PLoS ONE 2010, 5, e10928. [Google Scholar] [CrossRef]
- Meibom, K.L.; Barel, M.; Charbit, A. Loops and Networks in Control of Francisella tularensis Virulence. Future Microbiol. 2009, 4, 713–729. [Google Scholar] [CrossRef]
- Gillette, D.D.; Tridandapani, S.; Butchar, J.P. Monocyte/Macrophage Inflammatory Response Pathways to Combat Francisella Infection: Possible Therapeutic Targets? Front. Cell Infect. Microbiol. 2014, 4, 18. [Google Scholar] [CrossRef]
- Napier, R.J.; Norris, B.A.; Swimm, A.; Giver, C.R.; Harris, W.A.; Laval, J.; Napier, B.A.; Patel, G.; Crump, R.; Peng, Z.; et al. Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-Microbial Immunity. PLoS Pathog. 2015, 11, e1004770. [Google Scholar] [CrossRef]
- Jayamani, E.; Tharmalingam, N.; Rajamuthiah, R.; Coleman, J.J.; Kim, W.; Okoli, I.; Hernandez, A.M.; Lee, K.; Nau, G.J.; Ausubel, F.M.; et al. Characterization of a Francisella tularensis-Caenorhabditis Elegans Pathosystem for the Evaluation of Therapeutic Compounds. Antimicrob. Agents Chemother. 2017, 61, e00310-17. [Google Scholar] [CrossRef]
- Chiu, H.C.; Yang, J.; Soni, S.; Kulp, S.K.; Gunn, J.S.; Schlesinger, L.S.; Chen, C.S. Pharmacological Exploitation of an Off-Target Antibacterial Effect of the Cyclooxygenase-2 Inhibitor Celecoxib Against Francisella tularensis. Antimicrob. Agents Chemother. 2009, 53, 2998–3002. [Google Scholar] [CrossRef]
- Petras, J.K.; Elrod, M.G.; Ty, M.C.; Dawson, P.; O’Laughlin, K.; Gee, J.E.; Hanson, J.; Boutwell, C.; Ainsworth, G.; Beesley, C.A.; et al. Locally Acquired Melioidosis Linked to Environment—Mississippi, 2020–2023. N. Engl. J. Med. 2023, 389, 2355–2362. [Google Scholar] [CrossRef] [PubMed]
- Lipsitz, R.; Garges, S.; Aurigemma, R.; Baccam, P.; Blaney, D.D.; Cheng, A.C.; Currie, B.J.; Dance, D.; Gee, J.E.; Larsen, J.; et al. Workshop on Treatment of and Postexposure Prophylaxis for Burkholderia pseudomallei and B. Mallei Infection, 2010. Emerg. Infect. Dis. 2012, 18, e2. [Google Scholar] [CrossRef] [PubMed]
- Thanasai, J.; Laklaeng, S.N.; Khemla, S.; Ratanavong, K.; Chatatikun, M.; Tangpong, J.; Klangbud, W.K. Global Prevalence of Antibiotic-Resistant Burkholderia pseudomallei in Melioidosis Patients: A Systematic Review and Meta-Analysis. Antibiotics 2025, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.Y.; Ong, Y.M.; Chua, K.L. Synergistic Interaction Between Phenothiazines and Antimicrobial Agents Against Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2007, 51, 623–630. [Google Scholar] [CrossRef]
- Ross, B.N.; Myers, J.N.; Muruato, L.A.; Tapia, D.; Torres, A.G. Evaluating New Compounds to Treat Burkholderia pseudomallei Infections. Front. Cell. Infect. Microbiol. 2018, 8, 210. [Google Scholar] [CrossRef]
- Wilson, W.J.; Afzali, M.F.; Cummings, J.E.; Legare, M.E.; Tjalkens, R.B.; Allen, C.P.; Slayden, R.A.; Hanneman, W.H. Immune Modulation as an Effective Adjunct Post-Exposure Therapeutic for B. Pseudomallei. PLoS Negl. Trop. Dis. 2016, 10, e0005065. [Google Scholar] [CrossRef]
- Propst, K.L.; Troyer, R.M.; Kellihan, L.M.; Schweizer, H.P.; Dow, S.W. Immunotherapy Markedly Increases the Effectiveness of Antimicrobial Therapy for Treatment of Burkholderia pseudomallei Infection. Antimicrob. Agents Chemother. 2010, 54, 1785–1792. [Google Scholar] [CrossRef]
Pathogen | CDC Category | Current Standard Therapy (CDC) | Known/Potential Resistance |
---|---|---|---|
Yersinia pestis | A | Gentamicin or fluoroquinolones (e.g., ciprofloxacin, levofloxacin); sometimes streptomycin or doxycycline (IV or PO, 10–14 days) [235,236] | Plasmid-mediated resistance can be acquired naturally and artificially; gene point mutations [237] |
Francisella tularensis | A | Gentamicin (5 mg/kg IM/IV, 10–14 days), ciprofloxacin (400 mg IV or 500 mg PO twice daily, 10–14 days), doxycycline (100 mg IV/PO twice daily, 14–21 days) https://www.cdc.gov/tularemia/hcp/clinical-care/index.html accessed on 5 May 2025) [238,239] | Naturally resistant to many β-lactams; antimicrobial resistance can be artificially introduced with plasmids [240] |
Burkholderia pseudomallei | B | Intensive phase: IV ceftazidime every 6–8 h or meropenem every 8 h; eradication phase: TMP-SMX (with folic acid), or co-amoxiclav, or doxycycline for 3–6 months CDC—Melioidosis Clinical Overview: https://www.cdc.gov/melioidosis/hcp/clinical-overview/index.html accessed on 5 May 2025). | Intrinsic resistance to many antibiotics via efflux pumps; biofilm-associated tolerance [241,242] |
Burkholderia mallei | B | Similarly to B. pseudomallei | Similarly to B. pseudomallei; fewer clinical data |
Drug | Original Indication | Mechanism | Evidence | Advantages | Limitations |
---|---|---|---|---|---|
Bleomycin | Oncology (Hodgkin’s, NHL, solid tumors) | Direct | In vitro growth inhibition [243] | Broad Gram-negative activity | High toxicity; IV only |
Streptozotocin | Oncology (pancreatic cancer) | Direct | In vitro activity [243] | Potent vs. resistant strains | Very short t½; toxicity |
Doxapram | Respiratory stimulant | HDT | Murine pneumonic plague; ±levofloxacin synergy [236] | Extends antibiotic window; broad activity | Limited infection clinical data |
Amoxapine | Antidepressant (TCA) | HDT | Murine pneumonic plague; ±levofloxacin [236] | Inhibits intracellular replication | CNS side effects |
Trifluoperazine | Antipsychotic | HDT | Early post-exposure protection in mice [236] | Reduces macrophage injury | Efficacy reduced with delayed start |
Lovastatin | Hyperlipidemia | HDT | Murine prophylaxis improved survival [249] | Anti-inflammatory; less pathology | Tested prophylactically |
Methylprednisolone | Corticosteroid | HDT (adjunct) | Adjunct to antibodies improved outcomes [248] | Limits tissue damage | Immunosuppression risk |
Drug | Original Indication | Mechanism | Evidence | Advantages | Limitations |
---|---|---|---|---|---|
Imatinib | Oncology (CML, GIST) | HDT | Murine LVS: decreased bacterial load [239,252] | Boosts myelopoiesis/WBCs | Oncology-grade toxicities |
Diflunisal | NSAID | Direct + HDT | MIC; macrophage activity; synergy with ciprofloxacin [253] | Multi-layered activity | NSAID toxicity (chronic) |
Mefloquine | Antimalarial | Direct | In vitro MIC ≈ 16 µg/mL [253] | Intracellular penetration | Neuropsychiatric AEs |
Paroxetine | SSRI | Direct (screen) | Increased C. elegans survival vs. LVS [253] | Known safety profile | Limited antibacterial potency data |
Celecoxib derivatives | NSAID (COX-2) | Direct (independent of COX-2) | In vitro; macrophage growth inhibition [254] | Anti-inflammatory + antibacterial | Parent drug weaker |
Drug | Original Indication | Mechanism | Evidence | Advantages | Limitations |
---|---|---|---|---|---|
Phenothiazines (prochlorperazine, chlorpromazine, promazine) | Antipsychotic/antihistamine | Direct (efflux-pump inhibition) | Synergy with aminoglycosides & macrolides; decreased MICs [258] | Restores activity of multiple classes | CNS/cardiac AEs; repurposing dose/PK gaps |
Auranofin | Rheumatoid arthritis | Direct | In vitro MIC ≈ 150 µg/mL [259] | Broad Gram-neg. potential | High MIC; formulation issues |
Tolfenamic acid | NSAID (migraine/pain) | HDT | Murine inhalational model: synergy with ceftazidime; decreased lung burden [260] | Adjunctive benefit; immune modulation | Not widely available everywhere |
Interferon-γ | Immunomodulatory therapy (adjunct use) | HDT | Preclinical: in vitro + murine models [261] | Synergy, intracellular clearance, reduced relapse | Safety and dosing unknown |
(IFN-γ) | (production of reactive oxygen species) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloni-Grinstein, R.; Mamroud, E.; Gal, Y. New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections. Microorganisms 2025, 13, 2115. https://doi.org/10.3390/microorganisms13092115
Aloni-Grinstein R, Mamroud E, Gal Y. New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections. Microorganisms. 2025; 13(9):2115. https://doi.org/10.3390/microorganisms13092115
Chicago/Turabian StyleAloni-Grinstein, Ronit, Emanuelle Mamroud, and Yoav Gal. 2025. "New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections" Microorganisms 13, no. 9: 2115. https://doi.org/10.3390/microorganisms13092115
APA StyleAloni-Grinstein, R., Mamroud, E., & Gal, Y. (2025). New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections. Microorganisms, 13(9), 2115. https://doi.org/10.3390/microorganisms13092115